News
Ad
Ad
Ad
Tag

Energy & Environmental Materials

Browsing

Sotto la superficie: l’energia solare nel mondo subacqueo con le celle solari a perovskite

Una ricerca pubblicata sulla rivista Energy & Environmental Materials ha dimostrato che le celle solari a perovskite possono funzionare in modo efficiente anche in ambiente acquatico, aprendo la strada a tecnologie energetiche innovative per l’uso subacqueoLo studio è frutto della collaborazione tra due Istituti di ricerca del CNR, l’Università degli studi di Roma Tor Vergata e la società BeDimensional SpA.

L’energia solare potrebbe presto trovare una nuova e sorprendente applicazione: il fondo del mare. Una ricerca pubblicata sulla rivista Energy & Environmental Materials ha, infatti, dimostrato che le celle solari a perovskite possono funzionare in modo efficiente anche in ambiente acquatico, aprendo la strada a tecnologie energetiche innovative per l’uso subacqueo.

Lo studio è frutto della collaborazione tra il Consiglio nazionale delle ricerche – coinvolto con l’Istituto di struttura della materia (CNR-ISM) e l’Istituto per i processi chimico-fisici (CNR-IPCF) –   l’università di Roma Tor Vergata e la società BeDimensional SpA, leader nella produzione di materiali bidimensionali.

Sotto i 50 metri di profondità, solo la luce blu-verde riesce a penetrare efficacemente: le celle solari a perovskite, già note per la loro efficienza e versatilità, si sono dimostrate particolarmente adatte a sfruttare questa luce residua. I test condotti con una specifica perovskite di composizione FAPbBr₃, hanno mostrato prestazioni sorprendenti: immerse nei primi centimetri d’acqua, queste celle producono più energia rispetto a quando sono esposte all’aria.

“Merito delle caratteristiche ottiche dell’acqua e del suo effetto rinfrescante, che migliora l’efficienza del dispositivo”, spiega Jessica Barichello, ricercatrice del CNR-ISM che ha coordinato lo studio. “Un ulteriore test di durata ha verificato anche l’aspetto ambientale: grazie all’efficace incapsulamento, basato su un adesivo polimerico idrofobico sviluppato da BeDimensional, dopo 10 giorni di immersione in acqua salata, le celle solari hanno rilasciato quantità minime di piombo, ben al di sotto dei limiti imposti per l’acqua potabile”.

“Grazie alla collaborazione con il CNR-ISM e BeDimensional e alla tecnologia disponibile nel nostro laboratorio Chose, abbiamo validato l’intero processo per l’applicazione del materiale fotovoltaico in perovskite in ambienti subacquei dove vengono sfruttate efficacemente le sue proprietà. Una nuova sperimentazione per noi – commenta Fabio Matteocci, professore associato del dipartimento di Ingegneria elettronica dell’università di Roma Tor Vergata –  dal momento che il nostro studio parte dallo sviluppo di nuovi dispositivi fotovoltaici semitrasparenti tramite processi industriali facilmente scalabili per applicazione su edifici”.

Oggi troviamo pannelli solari su tetti, serre, edifici, persino nello spazio, ma l’ambiente marino è ancora una frontiera poco esplorata.

“Questo lavoro pionieristico non solo mostra che le perovskiti possono operare anche in condizioni umide, ma apre nuove possibilità per l’utilizzo sostenibile dello spazio subacqueo, sempre più impiegato in attività come l’agricoltura marina, l’invecchiamento del vino e altre applicazioni innovative”, conclude Barichello.

Roma, 16 luglio 2025

Perovskite nella foto di Andrew Silver, USGS (https://library.usgs.gov/photo/#/item/51dc1900e4b0f81004b77ee6), in pubblico dominio

Riferimenti bibliografici:

Jessica Barichello, Peyman Amiri, Sebastiano Bellani, Cosimo Anichini, Marilena Isabella Zappia, Luca Gabatel, Paolo Mariani, Farshad Jafarzadeh, Francesco Bonaccorso, Francesca Brunetti, Matthias Auf der Maur, Giuseppe Calogero, Aldo Di Carlo, Fabio Matteocci, Beneath the Surface: Investigating Perovskite Solar Cells Under Water, Energy & Environmental Materials e70069, DOI: https://doi.org/10.1002/eem2.70069 – https://onlinelibrary.wiley.com/doi/10.1002/eem2.70069

 

Testo dagli Uffici Stampa dell’Università degli Studi di Roma Tor Vergata e del Consiglio Nazionale delle Ricerche

FOTOVOLTAICO DEL FUTURO: Tecnologie rivoluzionarie grazie a impulsi laser ultra-veloci

 Lo studio pubblicato su «Energy & Environmental Materials» dal titolo “Pulsed Laser Annealed Ga Hyperdoped Poly-Si/SiOx Passivating Contacts for High-Efficiency Monocrystalline Si Solar Cells” dai ricercatori dell’Università di Padova e del National Renewable Energy Laboratory (NREL) – il principale laboratorio USA per le energie rinnovabili – mostra che sottoponendo il silicio a brevissimi shock termici indotti da impulsi laser è possibile realizzare una nuova tecnologia per la fabbricazione di celle fotovoltaiche ad alta efficienza. Grazie al laser si riesce a liquefare e ricristallizzare la superficie del silicio in tempi rapidissimi, dell’ordine di pochi miliardesimi di secondo, ottenendo materiali innovativi in grado di raccogliere la corrente fotovoltaica in maniera più efficiente.

fotovoltaico impulsi laser ultra-veloci
Fotovoltaico: tecnologie rivoluzionarie grazie a impulsi laser ultra-veloci

L’attuale profonda crisi climatica ed energetica rende ora più che mai lo sviluppo e la diffusione di fonti energetiche rinnovabili a basso costo un obiettivo cruciale a livello globale. Tra le varie possibilità, il fotovoltaico rappresenta certamente una delle tecnologie più promettenti per garantirci un futuro sostenibile. L’energia solare è infatti una fonte pulita, rinnovabile e inesauribile: è possibile trasformarla in energia elettrica in modo diretto tramite celle fotovoltaiche, una tecnologia relativamente semplice e che ben si presta ad un impiego capillare e distribuito nel territorio.

Le celle fotovoltaiche in commercio sono costituite di silicio, il secondo elemento per abbondanza presente sulla terra, il più importante semiconduttore, e si basano sulla capacità del materiale di assorbire la luce e convertirla in cariche elettriche. Le celle separano le cariche negative da quelle positive (l’assorbimento della luce produce cariche di entrambi i segni) e le estraggono dal silicio attraverso opportuni contatti posti sulle superfici, generando una corrente elettrica che possiamo poi sfruttare nella vita di tutti i giorni ad esempio per alimentare elettrodomestici, cellulari, auto elettriche e altro. L’efficienza della cella è quindi determinata principalmente dalla capacità di trasformare la luce solare in cariche elettriche, di separarle e di raccoglierle.

Una metodologia estremante promettente, chiamata TOPCon (tunnel oxide passivated contacts), si basa sull’inserimento ad una certa profondità sotto la superficie del silicio di un sottilissimo strato di ossido di silicio, con uno spessore di circa un nanometro, pari a un miliardesimo di metro. Questo strato di ossido di silicio favorisce, grazie ad un fenomeno quantistico noto come effetto tunnel, la separazione delle cariche e la loro successiva raccolta. Non solo, con esso si spera di riuscire entro pochi anni ad aumentare ulteriormente l’efficienza delle celle fotovoltaiche e, al tempo stesso, limitarne i costi di produzione. Tuttavia, affinché lo strato di silicio che si trova sopra l’ossido riesca a raccogliere efficacemente le cariche e trasferirle ai contatti elettrici è necessario “drogarlo”, ovvero introdurre, mediante processi di diffusione ad alta temperatura, una certa quantità di atomi, detti appunto ‘droganti’, in grado di modificare opportunamente le proprietà del silicio.

Ebbene, prima della collaborazione tra Università di Padova e NREL, nessuna delle metodologie note era in grado di drogare efficacemente il silicio senza danneggiare l’ossido, rendendo quindi difficile lo sviluppo e l’implementazione della tecnologia TOPCon.

«La soluzione che abbiamo trovato assieme a NREL – spiega il professor Enrico Napolitani del Dipartimento di Fisica ed Astronomia dell’Università̀ di Padova – utilizza impulsi laser ultra-veloci della durata di una decina di nanosecondi, cioè dell’ordine dei centomilionesimi di secondo – disponibili nel nostro nuovo laboratorio di Laser Processing finanziato dall’Università di Padova – per applicare degli shock termici alla superficie del silicio. Il riscaldamento è tale da indurre un drogaggio di qualità eccellente ma il processo è così veloce che l’ossido di silicio, localizzato più in profondità, si scalda poco e rimane assolutamente intatto».

Enrico Napolitani
Enrico Napolitani

I fenomeni fisici coinvolti sono abbastanza complessi. Si utilizza luce ultravioletta, che viene assorbita entro pochissimi nanometri sotto la superficie. Essa induce un riscaldamento estremamente localizzato che si mantiene confinato grazie alla brevissima durata degli impulsi, in sostanza il calore non ha il tempo di diffondersi. Inoltre, gli impulsi hanno una energia così elevata da liquefare gli strati più superficiali del silicio (poche decine di nanometri) che, alla fine dell’impulso, ricristallizzano.

In realtà il cuore del processo è proprio questa transizione di fase solido-liquido-solido indotta dal laser denominata Pulsed Laser Melting (PLM), che nel laboratorio padovano si riesce a controllare a livello nanometrico. Grazie a essa il drogante, inizialmente posto sopra la superficie del silicio, si redistribuisce molto velocemente all’interno della fase liquida. Successivamente la ricristallizzazione avviene in modo talmente rapido da “congelare” il drogante incorporandolo nella fase solida cristallina a concentrazioni elevatissime, ben superiori alle solubilità solide di equilibrio. In questo modo si conseguono due risultati con una sola azione: da un lato si confina il drogaggio e il riscaldamento mantenendo l’ossido sottostante intatto, dall’altro si droga a concentrazioni molto superiori – rispetto a quanto ottenuto in precedenza con altre tecniche – con notevoli effetti benefici sul funzionamento della cella fotovoltaica.

«È una metodologia che applichiamo con successo in molti ambiti per sintetizzare nuovi materiali: dalla nanoelettronica, alla fotonica, alla fotocatalisi, ai rivelatori per le alte energie – conclude Napolitani – ma non l’avevamo mai applicata al fotovoltaico solare. I risultati sono molto incoraggianti e in futuro, nel gruppo di Fisica dei Semiconduttori del nostro Dipartimento, approfondiremo ulteriormente i nostri studi, anche grazie alla nostra partecipazione al Partenariato Esteso NEST – “Network 4 Energy Sustainable Transition”, recentemente finanziato dall’Unione Europea nell’ambito del PNRR».

Link alla ricerca: https://onlinelibrary.wiley.com/doi/10.1002/eem2.12542

Titolo: “Pulsed Laser Annealed Ga Hyperdoped Poly-Si/SiOx Passivating Contacts for High-Efficiency Monocrystalline Si Solar Cells” – «Energy & Environmental Materials» 2023

Autori: Kejun Chen, Enrico Napolitani, Matteo De Tullio, Chun-Sheng Jiang, Harvey Guthrey, Francesco Sgarbossa, San Theingi, William Nemeth, Matthew Page, Paul Stradins, Sumit Agarwal, David L. Young.

fotovoltaico impulsi laser ultra-veloci
Fotovoltaico del futuro: tecnologie rivoluzionarie grazie a impulsi laser ultra-veloci

Testo e foto dall’Ufficio Stampa dell’Università degli Studi di Padova.