News
Ad
Ad
Ad
Tag

energia oscura

Browsing

FONDI FIS2/MUR: ALL’INAF 1,2 MILIONI DI EURO PER STUDIARE L’UNIVERSO OSCURO COL PROGETTO DARKER

Con il sostegno del Fondo Italiano per la Scienza, la ricercatrice INAF Cristiana Spingola guiderà l’ambizioso progetto DARKER per cercare minuscole lenti gravitazionali e sondare i misteri di energia e materia oscura.

 

Il progetto DARKER – Accurate constraints on dark energy and dark matter using strong lensing in the era of precision cosmology riceve un finanziamento di 1,2 milioni di euro grazie al Fondo Italiano per la Scienza – FIS 2, erogato dal Ministero dell’Università e della Ricerca (MUR). A guidare la ricerca sarà Cristiana Spingola, ricercatrice dell’Istituto Nazionale di Astrofisica (INAF), con l’obiettivo di sondare alcuni degli enigmi più profondi della cosmologia: energia oscura e materia oscura, che insieme costituiscono circa il 95% dell’intero Universo.

Il progetto DARKER ha l’obiettivo di scoprire nuove lenti gravitazionali molto piccole che, come potentissimi telescopi naturali, permetteranno di indagare in modo ancora più accurato alcuni aspetti dell’Universo lontano. Il fenomeno della lente gravitazionale, o lensing in inglese, è un effetto previsto dalla teoria della relatività generale di Albert Einstein.

“Se un oggetto molto massiccio – come una galassia o un ammasso di galassie – si trova tra noi e una sorgente luminosa lontana – come un quasar – il suo potenziale gravitazionale può deviare la radiazione, producendo immagini multiple della sorgente di sfondo”, spiega Cristiana Spingola.

“Ogni variazione di intensità luminosa avverrà in tempi diversi nelle diverse immagini, ovvero con un ritardo temporale (time delay). È proprio quest’ultima proprietà che DARKER sfrutterà per cercare questi oggetti estremamente rari, finora sfuggiti all’osservazione”.

La particolarità del progetto risiede quindi nel suo approccio innovativo: per la prima volta, la ricerca di lenti gravitazionali verrà condotta nel dominio temporale (time-domain) invece che tramite immagini statiche. Per la conferma delle “candidate lenti” serviranno osservazioni ad altissima risoluzione angolare. In questo contesto osservazioni con i tre radiotelescopi italiani dell’INAF – il Sardinia Radio Telescope (Cagliari) e le parabole gemelle di Medicina (Bologna) e Noto (Siracusa) – in modalità VLBI (Very Long Baseline Interferometry), saranno fondamentali per determinare la natura di queste rarissime lenti gravitazionali di piccolissima massa.

“Sappiamo ancora troppo poco di materia ed energia oscura. Grazie a questo approccio innovativo, potremo identificare simultaneamente lenti gravitazionali molto piccole e sorgenti variabili sullo sfondo, finora invisibili con le tecniche tradizionali”,

commenta Spingola, la quale svolgerà il suo progetto presso l’Istituto di Radioastronomia e in collaborazione con l’Osservatorio di Astrofisica e Scienza dello Spazio, le due sedi bolognesi dell’INAF.

Il progetto punta quindi a identificare centinaia di nuove lenti usando dati raccolti in passato dai telescopi spaziali GAIA e Fermi, cercando in particolare oggetti molto compatti con masse di pochi milioni di masse solari, la cui esistenza – o assenza – potrebbe aiutare a chiarire la vera natura della materia oscura, distinguendo tra modelli ‘freddi’ o ‘caldi’.

Spingola Aggiunge: “La conferma finale della natura di questi oggetti sarà possibile solo usando la tecnica della Very Long Baseline Interferometry, di cui l’INAF vanta un’esperienza storica ed è oggi tra i protagonisti della tecnica VLBI in Europa, con le sue strutture radioastronomiche che rappresentano un’eccellenza riconosciuta a livello internazionale”.

DARKER contribuirà anche alla determinazione precisa della costante di Hubble (H₀), parametro che misura la velocità di espansione dell’Universo.

“Questa misura sarà indipendente da quelle attualmente disponibili e potrà aiutare a risolvere una delle più grandi controversie dell’astrofisica moderna, la cosiddetta ‘tensione di Hubble’, che consiste nel disaccordo tra le stime di H₀ ottenute da osservazioni dell’universo primordiale e quelle basate su misure più vicine a noi. DARKER potrebbe rappresentare, quindi, un passo importante per fare luce sull’Universo oscuro”, conclude la ricercatrice.

La ricercatrice INAF Cristiana Spingola davanti al radiotelescopio Hartebeesthoek in Sudafrica. Crediti: INAF
La ricercatrice INAF Cristiana Spingola davanti al radiotelescopio Hartebeesthoek in Sudafrica. Crediti: INAF

Originaria di Perugia e laureata in Astrofisica all’Università di Bologna, Cristiana Spingola si è formata scientificamente tra Italia e Paesi Bassi, dove ha conseguito il dottorato all’Università di Groningen. Ricercatrice a tempo indeterminato dal 2023, è esperta di interferometria radio e lensing gravitazionale, e partecipa attivamente alla preparazione scientifica della prossima generazione di interferometri radio, come quelli del progetto SKA.

Il finanziamento complessivo è stato erogato nell’ambito del macrosettore Physical Sciences and Engineering – Universe Sciences del FIS 2. I fondi FIS sostengono ogni anno progetti di ricerca altamente innovativi nei principali settori scientifici, seguendo il modello dell’European Research Council (ERC).


Testo e immagine dall’Ufficio Stampa Istituto Nazionale di Astrofisica – INAF

Articolo a cura di Silvia Giomi e Piero Paduano

L’Universo in cui viviamo ci è in gran parte ignoto. La materia di cui siamo fatti noi, i pianeti, le stelle e tutti gli oggetti che osserviamo – e quindi conosciamo – ne costituisce meno del 5%. La restante parte dell’Universo è energia oscura (70%) e materia oscura (25%). Quest’ultima è detta “oscura” poiché, non emettendo radiazione elettromagnetica, rimane invisibile ai nostri strumenti, ma la sua presenza si rivela per via degli effetti gravitazionali osservati.

La ricerca delle particelle di materia oscura è una sfida che coinvolge da anni la comunità scientifica che si cimenta in esperimenti di osservazione diretta (in laboratori sotterranei come CERN, LNGS) e indiretta (nello spazio).

Tra i metodi indiretti vi è quello che sfrutta il fenomeno della superradianza dei buchi neri, esplorato approfonditamente nell’articolo Black hole superradiant instability from ultralight spin-2 fields, pubblicato sulla rivista Physical Review Letters.

Tale metodo è estremamente interessante anche perché si inserisce nel contesto della LGQ (Loop Quantum Gravity), teoria che cerca di unificare la meccanica quantistica e la relatività generale.

Abbiamo il piacere e l’onore di parlarne con il professor Paolo Pani, associato in Fisica Teorica presso il Dipartimento di Fisica della Sapienza Università di Roma, tra i protagonisti dello studio.

instabilità per superradianza Paolo Pani buchi neri materia oscura
Il buco nero supermassiccio nel nucleo della galassia ellittica Messier 87 nella costellazione della Vergine. Si tratta della prima foto diretta di un buco nero, realizzata dal progetto internazionale Event Horizon Telescope. Foto modificata Event Horizon TelescopeCC BY 4.0

 

In cosa consiste l’instabilità per superradianza, e in che modo la sfruttate per la vostra indagine?

La superradianza è un fenomeno che avviene in molti sistemi fisici quando un’onda riflessa da un oggetto viene amplificata a scapito dell’energia dell’oggetto stesso. Questo avviene anche per un buco nero, che può amplificare le onde elettromagnetiche o gravitazionali che “sbattono” su di esso. L’energia in eccesso viene presa dalla velocità di rotazione dell’oggetto, che diminuisce.

L’instabilità per superradianza è un fenomeno collegato: se le particelle del campo elettromagnetico (fotoni) o del campo gravitazionale (gravitoni) avessero una seppur minuscola massa, la radiazione amplificata per superradianza rimarrebbe intrappolata vicino al buco nero, generando un effetto a cascata che rallenta il buco nero fino quasi a fermare completamente la sua rotazione.

In questo caso l’energia in eccesso viene emessa in onde gravitazionali la cui frequenza è direttamente collegata all’ipotetica massa del campo. Se queste particelle ultraleggere esistessero, quindi, non dovremmo osservare buchi neri rotanti e ciascun buco nero si comporterebbe come un “faro” di onde gravitazionali.

 

Il fenomeno della superradianza ha qualche connessione con la radiazione di Hawking?

Sì, si può dire che la superradianza è la controparte “classica” della radiazione di Hawking, che è invece un effetto “quantistico”. La superradianza richiede che il buco nero ruoti, mentre nel caso della radiazione di Hawking il buco nero può rimanere statico. In questo caso la radiazione viene emessa spontaneamente, a scapito della massa del buco nero.

 

Può spiegarci quali sono i vantaggi di aver esteso il fenomeno al caso di campo tensoriale rispetto allo scalare e al vettoriale?

Il caso di campo tensoriale è strettamente collegato ad alcune teorie che prevedono una massa minuscola per il gravitone, una proprietà che potrebbe risolvere il problema della costante cosmologica e dell’energia oscura responsabile dell’espansione accelerata dell’universo.

Inoltre, campi tensoriali ultraleggeri sono ottimi candidati per spiegare la materia oscura che sembra permeare il cosmo ma che finora non si è riusciti a misurare in laboratorio. Il nostro studio mostra che i segnali di onde gravitazionali presenti e futuri permettono di ricercare queste particelle anche quando la loro massa è troppo piccola per essere vista in esperimenti terrestri, come negli acceleratori di particelle.

 

I vostri risultati sono condizionati dalla scelta della metrica di Kerr?

Nella teoria della gravitazione di Einstein, la relatività generale, la metrica di Kerr è l’unica possibile per descrivere un buco nero astrofisico. Nelle teorie che menzionavo sopra, tuttavia, possono esistere altre soluzioni che descrivono buchi neri differenti.

Nel nostro studio abbiamo fatto l’ipotesi standard che i buchi neri siano descritti dalla metrica di Kerr. Scelte differenti renderebbero i calcoli più laboriosi ma ci aspettiamo che non modifichino sostanzialmente il risultato: in presenza di campi ultraleggeri tutti i buchi neri rotanti sono instabili per superradianza ed emettono onde gravitazionali.

 

Quali porte si stanno aprendo e/o quali si stanno chiudendo sulla ricerca della materia oscura?

Il problema della materia oscura è che sappiamo davvero poco su di essa, e quindi svariate speculazioni teoriche sono possibili. Nel corso dei decessi alcuni modelli teorici sono divenuti più popolari di altri, ma l’ultima parola ce l’ha sempre l’esperimento: finché non scopriremo tracce di materia oscura oltre quelle ben note, non sarà possibile distinguere diversi modelli.

Gli esperimenti attuali atti a ricercare uno dei candidati più promettenti (le cosidette WIMPS, weakly interacting massive particles) hanno raggiunto precisioni tali che possono quasi escludere questa ipotesi. Un altro candidato molto promettente sono gli assioni, che sono appunto particelle ultraleggere che producono l’instabilita’ di superradianza dei buchi neri.

Penso che la risposta al problema della materia oscura arriverà da esperimenti innovativi, o magari proprio dai buchi neri, tramite segnali inaspettati di onde gravitazionali.

 

 

Riferimenti allo studio su instabilità per superradianza, buchi neri, materia oscura:

Black Hole Superradiant Instability from Ultralight Spin-2 Fields – Richard Brito, Sara Grillo, and Paolo Pani – Phys. Rev. Lett. 124, 211101 – Published 27 May 2020 DOI:https://doi.org/10.1103/PhysRevLett.124.211101

WFIRST (Wide Field InfraRed Survey Telescope) – da poco ribattezzato Roman Telescope in onore dell’astronoma statunitense Nancy Grace Roman, affettuosamente chiamata “la mamma di Hubble” – è un progetto NASA designato ad indagare su alcuni grandi misteri dell’Universo come la materia e l’energia oscura e per cercare nuovi mondi in orbita attorno ad altre stelle della nostra galassia.

ScientifiCult ha l’onore di poter intervistare il dott. Valerio Bozza, ricercatore presso l’Università degli Studi di Salerno e attualmente impegnato a collaborare con la NASA per la realizzazione del Telescopio Roman.

Valerio Bozza
Il dott. Valerio Bozza

Può raccontarci i momenti della Sua carriera professionale che ricorda con più piacere?

In vent’anni di ricerca ho avuto la fortuna di vivere tante soddisfazioni e di lavorare con le persone che hanno scritto i libri su cui ho studiato. Certamente, partecipare alle discussioni nello studio di Gabriele Veneziano al CERN con i cosmologi più importanti del mondo e poter assistere alla nascita di idee geniali su quella lavagna è stata un’esperienza formativa fondamentale. Quando ho avuto il mio primo invito a relazionare ad un workshop all’American Institute of Mathematics sul gravitational lensing di buchi neri e ho ricevuto i complimenti di Ezra T. Newman, ho capito che potevo davvero dire la mia anche io.

Ricordo ancora le notti di osservazioni allo European Southern Observatory a La Silla in Cile, sotto il cielo più bello del pianeta. Ricordo l’invito al Collège de France a Parigi da parte di Antoine Layberie per un seminario, che poi ho scoperto di dover tenere in francese! Poi non ci dimentichiamo la notizia della vittoria al concorso da ricercatore, che mi ha raggiunto mentre ero in Brasile per un altro workshop sulle perturbazioni cosmologiche. Infine, ricordo con una certa malinconia le notti e i giorni di lavoro all’Osservatorio Astronomico UNISA per mettere su un programma di ricerca competitivo. Tutto è finito con la copertina di Nature sulla scoperta del pianeta KELT-9b, il più caldo mai visto, e la distruzione dell’Osservatorio nel febbraio 2019, una ferita ancora aperta.

Adesso, però, è ora di concentrarsi sullo sviluppo del nuovo telescopio spaziale WFIRST della NASA, che il 20 maggio scorso è stato rinominato Nancy Grace Roman Space Telescope (o semplicemente “Roman”, in breve), in onore della astronoma che ha contribuito alla nascita dei primi telescopi spaziali della NASA.

Infine, ricordo con una certa malinconia le notti e i giorni di lavoro all’Osservatorio Astronomico UNISA con il Prof. Gaetano Scarpetta, per mettere su un programma di ricerca competitivo.

Ci sono degli aggiornamenti sulla data del lancio di Roman?

Il lancio del telescopio Roman era programmato per il 2025, ma diverse vicende hanno giocato contro in questi ultimi anni: il ritardo nel lancio del JWST, lo shutdown del governo americano ad inizio 2019 e soprattutto l’epidemia di COVID-19, che sta provocando ritardi su tutte le scadenze nella tabella di marcia. A questo punto, direi che uno slittamento all’anno successivo possa essere plausibile. Tuttavia, l’interesse verso questa missione sta continuando a crescere sia dentro che fuori l’ambito accademico, mettendola al riparo da eventuali tagli di budget.


Roman viene spesso paragonato al telescopio spaziale Hubble. Quali sono le differenze e le somiglianze? E con il JWST?

Si tratta di tre telescopi spaziali che spesso vengono citati insieme, ma sono tutti e tre profondamente diversi: Hubble opera nella banda del visibile e nell’ultravioletto, mentre non è molto sensibile all’infrarosso. Al contrario, sia JWST che Roman opereranno nel vicino infrarosso. JWST avrà un campo di vista molto più piccolo anche di Hubble, perché il suo scopo è fornirci immagini con dettagli mai visti prima di sistemi stellari e planetari in formazione. Roman, invece, avrà un campo di vista cento volte più grande di Hubble, perché il suo scopo è quello di scandagliare aree di cielo molto grandi alla ricerca di galassie o fenomeni transienti. La grande novità è che Roman condurrà queste survey a grande campo con una risoluzione di 0.1 secondi d’arco, simile a quella di Hubble! Quindi, avremo la possibilità di condurre la scienza di Hubble su enormi aree di cielo contemporaneamente. JWST, invece, condurrà osservazioni con un dettaglio molto migliore di Hubble e di Roman, ma su un singolo oggetto in un’area molto limitata.

Roman telescope Valerio Bozza
Immagine 3D del veicolo spaziale Roman (luglio 2018). Immagine NASA (WFIRST Project and Dominic Benford), adattata, in pubblico dominio


Quali sono i target scientifici della missione e come vengono raggiunti?

A differenza di Hubble e JWST, Roman avrà poco spazio per richieste estemporanee di osservazioni. Sarà un telescopio essenzialmente dedicato a due programmi principali: una survey delle galassie lontane e una survey del centro della nostra Galassia. La prima survey effettuerà delle immagini di tutto il cielo alla ricerca di galassie deboli e lontane. Queste immagini consentiranno di capire meglio la distribuzione della materia nel nostro Universo, fissare le tappe dell’espansione cosmologica e chiarire i meccanismi alla base dell’espansione accelerata, scoperta venti anni fa attraverso lo studio delle supernovae Ia. I cosmologi si aspettano che Roman possa fornirci risposte fondamentali sulla natura della cosiddetta Dark Energy, che è stata ipotizzata per spiegare l’accelerazione del nostro Universo, ma la cui natura è del tutto sconosciuta.

Il secondo programma osservativo è una survey delle affollatissime regioni centrali della nostra galassia. Monitorando miliardi di stelle, ci aspettiamo che, almeno per una frazione di queste, la loro luce verrà amplificata da effetti temporanei di microlensing dovuti a stelle che attraversano la linea di vista. Il microlensing è un’amplificazione dovuta al ben noto effetto “lente gravitazionale” previsto dalla relatività generale di Einstein. Se la stella che fa da lente è anche accompagnata da un pianeta, l’amplificazione riporterà delle “anomalie” che potranno essere utilizzate per studiare e censire i sistemi planetari nella nostra galassia. Roman sarà così sensibile da rivelare anche pianeti piccoli come Marte o Mercurio!

microlensing
Il fenomeno del microlensing: la sorgente (in alto) appare più brillante quando una stella lente passa lungo la linea di vista. Se la lente è accompagnata da un pianeta, la luminosità mostra anche una breve anomalia. Credits: © ESA


Quali differenze tra le caratteristiche dei pianeti extrasolari che andrà a scoprire
Roman e quelle dei pianeti che ha osservato Kepler e che osserva TESS?

Il metodo del microlensing, utilizzato da Roman, è in grado di scoprire pianeti in orbite medio-larghe intorno alle rispettive stelle. Al contrario, sia Kepler che TESS, utilizzano il metodo dei transiti, in cui si misura l’eclisse parziale prodotta dal pianeta che oscura parte della sua stella. Questi due satelliti, quindi, hanno scoperto tipicamente pianeti molto vicini alle rispettive stelle.

Ipotizzando di osservare una copia del Sistema Solare, Kepler e TESS potrebbero vedere Mercurio o Venere, nel caso di un buon allineamento. Roman, invece, avrebbe ottime probabilità di rivelare tutti i pianeti da Marte a Nettuno.

Un’altra differenza è che Roman scoprirà pianeti distribuiti lungo tutta la linea di vista fino al centro della Galassia, consentendo un’indagine molto più ampia della distribuzione dei pianeti di quanto si possa fare con altri metodi, tipicamente limitati al vicinato del Sole. Purtroppo, però, i pianeti scoperti col microlensing non si prestano ad indagini approfondite, poiché, una volta terminato l’effetto di amplificazione, i pianeti tornano ad essere inosservabili e sono perduti per sempre.

In definitiva, la conoscenza dei pianeti nella nostra Galassia passa per il confronto tra diversi metodi di indagine complementari. Ognuno ci aiuta a comprendere una parte di un puzzle che si rivela sempre più complesso, mano mano che scopriamo mondi sempre più sorprendenti.

 

Nancy Grace Roman, in una foto NASA del 2015, in pubblico dominio