News
Ad
Ad
Ad
Tag

Event Horizon Telescope

Browsing

SCOPERTO IL GETTO OSCILLANTE DI M87

Un gruppo di ricercatori guidati dallo Zhejiang Laboratory (Cina), a cui partecipa anche l’Istituto Nazionale di Astrofisica (INAF) e l’Università di Bologna, ha recentemente scoperto che la vicina radiogalassia Messier 87 (M87), situata a 55 milioni di anni luce dalla Terra, presenta un getto oscillante. Questo getto ha origine da un buco nero 6,5 miliardi di volte più massiccio del Sole: esattamente quello la cui immagine è stata ottenuta nel 2019 con l’Event Horizon Telescope (EHT). Dai dati raccolti negli ultimi 23 anni con la tecnica Very Long Baseline Interferometry (VLBI), gli esperti hanno osservato che il getto oscilla con un’ampiezza di circa 10 gradi (il fenomeno è conosciuto con il nome di precessione). Come si legge nell’articolo pubblicato oggi su Nature, gli esperti hanno svelato un ciclo ricorrente di 11 anni nel movimento di precessione della base del getto, come previsto dalla teoria della relatività generale di Einstein nel caso di un buco nero rotante attorno al suo asse. Questo lavoro ha quindi collegato con successo la dinamica del getto con il buco nero supermassiccio centrale, offrendo la prova dell’esistenza della rotazione del buco nero di M87.

Rappresentazione schematica del modello del disco di accrescimento inclinato. Si presume che l’asse di rotazione del buco nero sia allineato verticalmente. La direzione del getto è quasi perpendicolare al disco. Il disallineamento tra l’asse di rotazione del buco nero e l’asse di rotazione del disco innescherà la precessione del disco e del getto. Crediti: Yuzhu Cui et al. 2023, Intouchable Lab@Openverse e Zhejiang Lab
Scoperto il getto oscillante di M87: rappresentazione schematica del modello del disco di accrescimento inclinato. Si presume che l’asse di rotazione del buco nero sia allineato verticalmente. La direzione del getto è quasi perpendicolare al disco. Il disallineamento tra l’asse di rotazione del buco nero e l’asse di rotazione del disco innescherà la precessione del disco e del getto. Crediti: Yuzhu Cui et al. 2023, Intouchable Lab@Openverse e Zhejiang Lab

I buchi neri supermassicci al centro delle galassie attive sono gli oggetti celesti più potenti dell’universo, in quanto in grado di accumulare enormi quantità di materiali a causa della straordinaria forza gravitazionale e allo stesso tempo alimentare getti che si allontanano a velocità vicina a quella della luce. Il meccanismo di trasferimento di energia tra i buchi neri supermassicci, il disco tramite il quale la materia cade sul buco nero e i getti relativistici rimane però un enigma ancora irrisolto. Una teoria prevalente suggerisce che l’energia può essere estratta da un buco nero in rotazione, che grazie alla energia gravitazionale ottenuta dalla materia in caduta su di esso è in grado di espellere getti di plasma a velocità vicine a quella della luce. Tuttavia, la rotazione dei buchi neri supermassicci non è ancora stata provata con certezza.

Marcello Giroletti, ricercatore presso l’INAF di Bologna e tra gli autori dell’articolo, spiega:

“Questa scoperta è molto importante, perché prova che il buco nero supermassccio al centro di M87 è in rotazione su sé stesso con grandissima velocità. Questa possibilità era stata ipotizzata proprio sulla base delle immagini ottenute con EHT ma ora ne abbiamo una dimostrazione inequivocabile”

Infatti quale forza nell’universo può alterare la direzione di un getto così potente? La risposta potrebbe nascondersi nel comportamento del disco di accrescimento, la struttura a forma di disco nella quale il materiale spiraleggia gradualmente verso l’interno finché non viene fatalmente attratto dal buco nero. E se il buco nero è in rotazione su sé stesso, ne segue un impatto significativo sullo spazio-tempo circostante, causando il trascinamento degli oggetti vicini, ovvero il “frame-dragging” previsto dalla Relatività Generale di Einstein.

 Pannello superiore: struttura del getto M87 a 43 GHz osservata nel periodo 2013-2018. Le frecce bianche indicano l'angolo di posizione del getto in ciascuna sottotrama. Pannello inferiore: risultati basati sull'immagine impilata annualmente dal 2000 al 2022. I punti verde e blu sono ottenuti da osservazioni rispettivamente a 22 GHz e 43 GHz. La linea rossa rappresenta la soluzione migliore secondo il modello di precessione. Crediti: Yuzhu Cui et al. 2023
Pannello superiore: struttura del getto M87 a 43 GHz osservata nel periodo 2013-2018. Le frecce bianche indicano l’angolo di posizione del getto in ciascuna sottotrama. Pannello inferiore: risultati basati sull’immagine impilata annualmente dal 2000 al 2022. I punti verde e blu sono ottenuti da osservazioni rispettivamente a 22 GHz e 43 GHz. La linea rossa rappresenta la soluzione migliore secondo il modello di precessione. Crediti: Yuzhu Cui et al. 2023

Gabriele Giovannini, professore dell’Università di Bologna e tra gli autori dell’articolo, aggiunge:

“La galassia M87 (Virgo A) non cessa di stupirci. Dopo averci regalato la prima immagine del suo supermassiccio buco nero centrale, ora ci rivela che il potente getto emesso grazie alla trasformazione di massa in energia non è stabile ma fa registrare una regolare oscillazione. Questo risultato mostra un non perfetto allineamento tra la rotazione del buco nero centrale ed il disco di materia che lo circonda ed in caduta su di esso. L’oscillazione del getto influenza notevolmente la materia e lo spazio tempo circostante in accordo con le leggi relativistiche”.

Dall’analisi dei dati si evince che l’asse di rotazione del disco di accrescimento si disallinea con l’asse di rotazione del buco nero, portando alla precessione del getto. Il rilevamento di questa precessione rappresenta un supporto convincente per concludere inequivocabilmente che il buco nero supermassiccio all’interno di M87 stia ruotando, aprendo nuove dimensioni nella nostra comprensione della natura dei buchi neri supermassicci.

“La precessione – dice Giroletti – è la variazione della direzione del getto emesso dal buco nero al centro di M87.  Per l’esattezza è una variazione regolare e ciclica per cui l’asse del getto nel corso degli anni descrive un cono attorno ad un asse immaginario. Guardando questa precessione proiettata nel piano del cielo noi vediamo il getto oscillare in modo regolare”.

Questo lavoro ha utilizzato un totale di 170 epoche di osservazioni ottenute dalla rete East Asian VLBI Network (EAVN), dal Very Long Baseline Array (VLBA), dal KVN e VERA (KaVA), e dalla rete East Asia to Italy Nearly Global VLBI (EATING). In totale, più di 20 telescopi in tutto il mondo hanno contribuito a questo studio, tra cui anche il Sardinia Radio Telescope (SRT) e la Stazione Radioastronomica di Medicina dell’INAF.

“Questo importante risultato nasce grazie a un’ampia collaborazione che ha coinvolto 79 ricercatori di 17 diversi osservatori, università ed enti ricerca sparsi in 10 Paesi”, dice ancora Giovannini. “”Di cruciale importanza, in particolare, è stata la sinergia tra studiosi italiani e dell’Asia Orientale (Cina, Giappone, Corea). La collaborazione è in continuo sviluppo, infatti nelle antenne italiane utilizzate per le osservazioni sono infatti stati installati alcuni ricevitori coreani che permetteranno di migliorare la collaborazione nelle osservazioni ad alta frequenza (alta energia) ed elevata risoluzione angolare”.

Giroletti aggiunge: “INAF ha fornito un contributo fondamentale tramite la partecipazione dei propri radiotelescopi che si trovano a grandissima distanza (circa 10 mila km) da quelli dell’Asia Orientale che costituivano il nucleo della rete osservativa.  Poiché i dettagli delle immagini dipendono dall’estensione della rete, l’aggiunta delle antenne INAF ha migliorato di quasi 10 volte il dettaglio delle immagini. Questo ha facilitato grandemente la rivelazione delle oscillazioni del getto. Inoltre INAF ha contribuito anche con la partecipazione del proprio personale di ricerca per l’interpretazione dei risultati”.

E conclude: “La collaborazione fra Italia ed estremo oriente sta crescendo anno dopo anno sia in ambito scientifico che tecnologico e questo risultato ci dà grande fiducia per i lavori che stiamo portando avanti nei due continenti”.


 

Per ulteriori informazioni:

L’articolo “Precessing jet nozzle connecting to a spinning black hole in M87”, di Yuzhu Cui et al., è stato pubblicato sulla rivista Nature.

Testo e immagini dall’Ufficio stampa – Struttura per la Comunicazione di Presidenza dell’Istituto Nazionale di Astrofisica (INAF)

Lo studio che lo dimostra mettendo insieme due teorie finora discordanti è stato pubblicato su Physical Review X
Sferici, lisci e semplici secondo la teoria della relatività o estremamente complessi e ricchissimi d’informazione come, seguendo le leggi quantistiche, diceva Stephen Hawking: su questi misteriosi oggetti cosmici una risposta univoca non c’è. Una nuova ricerca propone ora una soluzione al dilemma. Davvero sorprendente
buchi neri ologramma
Credits: Gerd Altmann da Pixabay

Tutti abbiamo negli occhi la prima incredibile immagine di un buco nero che ha fatto il giro del mondo circa un anno fa. Eppure, secondo una nuova ricerca targata Sissa, Ictp e Infn, i buchi neri sarebbero come un ologramma, dove tutte le informazioni sono ammassate su una superficie a due dimensioni capace di riprodurre un’immagine tridimensionale.

In questo modo questi corpi cosmici, come sostenuto dalle teorie quantistiche, potrebbero essere incredibilmente complessi e concentrare un’enorme quantità di informazione al proprio interno, come “il più grande hard disk che esista in Natura”, in due dimensioni. E questo senza contrapporsi alla relatività di Einstein che li vorrebbe in tre dimensioni, semplici, sferici, lisci, come si presentano in quella celebre immagine. Insomma, i buchi neri “appaiono” come non sono, proprio come gli ologrammi. Lo studio che lo dimostra, e che mette insieme due teorie finora discordanti, è da poco stato pubblicato su.

Il mistero dei buchi neri

Per gli scienziati, i buchi neri rappresentano un grosso punto interrogativo per diversi aspetti. Sono, per esempio, ottimi rappresentanti delle grosse difficoltà della fisica teorica nel mettere insieme i principi della teoria della relatività generale di Einstein con quelli della fisica quantistica quando si parla di gravità. Secondo la prima teoria sarebbero corpi semplici e senza informazione. Secondo l’altra, come sostenuto da Jacob Bekenstein e Stephen Hawking, sarebbero invece “i sistemi più complessi esistenti” perché caratterizzati da un enorme “entropia”, che misura la complessità di un sistema, e quindi con moltissima informazione al loro interno.

Il principio olografico applicato ai buchi neri

Per studiare i buchi neri, i due autori della ricerca Francesco Benini e Paolo Milan hanno utilizzato un’idea vecchia di quasi trent’anni ma ancora sorprendente detta “Principio olografico”. Raccontano i ricercatori: “Questo principio, rivoluzionario e un po’ controintuitivo, propone che il comportamento della gravità in una determinata regione di spazio si possa alternativamente descrivere in termini di un diverso sistema, che vive solo lungo il bordo di quella regione e quindi in una dimensione in meno. E, cosa più importante, in questa descrizione alternativa (detta appunto olografica) la gravità non compare esplicitamente. In altre parole, il principio olografico ci permette di descrivere la gravità usando un linguaggio che non contiene la gravità, evitando così frizioni con la meccanica quantistica”.

Quello che Benini e Milan hanno fatto in questo studio “è applicare la teoria del principio olografico ai buchi neri. In questo modo le loro misteriose proprietà termodinamiche sono diventate più comprensibili:
focalizzandoci sulla previsione che questi corpi abbiano una grande entropia, e osservandoli dal punto di vista della meccanica quantistica, si può descriverli proprio come un ologramma: sono a due dimensioni, in cui la gravità sparisce, ma riproducono un oggetto in tre dimensioni”.

Dalla teoria all’osservazione

“Questo studio” spiegano i due scienziati “è solo il primo passo verso una comprensione più profonda di questi corpi cosmici e delle proprietà che li caratterizzano quando la meccanica quantistica si incrocia con la relatività generale. Il tutto è ancora più importante ora, nel momento in cui le osservazioni in astrofisica stanno conoscendo un incredibile sviluppo. Basti pensare all’osservazione delle onde gravitazionali provenienti dalla fusione di buchi neri frutto della collaborazione LIGO e Virgo o, per l’appunto, quella del buco nero fatta dall’Event Horizon Telescope che ha prodotto quella straordinaria immagine. In un futuro vicino potremo forse mettere alla prova dell’osservazione le nostre predizioni teoriche riguardo la gravità quantistica, come quelle fatte in questo studio. E questo, dal punto di vista scientifico, sarebbe una cosa assolutamente eccezionale”.

Comunicato stampa sui buchi neri come ologramma dalla Scuola Internazionale Superiore di Studi Avanzati