News
Ad
Ad
Ad
Tag

Collaborazione Virgo

Browsing

LVK: a dieci anni dalla scoperta, le onde gravitazionali verificano il teorema dell’area dei buchi neri di Stephen Hawking

LIGO, Virgo e KAGRA celebrano questa settimana l’anniversario della prima rilevazione delle onde gravitazionali e annunciano la verifica del teorema dell’area dei buchi neri di Stephen Hawking

Il 14 settembre 2015 è arrivato sulla Terra un segnale generato da una coppia di buchi neri che, dopo aver spiraleggiato uno attorno all’altro a velocità impressionanti, si erano fusi, liberando una enorme quantità di energia. Per raggiungerci il segnale aveva viaggiato per circa 1,3 miliardi di anni alla velocità della luce, ma non si trattava di un segnale luminoso, era un fremito dello spazio-tempo chiamato onda gravitazionale, teorizzato per la prima volta da Albert Einstein 100 anni prima. Quella prima rivelazione diretta delle onde gravitazionali effettuata dai due rilevatori gemelli LIGO negli Stati Uniti, sarà annunciata al mondo dalle collaborazioni LIGO e Virgo,  dopo molti mesi di analisi e verifiche, solo nel febbraio 2016. E porterà l’anno successivo alla assegnazione del premio Nobel per la Fisica, a tre dei fondatori di LIGO: Rainer Weiss, professore emerito di fisica dell’MIT (recentemente scomparso all’età di 92 anni), Barry Barish e Kip Thorne di Caltech.

Oggi i rivelatori gravitazionali statunitensi LIGO negli stati di Washington e Louisiana, Virgo, progetto fondato dall’Istituto Nazionale  di Fisica Nucleare e dal francese CNRS in Italia e KAGRA in Giappone opera in modo coordinato e osserva circa una fusione di buchi neri ogni tre giorni. Il network LVK (LIGO, Virgo e KAGRA) ha osservato un totale di circa 300 fusioni di buchi neri, alcune delle quali sono state confermate mentre altre sono in attesa di ulteriori analisi. Nel corso dell’attuale periodo di osservazione scientifico, cominciato a giugno 2023, LVK ha rivelato circa 230 segnali candidati a essere fusioni di buchi neri, più del doppio di quelli rilevati nei primi tre periodi.

Dieci anni di scoperte di LVKQuesto grafico illustra le scoperte effettuate dalla rete LIGO-Virgo-KAGRA (LVK) dalla prima rilevazione di LIGO, nel 2015, di onde gravitazionali provenienti da una coppia di buchi neri in collisione. Le rivelazioni consistono principalmente in fusioni di buchi neri, ma una manciata coinvolge stelle di neutroni (collisioni buco nero-stella di neutroni o stella di neutroni-stella di neutroni). Finora, durante l'attuale quarto ciclo scientifico, i rivelatori LVK hanno individuato circa 220 fusioni, più del doppio del numero (90) trovato nei primi tre cicli combinati. L'evento più vicino osservato finora, mostrato nel Run 2 e indicato dalla freccia in basso, è una fusione binaria di stelle di neutroni nota come GW170817, situata a soli 130 milioni di anni luce di distanza. In questo grafico, le masse totali degli oggetti iniziali sono rappresentate dalle dimensioni, mentre l'intensità del segnale è indicata dal colore. Il grafico dimostra che nel corso del tempo gli osservatori di onde gravitazionali stanno trovando un maggior numero di buchi neri e li rivelano con un rapporto segnale/rumore più elevato, grazie ai progressi compiuti dai rivelatori. Si noti che le rivelazioni di buchi neri nell'ultima metà del quarto run sono grigie e appaiono della stessa dimensione, perché questi dati non sono stati rilasciati per intero, a eccezione dell'evento denominato GW250114. Questo evento, il segnale più chiaro mai rilevato da LIGO, appare come un punto luminoso arancione sul grafico del quarto run. Crediti immagine: LIGO/Caltech/MIT/R. Hurt (IPAC)
Dieci anni di scoperte di LVK
Questo grafico illustra le scoperte effettuate dalla rete LIGO-Virgo-KAGRA (LVK) dalla prima rilevazione di LIGO, nel 2015, di onde gravitazionali provenienti da una coppia di buchi neri in collisione. Le rivelazioni consistono principalmente in fusioni di buchi neri, ma una manciata coinvolge stelle di neutroni (collisioni buco nero-stella di neutroni o stella di neutroni-stella di neutroni).
Finora, durante l’attuale quarto ciclo scientifico, i rivelatori LVK hanno individuato circa 220 fusioni, più del doppio del numero (90) trovato nei primi tre cicli combinati. L’evento più vicino osservato finora, mostrato nel Run 2 e indicato dalla freccia in basso, è una fusione binaria di stelle di neutroni nota come GW170817, situata a soli 130 milioni di anni luce di distanza.
In questo grafico, le masse totali degli oggetti iniziali sono rappresentate dalle dimensioni, mentre l’intensità del segnale è indicata dal colore. Il grafico dimostra che nel corso del tempo gli osservatori di onde gravitazionali stanno trovando un maggior numero di buchi neri e li rivelano con un rapporto segnale/rumore più elevato, grazie ai progressi compiuti dai rivelatori.
Si noti che le rivelazioni di buchi neri nell’ultima metà del quarto run sono grigie e appaiono della stessa dimensione, perché questi dati non sono stati rilasciati per intero, a eccezione dell’evento denominato GW250114. Questo evento, il segnale più chiaro mai rilevato da LIGO, appare come un punto luminoso arancione sul grafico del quarto run.
Crediti immagine: LIGO/Caltech/MIT/R. Hurt (IPAC)

Il notevole aumento del numero di osservazioni di LVK nell’ultimo decennio è dovuto a diversi miglioramenti apportati ai rivelatori, alcuni dei quali sfruttano l’ingegneria di precisione quantistica di ultima generazione. Questi interferometri per onde gravitazionali sono di gran lunga il più preciso strumento di misurazione mai creato dall’umanità. Le distorsioni spazio-temporali indotte dalle onde gravitazionali sono incredibilmente minuscole. Per osservarle, LIGO,Virgo e KAGRA devono rivelare cambiamenti nello spazio-tempo più piccoli di un decimillesimo della dimensione di un protone. Vale a dire 700.000 miliardi di volte più piccole dello spessore di un capello umano.

Il segnale più chiaro finora

La maggiore sensibilità degli strumenti è esemplificata dalla recente scoperta di una fusione di buchi neri denominata GW250114 (i numeri indicano la data in cui il segnale delle onde gravitazionali è arrivato sulla Terra: 14 gennaio 2025). L’evento non è molto diverso dalla prima rivelazione in assoluto (denominata GW150914): entrambi coinvolgono buchi neri in collisione a circa 1,3 miliardi di anni luce di distanza, con masse da 30 a 40 volte quelle del nostro Sole. Ma grazie a 10 anni di progressi tecnologici che hanno ridotto il rumore strumentale, il segnale di GW250114 è molto più nitido.

“Possiamo sentirlo forte e chiaro, e questo ci permette di testare le leggi fondamentali della fisica”,

dice Katerina Chatziioannou, membro di LIGO e Assistant Professor di fisica a Caltech, tra i principali autori di un nuovo studio su GW250114 pubblicato su Physical Review Letters.

Analizzando le frequenze delle onde gravitazionali emesse dalla fusione, il team di LVK è stato in grado di fornire la migliore prova osservativa finora acquisita di quello che è noto come il teorema dell’area dei buchi neri, un’idea avanzata da Stephen Hawking nel 1971 secondo cui le superfici totali dei buchi neri non possono diminuire. Quando i buchi neri si fondono, le loro masse si uniscono, aumentando la superficie. Ma perdono anche energia sotto forma di onde gravitazionali. Inoltre, la fusione può far sì che il buco nero combinato aumenti il suo spin, il che porterebbe a ridurre la sua area. In realtà Il teorema dell’area del buco nero afferma che, nonostante questi fattori in competizione, la superficie totale del buco nero finale deve comunque crescere In seguito, Hawking e il fisico Jacob Bekenstein conclusero che l’area di un buco nero è proporzionale alla sua entropia, o grado di disordine. Queste scoperte hanno aperto la strada a successivi lavori rivoluzionari nel campo della gravità quantistica, che cerca di unire due pilastri della fisica moderna: la relatività generale e la fisica quantistica.

Credito immagine: Lucy Reading-Ikkanda/Simons Foundation
Credito immagine: Lucy Reading-Ikkanda/Simons Foundation

In sostanza, la rivelazione ha permesso al team di “ascoltare” i due buchi neri che crescevano mentre si fondevano in uno solo, verificando il teorema di Hawking. I buchi neri iniziali avevano una superficie totale di 240.000 chilometri quadrati (circa la dimensione del Regno Unito), mentre l’area finale era di circa 400.000 chilometri quadrati (quasi la dimensione della Svezia). Questo è il secondo test del teorema dell’area del buco nero; un primo test è stato eseguito nel 2021 utilizzando i dati del primo segnale GW150914, ma poiché quei dati non erano così chiari, i risultati avevano un livello di confidenza del 95% rispetto al 99,999% dei nuovi dati. Kip Thorne ricorda che Hawking gli telefonò per chiedergli se LIGO potesse essere in grado di testare il suo teorema subito dopo aver appreso della rivelazione delle onde gravitazionali nel 2015. “Se Hawking fosse ancora vivo, si avrebbe certamente gioito  nel vedere che l’analisi dei dati di GW250114 mostri che  l’area dei buchi neri uniti effettivamente aumenta”, dice Thorne.  (Hawking è scomparso nel 2018)

Credito immagine: Lucy Reading-Ikkanda/Simons Foundation
Credito immagine: Lucy Reading-Ikkanda/Simons Foundation

Nello studio pubblicato oggi, infatti, i ricercatori sono riusciti a misurare con precisione i dettagli della cosiddetta fase di ringdown, in cui, dopo la fusione, il buco nero finale vibra come una campana colpita. Ciò ha permesso loro di calcolare la massa e lo spin del buco nero e di determinarne quindi la superficie. In questo studio,in effetti, sono stati individuati per la prima volta, con sicurezza, due distinti “modi” di onde gravitazionali nella fase di ringdown. I modi sono come i suoni caratteristici di una campana, quando viene colpita: hanno frequenze simili ma si estinguono a velocità diverse, il che li rende difficili da identificare. Grazie al miglioramento dei dati relativi a GW250114, il team ha potuto estrarre per la prima volta i modi, dimostrando che il ringdown del buco nero si è verificato esattamente come previsto dai modelli matematici. Infine un altro studio di LIGO – Virgo – KAGRA, presentato oggi a Physical Review Letters, pone dei limiti alla previsione di un terzo tono più acuto nel segnale di GW250114 ed esegue alcuni dei test più rigorosi finora condotti sull’accuratezza della relatività generale nel descrivere la fusione dei buchi neri.

“Analizzare i dati dei rivelatori per individuare segnali astrofisici transitori, inviare alerts per attivare osservazioni di follow-up da parte dei telescopi e pubblicare i risultati raccogliendo informazioni da centinaia di eventi è un processo piuttosto lungo e complesso”, aggiunge Nicolas Arnaud, ricercatore del CNRS in Francia e coordinatore del quarto ciclo di osservazioni di Virgo. “Dietro a tutti questi passaggi ci sono. però, esseri umani, in particolare quelli che sono in turno costantemente a sorvegliare i nostri strumenti, in tutte le regioni del pianeta: letteralmente, il Sole non tramonta mai sulle nostre collaborazioni!”.

Spingersi oltre i limiti

LIGO e Virgo hanno anche osservato stelle di neutroni nell’ultimo decennio. Come i buchi neri, le stelle di neutroni si formano dopo la morte esplosiva delle stelle massicce, ma sono meno pesanti e emettono luce. Nell’agosto 2017, LIGO e Virgo hanno assistito all’epica collisione tra una coppia di stelle di neutroni – una kilonova – che ha disperso nello spazio oro e altri elementi pesanti. Lo stesso fenomeno è stato immediatamente segnalato a  decine di telescopi suulla Terra e nello Spazio, che hanno potuto catturare altri segnali generati dallo stesso evento: dai raggi gamma ad alta energia alle onde radio a bassa energia. Questo evento astronomico “multi-messaggero” ha segnato una tappa epocale. La ricerca di altre collisioni di stelle di neutroni resta oggi una delle frontiere più promettenti per la comunità astronomica e il network LVK è al centro di un sistema di alerts, che consente ai telescopi di cercare nei cieli i segni di una nuova potenziale kilonova.

“La rete globale fdi rivelatori gravitazionali  è essenziale per l’astronomia delle onde gravitazionali”, afferma Gianluca Gemme, portavoce di Virgo e dirigente di ricerca dell’INFN (Istituto Nazionale di Fisica Nucleare). “Con tre o più rivelatori che operano all’unisono, possiamo individuare gli eventi cosmici con maggiore precisione, estrarre informazioni astrofisiche più ricche e consentire segnalazioni rapide per il follow-up di più messaggeri. La Collaborazione Virgo è orgogliosa di contribuire a questa impresa scientifica mondiale”.

Guardando al futuro, gli scienziati stanno lavorando a rivelatori ancora più grandi. Il progetto europeo, chiamato Einstein Telescope, prevede di costruire uno o due enormi interferometri sotterranei con bracci di oltre 10 chilometri, mentre quello statunitense, chiamato Cosmic Explorer, sarebbe simile all’attuale LIGO ma con bracci lunghi 40 chilometri. Osservatori di questa portata consentirebbero di ascoltare le prime fusioni di buchi neri nell’universo e, forse, l’eco delle scosse gravitazionali dei primissimi istanti dopo il Big Bang.

“Questo è un momento straordinario per la ricerca sulle onde gravitazionali: grazie a strumenti come Virgo, LIGO e KAGRA, possiamo esplorare un universo oscuro che prima era completamente inaccessibile”, ha dichiarato Massimo Carpinelli, professore all’Università di Milano Bicocca e direttore dell’Osservatorio Gravitazionale Europeo di Cascina. “Le conquiste scientifiche di questi 10 anni stanno innescando una vera e propria rivoluzione nella nostra visione dell’Universo. Stiamo già preparando una nuova generazione di rivelatori come Einstein Telescope in Europa e Cosmic Explorer negli Stati Uniti, oltre all’ interferometro spaziale LISA, che ci porteranno ancora più lontano nello spazio e nel tempo. Nei prossimi anni, saremo in grado di affrontare queste straordinarie sfide solo grazie a una sempre più ampia e solida collaborazione tra scienziati, Paesi e istituzioni diverse, sia a livello europeo che globale.”

Una sinfonia cosmica rivelataQuest'opera d'arte ci immerge in GW250114, una potente collisione tra due buchi neri osservata con le onde gravitazionali dal progetto LIGO della National Science Foundation statunitense. Raffigura la vista da uno dei buchi neri mentre si dirige a spirale verso il suo partner cosmico. Dieci anni dopo la storica rilevazione delle onde gravitazionali da parte di LIGO, i rivelatori migliorati hanno permesso di "sentire" questa collisione celeste con una chiarezza senza precedenti. I dati sulle onde gravitazionali hanno permesso agli scienziati di distinguere molteplici toni che risuonano come una campana cosmica attraverso l'universo (immaginato qui come un intreccio di fili musicali che si dirigono a spirale verso il centro). Sebbene solo LIGO fosse online durante l’osservazione di GW250114, ora opera abitualmente come parte di una rete con altri rivelatori di onde gravitazionali, tra cui Virgo in Europa e KAGRA in Giappone. Credit immagine: Aurore Simonnet (SSU/EdEon)/LVK/URI
A dieci anni dalla scoperta, le onde gravitazionali verificano il teorema dell’area dei buchi neri di Stephen Hawking. Una sinfonia cosmica rivelata.
Quest’opera d’arte ci immerge in GW250114, una potente collisione tra due buchi neri osservata con le onde gravitazionali dal progetto LIGO della National Science Foundation statunitense. Raffigura la vista da uno dei buchi neri mentre si dirige a spirale verso il suo partner cosmico. Dieci anni dopo la storica rilevazione delle onde gravitazionali da parte di LIGO, i rivelatori migliorati hanno permesso di “sentire” questa collisione celeste con una chiarezza senza precedenti. I dati sulle onde gravitazionali hanno permesso agli scienziati di distinguere molteplici toni che risuonano come una campana cosmica attraverso l’universo (immaginato qui come un intreccio di fili musicali che si dirigono a spirale verso il centro).
Sebbene solo LIGO fosse online durante l’osservazione di GW250114, ora opera abitualmente come parte di una rete con altri rivelatori di onde gravitazionali, tra cui Virgo in Europa e KAGRA in Giappone.
Credit immagine: Aurore Simonnet (SSU/EdEon)/LVK/URI

Testo, video e immagini dall’Ufficio Stampa EGO e Virgo

Onde gravitazionali: le nuove sensazionali scoperte del team internazionale di ricercatori Virgo e LIGO 

Il ruolo degli scienziati UNIPG  

onde gravitazionali Virgo LIGO
Helios Vocca e Roberto Rettori


Si è svolta oggi presso il Rettorato dell’Università degli Studi di Perugia la conferenza stampa di presentazione ai giornalisti umbri delle nuove, sensazionali scoperte scientifiche realizzate dai ricercatori dei progetti Virgo e LIGO.

onde gravitazionali Virgo LIGO
Helios Vocca e Roberto Rettori

All’incontro con i giornalisti – realizzato in contemporanea con l’omologo evento internazionale che ha visto collegati i vari gruppi di ricerca in modalità streaming – erano presenti i professori Helios Vocca, Delegato del Rettore per il settore Ricerca, Valutazione e Fund-raising e Roberto Rettori, Delegato del Rettore per il settore Orientamento, Tutorato e Divulgazione scientifica, insieme a numerosi Delegati Rettorali e Direttori dei Dipartimenti dello Studium.

Onde gravitazionali Virgo LIGO

I ricercatori dei progetti Virgo e LIGO hanno annunciato l’osservazione della fusione di un sistema binario di massa straordinariamente grande: due buchi neri di 66 e 85 masse solari, hanno prodotto alla fine un buco nero di circa 142 masse solari. Il buco nero finale è il più massiccio rivelato finora per mezzo delle onde gravitazionali. Si trova in una regione di massa entro cui non è mai stato osservato prima un buco nero, né con onde gravitazionali né con osservazioni elettromagnetiche, e potrebbe servire a spiegare la formazione dei buchi neri supermassicci. Inoltre, il componente più pesante del sistema binario iniziale si trova in un intervallo di massa proibito dalla teoria dell’evoluzione stellare e rappresenta una sfida per la nostra comprensione degli stadi finali della vita delle stelle massicce.

Helios Vocca

“Il risultato di oggi è per noi fonte di enorme soddisfazione – dichiara il professore Helios Vocca, responsabile del gruppo Virgo Perugia – perché si tratta di una nuova scoperta realizzata grazie ad un detector che è frutto anche del lavoro realizzato dal gruppo Virgo Perugia in trent’anni di attività: un impegno, quello del team perugino, che è stato ampiamente riconosciuto a livello internazionale e che ci vede coinvolti nel management sia del progetto Virgo, sia del nuovo esperimento  giapponese ‘Kagra’, guidato da Takaaki Kajita, premio Nobel per la Fisica nel 2015 e laureato honoris causa del nostro Ateneo. Del nostro gruppo, inoltre – aggiunge Vocca – fa parte anche il dottor Michele Punturo, della sezione INFN di Perugia, attualmente Principal Investigator dell’esperimento ‘Einstein Europe’, il futuro detector europeo per le onde gravitazionali.

Il team di Perugia possiede competenze uniche al mondo – spiega il professor Vocca – in particolare sulle sospensioni degli specchi degli interferometri. In virtù di questa altissima specializzazione, stiamo lavorando insieme ad altri colleghi di vari Paesi europei e giapponesi per creare un laboratorio internazionale proprio a Perugia o comunque in Umbria, al fine di sfruttare le ricadute tecnologiche dei rilevatori di onde gravitazionali in altri settori, quali ad esempio quello del rischio sismico, affinché le avanzatissime tecnologie utilizzate nello spazio servano al miglioramento della vita dei cittadini.

Il tutto, inoltre, – conclude il professor Helios Vocca – avrà un’importante valenza per i nostri studenti: stiamo infatti puntando a costruire, in questo ambito scientifico, un’offerta didattica innovativa interuniversitaria, ovvero corsi di laurea realizzati in partnership con altri Atenei del centro-Italia, per dar vita a una ‘scuola’ che sia davvero unica persino a livello internazionale”.

Roberto Rettori

“In questo periodo di emergenza, nel rispetto delle direttive ministeriali, l’Università degli Studi di Perugia non ha mai interrotto né l’attività didattica né quella di ricerca – ha sottolineato il professore Roberto Rettori -. L’esperimento Virgo, che per l’unità di Perugia è coordinato dal professor Helios Vocca del Dipartimento di Fisica e Geologia, ne è una chiara dimostrazione.

I risultati che i nostri eccellenti ricercatori ottengono in tutte le discipline, permettono al nostro Ateneo di crescere e sempre di più diventare un punto di riferimento in Italia e nel mondo, promuovendo quindi Perugia e il suo territorio. Attraverso le numerose iniziative di divulgazione della ricerca che stiamo organizzando in tutta la regione, l’Università degli Studi di Perugia esce dalle sue mura, arriva alla popolazione e diventa suo patrimonio da difendere e valorizzare. Ringrazio il Magnifico Rettore, Professore Maurizio Olivieroper il supporto costante che offre a tali iniziative nonché tutti i colleghi per il loro lavoro. L’Ateneo di Perugia è soprattutto il luogo accogliente della conoscenza dove i giovani possono realizzare le loro passioni e costruire il loro futuro”.

La Sala Dessau all’Università di Perugia

Perugia, 2 settembre 2020

 

Virgo e LIGO svelano nuove e inattese popolazioni di buchi neri

Helios Vocca e Roberto Rettori

Virgo e LIGO hanno annunciato l’osservazione della fusione di un sistema binario di massa straordinariamente grande: due buchi neri di 66 e 85 masse solari, hanno prodotto alla fine un buco nero di circa 142 masse solari. Il buco nero finale è il più massiccio rivelato finora per mezzo delle onde gravitazionali. Si trova in una regione di massa entro cui non è mai stato osservato prima un buco nero, né con onde gravitazionali né con osservazioni elettromagnetiche, e potrebbe servire a spiegare la formazione dei buchi neri supermassicci. Inoltre, il componente più pesante del sistema binario iniziale si trova in un intervallo di massa proibito dalla teoria dell’evoluzione stellare e rappresenta una sfida per la nostra comprensione degli stadi finali della vita delle stelle massicce.

Gli scienziati delle collaborazioni internazionali che sviluppano e utilizzano i rivelatori Advanced Virgo presso lo European Gravitational Observatory (EGO) in Italia e i due Advanced LIGO negli Stati Uniti hanno annunciato l’osservazione di un buco nero di circa 142 masse solari, che è il risultato finale della fusione di due buchi neri di 66 e 85 masse solari. I componenti primari e il buco nero finale si trovano tutti in un intervallo di massa mai visto prima, né con onde gravitazionali né con osservazioni elettromagnetiche. Il buco nero finale è il più massiccio rivelato finora per mezzo di onde gravitazionali. L’evento di onda gravitazionale è stato osservato dai tre interferometri della rete globale il 21 maggio 2019. Il segnale (chiamato GW190521) è stato analizzato dagli scienziati, che stimano che la sorgente disti circa 17 miliardi di anni luce dalla Terra. Due articoli scientifici che riportano la scoperta e le sue implicazioni astrofisiche sono stati pubblicati oggi su Physical Review Letters e Astrophysical Journal Letters,
rispettivamente.

“Il segnale osservato il 21 maggio dello scorso anno è molto complesso e, dal momento che il sistema è così massiccio, lo abbiamo osservato per un tempo molto breve, circa 0.1 s”, dice Nelson Christensen, directeur de recherche CNRS presso ARTEMIS a Nizza in Francia e membro della Collaborazione Virgo. “Non assomiglia molto ad un sibilo che cresce rapidamente in frequenza, che è il tipo di segnale che osserviamo di solito: assomiglia piuttosto ad uno scoppio, e corrisponde alla massa più alta mai osservata da LIGO e Virgo.” Effettivamente, l’analisi del segnale – basata su una potente combinazione di modernissimi modelli fisici e di metodi di calcolo – ha rivelato una gran quantità di informazione su diversi stadi di questa fusione davvero unica.

Questa scoperta è senza precedenti non solo perché stabilisce il record di massa tra tutte le osservazioni fatte finora da Virgo e LIGO ma anche perché possiede altre caratteristiche speciali. Un aspetto cruciale, che ha attratto in particolare l’attenzione degli astrofisici, è che il residuo finale appartiene alla classe dei cosiddetti “buchi neri di massa intermedia” (da cento a centomila masse solari). L’interesse verso questa popolazione di buchi neri è collegato ad uno degli enigmi più affascinanti e intriganti per astrofisici e cosmologi: l’origine dei buchi neri supermassicci. Questi mostri giganteschi, milioni di volte più pesanti del Sole e spesso al centro delle galassie, potrebbero essere il risultato della fusione di buchi neri di massa intermedia.

Fino ad oggi, pochissimi esempi di questa categoria sono stati identificati unicamente per mezzo di osservazioni elettromagnetiche, e il residuo finale di GW190521 è la prima osservazione di questo genere per mezzo di onde gravitazionali. Ed è di interesse ancora maggiore, visto che si trova nella regione tra 100 e 1000 masse solari, che ha rappresentato per molti anni una specie di “deserto dei buchi neri”, a causa della scarsità di osservazioni in questo intervallo di massa.

I componenti e la dinamica della fusione del sistema binario che ha prodotto GW190521 offrono spunti astrofisici straordinari. In particolare, il componente più massiccio rappresenta una sfida per i modelli astrofisici che descrivono il collasso in buchi neri delle stelle più pesanti, quando queste arrivano alla fine della loro vita. Secondo questi modelli, stelle molto massicce vengono completamente distrutte dall’esplosione di supernova, a causa di un processo chiamato “instabilità di coppia”, e si lasciano dietro solo gas e polveri cosmiche. Perciò gli astrofisici non si aspetterebbero di osservare alcun buco nero nell’intervallo di massa tra 60 e 120 masse solari: esattamente dove si trova il componente più massiccio di GW190521. Quindi, questa osservazione apre nuove prospettive nello studio delle stelle massicce e dei meccanismi di supernova.

“Parecchi scenari predicono la formazione di buchi neri nel cosiddetto intervallo di massa di instabilità di coppia: potrebbero risultare dalla fusione di buchi neri più piccoli o dalla collisione multipla di stelle massicce o addirittura da processi più esotici”, dice Michela Mapelli, professore presso l’Università di Padova, e membro dell’INFN Padova e della Collaborazione Virgo. “Comunque, è possibile che si debba ripensare la nostra attuale comprensione degli stadi finali della vita di una stella e i conseguenti vincoli di massa sulla formazione dei buchi neri. In ogni caso, GW190521 è un importante contributo allo studio della formazione dei buchi neri.”

Infatti, l’osservazione di GW190521 da parte di Virgo e LIGO porta la nostra attenzione sull’esistenza di popolazioni di buchi neri che non sono mai stati osservati prima o sono inattesi, e in tal modo solleva nuove intriganti domande sui meccanismi con cui si sono formati. A dispetto del segnale insolitamente breve, che limita la nostra capacità di dedurre le proprietà astrofisiche della sorgente, le analisi più avanzate e i modelli attualmente disponibili suggeriscono che i buchi neri iniziali avessero alti valori di spin, o in altre parole che avessero un’elevata velocità di rotazione.

“Il segnale mostra segni di precessione, una rotazione del piano orbitale prodotta da spin elevati e con un’orientazione particolare”, nota Tito Dal Canton, ricercatore del CNRS presso IJCLab ad Orsay, Francia, e membro della Collaborazione Virgo, “L’effetto è debole e non possiamo esserne certi del tutto, ma se fosse vero darebbe forza all’ipotesi che i buchi neri progenitori siano nati e vissuti in un ambiente cosmico molto dinamico e affollato, come un ammasso stellare denso o il disco di accrescimento di un nucleo galattico attivo.”

Parecchi scenari diversi sono compatibili con questi risultati e anche l’ipotesi che i progenitori della fusione possano essere buchi neri primordiali non è stata scartata dagli scienziati. Effettivamente, noi stimiamo che la fusione abbia avuto luogo 7 miliardi di anni fa, un tempo vicino alle epoche più
antiche dell’Universo.

Rispetto alle precedenti osservazioni di onde gravitazionali, il segnale di GW190521 è molto breve e più difficile da analizzare. La complessa natura di questo segnale ci ha spinto a considerare anche altre sorgenti più esotiche, e queste possibilità sono descritte in un altro articolo che accompagna quello della scoperta. La fusione di un sistema binario di buchi neri resta però l’ipotesi più
probabile.

“Le osservazioni portate avanti da Virgo e LIGO illuminano l’universo oscuro e definiscono un nuovo panorama cosmico”, dice Giovanni Losurdo, che guida Virgo ed è dirigente di ricerca presso l’Istituto Nazionale di Fisica Nucleare in Italia, “E oggi, ancora una volta, annunciamo una scoperta senza precedenti. Continuiamo a migliorare i nostri strumenti per aumentare la loro performance e
per vedere sempre più a fondo nell’Universo.”

Informazioni aggiuntive sugli osservatori di onde gravitazionali:

La Collaborazione Virgo è composta attualmente da circa 580 membri provenienti da 109 istituzioni in 13 diversi paesi, che comprendono Belgio, Francia, Germania, Grecia, Irlanda, Italia, Olanda, Polonia, Portogallo, Spagna e Ungheria. Lo European Gravitational Observatory (EGO) che ospita il rivelatore Virgo si trova vicino a Pisa in Italia ed è finanziato dal Centre National de la Recherche Scientifique (CNRS) in Francia, dall’Istituto Nazionale di Fisica Nucleare (INFN) in Italia, e dal Nikhef in Olanda. Una lista dei gruppi della Collaborazione Virgo è disponibile al link http://public.virgo-gw.eu/the-virgo-collaboration/ . Ulteriori informazioni sono disponibili sul sito web di Virgo http://www.virgo-gw.eu

.LIGO è finanziato dalla National Science Foundation (NSF) e la sua operatività dipende da Caltech e MIT, che hanno concepito e guidato il progetto. Il sostegno finanziario per il progetto Advanced LIGO è venuto dall’NSF, con significativi impegni e contributi da parte tedesca (Max Planck Society), inglese (Science and Technology Facilities Council) e australiana (Australian Research Council-OzGrav). Circa 1300 scienziati di tutto il mondo partecipano all’impresa scientifica della Collaborazione LIGO, che include anche la Collaborazione GEO. Una lista di altri partners è disponibile al link https://my.ligo.org/census.php
.

I RICERCATORI DI PERUGIA A CACCIA DELLE ONDE GRAVITAZIONALI

Un’esperienza ventennale nella descrizione teorica e nello sviluppo di tecnologie per osservare le onde gravitazionali che ha condotto anche a ricadute tecnologiche nel campo delle energie rinnovabili.

onde gravitazionali Virgo LIGO
Helios Vocca e Roberto Rettori

Il gruppo di scienziati di Perugia che lavora all’esperimento Virgo per la rivelazione e lo studio di onde gravitazionali fa parte del Dipartimento di Fisica e Geologia dell’Università di Perugia e della Sezione di Perugia dell’INFN e da circa trent’anni si occupa de i rivelatori delle Onde Gravitazionali. Il gruppo si occupa per lo più di elabora re modelli teorici e tecniche sperimentali per studiare la dinamica dei sistemi fisici non lineari e in particolare p er lo studio del rumore. Si tratta cioè di conoscere le caratteristiche e saper limitare o utilizzare in modo efficiente tutte qu elle vibrazioni che popolano i fenomeni naturali, dalle vibrazioni delle molecole e degli atomi dovute alla temperatura alle vibrazioni macroscopiche che potrebbero disturbare la rivelazione dei segnali che arrivano dal cosmo e che l’esperimento Virgo rivela. Oltre a questo negli ultimi anni ha acquisito competenze di ottica quantistica, di data analisi e modelli stica della Relatività Generale per sistemi compatti.

Il gruppo di ricerca perugino attivo nell’esperimento Virgo è coordinato dal Prof. Helios Vocca (attualmente nel Management Team sia dell’esperimento europeo Virgo che dell’esperimento giapponese Kagra). Sono nel complesso 12, tra scienziati e tecnici, le persone del Dipartimento di Fisica e della Sezione di Perugia dell’Istituto Nazionale di Fisica Nucleare che costituiscono il team coinvolto nell’osservazione e nell’analisi dei dati raccolti sulle onde gravitazionali; fra loro anche il Dott. Michele Punturo responsabile del gruppo di ricerca astroparticellare per la sezione INFN di Perugia e attualmente Principal Investigato dell’esperimento Einstein Telescope, futuro detector europeo per le Onde Gravitazionali.

Le abilità acquisite dal team perugino nello studio delle vibrazioni, da quelle microscopiche a quelle più grandi, ha consentito di apportare un contributo essenziale ai metodi utilizzati per istallare gli specchi e il complesso dei sistemi ottici, cuore dello strumento per l’osservazione delle onde gravitazionali: l’interferometro Virgo. Il rivelatore Virgo istallato a Cascina, nelle campagne poco fuori Pisa, è costituito da due lunghi tubi di tre chilometri l’uno, disposti perpendicolarmente tra loro a formare una elle. All’interno di questi tubi si fa il vuoto e viene fatto correre un raggio laser avanti e indietro attraverso un sistema di specchi. È proprio lo spostamento degli specchi al passaggio dell’onda gravitazionale che ne rileva la presenza. Di conseguenza è cruciale la realizzazione di queste parti dell’apparato. Attraverso una conoscenza accurata del rumore termico, ovvero delle vibrazioni degli atomi e delle molecole che costituisco i materiati di cui sono fatte le parti del rivelatore Virgo, il gruppo di Perugia ha fatto sì che il segnale delle onde gravitazionali non si confondesse con altri disturbi provenienti dall’ambiente. Il gruppo di Perugia si è occupato, sin dalla nascita del progetto Virgo, dello sviluppo del sistema per sospendere gli specchi all’interno delle torri dell’esperimento. Tale sistema è unico perché consente allo specchio di poter oscillare dissipando pochissima energia e quindi rendendolo estremamente sensibile alla rivelazione dei segnali gravitazionali. Il pendolo è costituito da sottilissimi fili prima di acciaio, ora di un particolare vetro: il quarzo fuso. Insieme ai fili è stato ideato e realizzato un sistema originale di ancoraggio degli specchi attraverso tecniche innovative d’incollaggio delle componenti del rivelatore sviluppate tra i laboratori di Perugia e quelli di Glasgow. Queste tecnologie sono alla base dell’aumento di sensibilità che caratterizza il cosiddetto Advanded Virgo.

Le abilità tecniche e le conoscenze teoriche acquisite in questi trent’anni dai fisici dell’Università di Perugia, coinvolti nel progetto Virgo, ha consentito al gruppo di entrare da protagonista anche nell’esperimento giapponese, Kagra (esperimento guidato da una vecchia conoscenza dell’Ateneo perugino, il Prof. Takaaki Kajita premio Nobel in Fisica nel 2015, al quale nel 2017 è stata riconosciuta la laurea Honoris Causa) trasferendo le proprie competenze alla collaborazione asiatica per la realizzazione delle sospensioni criogeniche in zaffiro delle ottiche del rivelatore.

 

 

Testi e foto dall’Ufficio Stampa Università di Perugia