News
Ad
Ad
Ad
Tag

Cile

Browsing

Scoperte due nuove galassie formatesi all’alba dell’universo nascoste dietro la polvere interstellare

Lo svela un team di ricerca internazionale, che in Italia coinvolge cosmologi della Scuola Normale Superiore di Pisa e della Sapienza Università di Roma, che spiegano: «L’attuale censimento della formazione e della crescita delle galassie dopo il Big Bang è ancora incompleto».

due nuove galassie polvere interstellare REBELS
Elaborazione grafica della galassia REBELS-12-2

L’universo primordiale è probabilmente molto più ricco di quanto sembri. La polvere interstellare potrebbe celare intere popolazioni di galassie finora sconosciute. È di queste settimane la scoperta ad opera di un team di ricerca internazionale, che in Italia vede coinvolte la Scuola Normale Superiore di Pisa e la Sapienza di Roma, di due galassie antichissime, risalenti a circa un miliardo di anni dopo il Big Bang, quando l’Universo aveva raggiunto poco meno dell’8% della sua età.

Utilizzando i dati di ALMA (Atacama Large Millimeter/submillimeter Array), un potentissimo radiointerferometro situato a 5000 metri d’altitudine nel deserto di Atacama in Cile, il dottor Yoshinobu Fudamoto, della Waseda University in Giappone, ha notato una forte presenza di polvere e carbonio ionizzato da zone dello spazio che precedentemente si ritenevano vuote. Fudamoto e i colleghi della collaborazione REBELS (in Italia, Andrea Ferrara e Andrea Pallottini della Scuola Normale Superiore, Raffaella Schneider e Luca Graziani della Sapienza Università di Roma, associati all’Istituto Nazionale di Astrofisica, INAF) hanno approfondito le ricerche di questi misteriosi segnali, che provenivano da relativamente vicino – decine di migliaia di anni luce – agli oggetti astronomici che originariamente stavano studiando.

Fig1: rappresentazione schematica dei risultati di questa ricerca. In un’immagine ripresa dal telescopio spaziale Hubble (a sinistra) una regione di spazio sembra completamente vuota. Invece, ALMA ha ora rivelato una galassia precedentemente sconosciuta poiché era sepolta in profondità in nuvole di gas e polvere. A destra è mostrata una elaborazione grafica della galassia. Credito: ALMA (ESO/NAOJ/NRAO), NASA/ESA Hubble Space Telescope

Nel loro ultimo articolo pubblicato oggi su Nature la sorprendente rivelazione: le emissioni inspiegabili appartengono a due galassie precedentemente sconosciute, non visibili nelle lunghezze d’onda dell’ultravioletto in quanto completamente oscurate dalla polvere cosmica.

Fig2: galassie lontane riprese con ALMA, il telescopio spaziale Hubble e il telescopio VISTA dello European Southern Observatory (ESO). I colori verde e arancione rappresentano le radiazioni degli atomi di carbonio ionizzato e delle particelle di polvere, rispettivamente, osservate con ALMA, e il blu rappresenta le radiazioni del vicino infrarosso osservate con i telescopi VISTA e Hubble. Per REBELS-12 e REBELS-29 si è rilevata sia la radiazione nel vicino infrarosso che la radiazione da atomi di carbonio e polvere ionizzati. D’altra parte, REBELS-12-2 e REBELS-29-2 non sono stati rilevati nel vicino infrarosso, il che suggerisce che queste galassie siano profondamente sepolte nella polvere. Credito: ALMA (ESO/NAOJ/NRAO), NASA/ESA Hubble Space Telescope, ESO, Fudamoto et al.

Denominate REBELS-12-2 e REBELS-29-2, le due galassie si sono formate più di 13 miliardi di anni fa e presentano caratteristiche simili a quelle delle galassie della stessa epoca, se si esclude la massiccia oscurazione dovuta alla polvere che esse stesse hanno prodotto, un effetto che tipicamente si osserva solo per oggetti astronomici molto più evoluti. Lo studio rivela come la presenza di questi due oggetti potrebbe essere solo la punta dell’iceberg dell’esistenza di una popolazione di galassie precedentemente sconosciuta agli astronomi.

“La scoperta ci suggerisce che l’attuale censimento della formazione delle prime galassie è molto probabilmente incompleto e richiederà indagini più profonde – spiega Andrea Ferrara -. Le nuove strumentazioni, come il telescopio spaziale James Webb Space Telescope (JWST) che presto sarà lanciato in orbita e che interagirà fortemente con ALMA, ritengo che porteranno a significativi progressi in questo campo nei prossimi anni”.

“La scoperta di galassie così oscurate in un’epoca in cui l’Universo è ancora relativamente giovane apre degli interessanti interrogativi sui meccanismi di formazione della polvere interstellare – spiega Raffaella Schneider -. I modelli teorici e le simulazioni numeriche che stiamo sviluppando ci consentiranno di interpretare questi risultati sorprendenti, preparandoci alle straordinarie osservazioni del JWST”.

due nuove galassie polvere interstellare REBELS
Elaborazione grafica della galassia REBELS-29-2

Il programma REBELS (Reionization-Era Bright Emission Line Survey), ha l’obiettivo di osservare l’origine dell’Universo, miliardi di anni fa, quando giovani galassie avevano appena iniziato a formare le stelle e produrre la polvere cosmica. Studiare questo mondo primordiale è una delle ultime frontiere dell’astronomia, essenziale per la costruzione accurata e coerente di modelli di astrofisica e per la comprensione di come evolve l’Universo.

Riferimenti:

Normal, dust-obscured galaxies in the epoch of reionization – Y. Fudamoto, P. A. Oesch, S. Schouws, M. Stefanon, R. Smit, R. J. Bouwens, R. A. A. Bowler, R. Endsley, V. Gonzalez, H. Inami, I. Labbe, D. Stark, M. Aravena, L. Barrufet, E. da Cunha, P. Dayal, A. Ferrara, L. Graziani, J. Hodge, A. Hutter, Y. Li, I. De Looze, T. Nanayakkara, A. Pallottini, D. Riechers, R. Schneider, G. Ucci, P. van der Werf & C. White – Nature 2021. https://doi.org/10.1038/s41586-021-03846-z

 

Testo e foto dal Settore Ufficio stampa e comunicazione Sapienza Università di Roma

QUEGLI SCONTRI E FUSIONI ALL’ALBA DELL’UNIVERSO CHE HANNO AIUTATO LE GALASSIE A CRESCERE

Un team internazionale di astronomi, coordinato da Michael Romano, dottorando presso l’Università degli Studi di Padova e associato all’Istituto Nazionale di Astrofisica (INAF), ha scoperto che circa il 40% delle galassie nell’Universo primordiale si trova in sistemi in fase di fusione. Viene così confermato lo scenario secondo cui, nelle prime fasi della loro evoluzione, le galassie hanno accresciuto in modo significativo la loro massa fondendosi tra loro.

scontri galassie universo
Quegli scontri e fusioni all’alba dell’universo che hanno aiutato le galassie a crescere. Due galassie a spirale; un simile fato è quello che si ipotizza per la nostra Via Lattea, che gli scienziati ritengono avrà una simile interazione con la vicina galassia di Andromeda

Tra gli eventi più spettacolari che si possono osservare nell’Universo locale ci sono sicuramente gli “scontri tra galassie” (galactic mergers, in gergo tecnico): questi avvengono quando due o più galassie si avvicinano a tal punto da iniziare a spiraleggiare l’una sull’altra a causa della gravità, fino a fondersi in un’unica galassia più grande. Se le due galassie hanno più o meno lo stesso numero di stelle (quindi la stessa massa stellare), la galassia risultante avrà circa il doppio della massa di quelle individuali: questo infatti è il meccanismo più veloce con cui le galassie possono crescere. Tuttavia, solo l’1% delle galassie nell’Universo locale sono osservate nell’atto di fondersi: al giorno d’oggi le galassie crescono prevalentemente perché accrescono gas freddo trasformandolo in stelle (il cosiddetto meccanismo di “formazione stellare”).

Nonostante sia noto già da tempo che gli eventi di mergers fossero più frequenti nel passato, la loro identificazione nell’Universo lontano è resa più complicata dalla presenza delle polveri interstellari, che impediscono alla luce prodotta da stelle giovani di raggiungere i classici telescopi ottici, e dalla difficoltà di questi telescopi di rilevare il moto delle galassie stesse.

Michael Romano

In un articolo appena pubblicato sulla rivista «Astronomy&Astrophysics» che vede come primo autore Michael Romano, dottorando presso l’Università di Padova e associato all’Istituto Nazionale di Astrofisica, il team ALPINE (ALMA Large Program to INvestigate C+ at Early times) riporta la scoperta di dozzine di galactic mergers nell’Universo primordiale grazie alle potenti antenne dell’interferometro ALMA (Atacama Large Millimeter/submillimeter Array), in Cile. Il radiotelescopio ALMA è infatti in grado di osservare la luce oscurata dalla polvere individuando galassie che altrimenti risulterebbero essere completamente invisibili, e di svelarne la struttura tridimensionale.

Il programma ALPINE, coordinato tra gli altri da Paolo Cassata, professore dell’Università degli Studi di Padova, ha studiato nel dettaglio un campione di un centinaio di galassie risalenti a quando l’Universo aveva “solo” un miliardo di anni. Grazie ad ALMA, è stato possibile rilevare la luce proveniente da queste galassie lontane ed emessa da un particolare ione del Carbonio, detto C+. Gli atomi di Carbonio infatti, vengono “ionizzati” dalla luce ultravioletta prodotta da stelle appena nate all’interno di nubi di polvere, emettendo luce ad una ben determinata frequenza. Tale “radiazione”, al contrario di quella ultravioletta, è in grado di viaggiare indisturbata attraverso la coltre di polvere che la circonda, fino a raggiungere le antenne di ALMA. La presenza di atomi di C+ fornisce quindi informazioni sul tasso di formazione stellare all’interno delle galassie e sulla loro morfologia.

Paolo Cassata

«Grazie al progetto ALPINE, siamo riusciti a osservare la struttura tridimensionale di queste galassie primordiali a diverse frequenze, identificando anche le componenti più polverose grazie all’emissione del C+, celate in precedenza persino agli occhi dei più potenti telescopi ottici, come l’Hubble Space Telescope – afferma Michael Romano -. Abbiamo scoperto che, 12 miliardi di anni fa, i mergers erano circa 40 volte più frequenti di oggi, fornendo un contributo significativo alla crescita in massa delle galassie nell’Universo lontano.

«Questa analisi ha permesso di stimare quante volte una galassia simile alla Via Lattea si sia scontrata con altre galassie vicine durante la sua evoluzione fino ad oggi – aggiunge Paolo Cassata -. Troviamo che, tipicamente, tali galassie possono subire fino a una decina di merging in circa 13 miliardi di anni, contribuendo alla formazione delle strutture che osserviamo attualmente nel nostro “vicinato cosmico».

«Con ALPINE abbiamo stimato per la prima volta la frazione di coppie di galassie nell’Universo primordiale che si stanno fondendo, o che sono in rotta di collisione, tramite misurazioni del C+. Questo ci ha permesso di confrontare il processo di crescita delle galassie dovuto a tali fusioni, con quello guidato dalla formazione stellare. I risultati del nostro lavoro evidenziano che la conversione di gas in stelle è il meccanismo primario che permette alle galassie di aumentare la propria massa, sebbene il contributo dovuto ai merging acquisti una sempre maggiore importanza con l’avvicinarsi agli albori dell’Universo, dove diventa almeno maggiore del 10% o, in alcuni casi, addirittura paragonabile al processo di formazione stellare – conclude Michael Romano -. In futuro, saremo sicuramente in grado approfondire il problema della crescita ed evoluzione delle galassie primordiali grazie ad ulteriori osservazioni ad alta risoluzione con ALMA e all’imminente lancio del James Webb Space Telescope».

 

Testo e foto dagli Uffici Stampa Università di Padova e Istituto Nazionale di Astrofisica sullo studio relativo a scontri e fusioni tra galassie all’alba dell’universo.

Fabiana ramulosa: una pianta contro l’antibiotico-resistenza 

Un team multidisciplinare della Sapienza ha individuato in una molecola dell’arbusto originario delle pendici montuose del Cile e dell’Argentina un alleato naturale contro la resistenza agli antibiotici. L’azione antimicrobica della pianta è stata scoperta utilizzando approcci bioinformatici e screening biologici. I risultati del lavoro sono pubblicati sulla rivista Journal of Antimicrobial Chemotherapy

Fabiana densa ramulosa antibiotico-resistenza
Il composto BBN149, estratto da Fabiana ramulosa, inibisce la crescita batterica di batteri resistenti alla colistina. A destra la pianta utilizzata per l’estrazione del BBN149 la cui struttura è riportata al centro. Il grafico a sinistra riporta l’inibizione della crescita (Growth %) di un ceppo di P. aeruginosa resistente alla colistina in presenza di dosi crescenti di BBN149 e colistina (+ colistin). Si può notare che in presenza di colistina il BBN149 inibisce completamente la crescita del ceppo resistente alle concentrazioni comprese tra 125 e 31 mM, mentre non ha alcun effetto in assenza di colistina.

La resistenza agli antibiotici, o antibiotico-resistenza, è un meccanismo che deriva dal naturale sistema di difesa dei batteri nei confronti degli agenti esterni. A livello molecolare si tratta di un processo che normalmente avviene in pochi microrganismi di una popolazione batterica. Tuttavia, quando la popolazione è esposta agli antibiotici, i batteri resistenti per continuare a sopravvivere e a proliferare diffondono velocemente questa capacità a batteri diversi presenti nello stesso ecosistema.

L’antibiotico-resistenza sta compromettendo la possibilità di trattare le più comuni infezioni batteriche, mettendo a rischio anche procedure mediche ordinarie quali gli interventi chirurgici o i trattamenti chemioterapici. La situazione inoltre sta peggiorando con l’emergere di nuovi ceppi batterici capaci di sviluppare resistenza a più antibiotici (multi-resistenza) e persino pan-resistenza a tutti gli antibiotici disponibili. Basti pensare a batteri come Klebsiella pneumoniae, Escherichia coli, Staphlylococcus aureus e Pseudomonas aeruginosa, che sono diffusi in tutti i paesi e mostrano resistenze multiple anche agli antibiotici indicati come ultima risorsa, limitando fortemente le opzioni di cura per i pazienti.

Per il trattamento di infezioni da batteri multi- o pan-resistenti sono stati reimmessi nella terapia vecchi antibiotici che, non essendo stati più stati utilizzati da diversi anni, possono risultare efficaci. Uno di questi è la colistina, una molecola antimicrobica entrata in disuso negli anni ‘50 e recentemente riconsiderata per il trattamento di infezioni da batteri Gram-negativi come la Klebsiella.

Oggi, un nuovo studio coordinato dalla Sapienza Università di Roma, in collaborazione con altre università e enti di ricerca italiani, ha indagato i meccanismi molecolari alla base della resistenza dei batteri alla colistina, giungendo a identificare un composto naturale in grado di disattivare l’azione dei batteri contro il farmaco.

Lo studio, risultato dell’approccio multidisciplinare di un team di chimici, bioinformatici, microbiologi e biochimici, è stato pubblicato sulla rivista Journal of Antimicrobial Chemotherapy e ha visto il supporto del MUR, della Fondazione Fibrosi Cistica e dell’Istituto Pasteur Fondazione Cenci Bolognetti.

In particolare, i ricercatori hanno osservato che la colistina si lega alla parete dei batteri, nello specifico alla loro componente lipideA del lipopolisaccaride, e ne distrugge l’integrità causandone la morte. Nei batteri che sviluppano resistenza alla colistina invece si attiva l’enzima ArnT, che modifica il lipideA rendendolo inattaccabile.

La conoscenza dei meccanismi molecolari alla base della colistina-resistenza, ha permesso quindi di identificare BBN149, un composto di origine naturale estratto dalla pianta Fabiana densa var. ramulosa, un genere di piante originario delle pendici montuose del Cile e dell’Argentina.

“Poiché in alcuni casi la colistina rappresenta l’ultima opportunità terapeutica disponibile è molto importante preservarne l’attività il più a lungo possibile” – spiega Fiorentina Ascenzioni del Dipartimento di Biologia e biotecnologie Charles Darwin della Sapienza. “Il nostro obiettivo è stato quello di trovare un composto capace di inattivare ArnT e lo abbiamo fatto attraverso lo screening di una vasta libreria di composti naturali appartenente al gruppo di Bruno Botta del Dipartimento di Chimica e tecnologia del farmaco del nostro Ateneo”.

Successivamente i ricercatori hanno confermato la funzione di BBN149 con dati microbiologici e biochimici e poi attraverso l’utilizzo di tecniche di molecular modeling, utili a simulare il comportamento della molecola.

I dati sperimentali presentati nel lavoro, da una parte confermano ArnT come target anti-colistina-resistenza, dall’altra aprono la strada allo sviluppo di adiuvanti della colistina nel trattamento di infezioni batteriche da Gram-negativi colistina-resistenti, le quali sono rapidamente aumentate da quando è stato ripristinato l’utilizzo della molecola negli antibiotici.

Fabiana ramulosa antibiotico-resistenza
Fabiana ramulosa, dalla quale è possibile estrarre una molecola, alleato naturale contro l’antibiotico-resistenza. Foto di Penarc, CC BY 3.0

Riferimenti:

A novel colistin adjuvant identified by virtual screening for ArnT inhibitors – Francesca Ghirga, Roberta Stefanelli, Luca Cavinato, Alessandra Lo Sciuto, Silvia Corradi, Deborah Quaglio, Andrea Calcaterra, Bruno Casciaro, Maria Rosa Loffredo, Floriana Cappiello, Patrizia Morelli, Alberto Antonelli, Gian Maria Rossolini, Marialuisa Mangoni, Carmine Mancone, Bruno Botta, Mattia Mori, Fiorentina Ascenzioni, Francesco Imperi – Journal of Antimicrobial Chemotherapy (2020), dkaa200, https://doi.org/10.1093/jac/dkaa200

Le piante del genere Fabiana prendono il loro nome dal vescovo Francisco Fabián y Fuero. Qui in un dipinto di Juan Bautista Suñer, olio su tela (201 x 114 cm), all’Università di Valencia. Immagine UV CC BY-SA 4.0

Testo e immagine dall’Ufficio Stampa Sapienza Università di Roma sulla molecola dalla Fabiana densa var. ramulosa, alleato contro l’antibiotico-resistenza.

WFIRST (Wide Field InfraRed Survey Telescope) – da poco ribattezzato Roman Telescope in onore dell’astronoma statunitense Nancy Grace Roman, affettuosamente chiamata “la mamma di Hubble” – è un progetto NASA designato ad indagare su alcuni grandi misteri dell’Universo come la materia e l’energia oscura e per cercare nuovi mondi in orbita attorno ad altre stelle della nostra galassia.

ScientifiCult ha l’onore di poter intervistare il dott. Valerio Bozza, ricercatore presso l’Università degli Studi di Salerno e attualmente impegnato a collaborare con la NASA per la realizzazione del Telescopio Roman.

Valerio Bozza
Il dott. Valerio Bozza

Può raccontarci i momenti della Sua carriera professionale che ricorda con più piacere?

In vent’anni di ricerca ho avuto la fortuna di vivere tante soddisfazioni e di lavorare con le persone che hanno scritto i libri su cui ho studiato. Certamente, partecipare alle discussioni nello studio di Gabriele Veneziano al CERN con i cosmologi più importanti del mondo e poter assistere alla nascita di idee geniali su quella lavagna è stata un’esperienza formativa fondamentale. Quando ho avuto il mio primo invito a relazionare ad un workshop all’American Institute of Mathematics sul gravitational lensing di buchi neri e ho ricevuto i complimenti di Ezra T. Newman, ho capito che potevo davvero dire la mia anche io.

Ricordo ancora le notti di osservazioni allo European Southern Observatory a La Silla in Cile, sotto il cielo più bello del pianeta. Ricordo l’invito al Collège de France a Parigi da parte di Antoine Layberie per un seminario, che poi ho scoperto di dover tenere in francese! Poi non ci dimentichiamo la notizia della vittoria al concorso da ricercatore, che mi ha raggiunto mentre ero in Brasile per un altro workshop sulle perturbazioni cosmologiche. Infine, ricordo con una certa malinconia le notti e i giorni di lavoro all’Osservatorio Astronomico UNISA per mettere su un programma di ricerca competitivo. Tutto è finito con la copertina di Nature sulla scoperta del pianeta KELT-9b, il più caldo mai visto, e la distruzione dell’Osservatorio nel febbraio 2019, una ferita ancora aperta.

Adesso, però, è ora di concentrarsi sullo sviluppo del nuovo telescopio spaziale WFIRST della NASA, che il 20 maggio scorso è stato rinominato Nancy Grace Roman Space Telescope (o semplicemente “Roman”, in breve), in onore della astronoma che ha contribuito alla nascita dei primi telescopi spaziali della NASA.

Infine, ricordo con una certa malinconia le notti e i giorni di lavoro all’Osservatorio Astronomico UNISA con il Prof. Gaetano Scarpetta, per mettere su un programma di ricerca competitivo.

Ci sono degli aggiornamenti sulla data del lancio di Roman?

Il lancio del telescopio Roman era programmato per il 2025, ma diverse vicende hanno giocato contro in questi ultimi anni: il ritardo nel lancio del JWST, lo shutdown del governo americano ad inizio 2019 e soprattutto l’epidemia di COVID-19, che sta provocando ritardi su tutte le scadenze nella tabella di marcia. A questo punto, direi che uno slittamento all’anno successivo possa essere plausibile. Tuttavia, l’interesse verso questa missione sta continuando a crescere sia dentro che fuori l’ambito accademico, mettendola al riparo da eventuali tagli di budget.


Roman viene spesso paragonato al telescopio spaziale Hubble. Quali sono le differenze e le somiglianze? E con il JWST?

Si tratta di tre telescopi spaziali che spesso vengono citati insieme, ma sono tutti e tre profondamente diversi: Hubble opera nella banda del visibile e nell’ultravioletto, mentre non è molto sensibile all’infrarosso. Al contrario, sia JWST che Roman opereranno nel vicino infrarosso. JWST avrà un campo di vista molto più piccolo anche di Hubble, perché il suo scopo è fornirci immagini con dettagli mai visti prima di sistemi stellari e planetari in formazione. Roman, invece, avrà un campo di vista cento volte più grande di Hubble, perché il suo scopo è quello di scandagliare aree di cielo molto grandi alla ricerca di galassie o fenomeni transienti. La grande novità è che Roman condurrà queste survey a grande campo con una risoluzione di 0.1 secondi d’arco, simile a quella di Hubble! Quindi, avremo la possibilità di condurre la scienza di Hubble su enormi aree di cielo contemporaneamente. JWST, invece, condurrà osservazioni con un dettaglio molto migliore di Hubble e di Roman, ma su un singolo oggetto in un’area molto limitata.

Roman telescope Valerio Bozza
Immagine 3D del veicolo spaziale Roman (luglio 2018). Immagine NASA (WFIRST Project and Dominic Benford), adattata, in pubblico dominio


Quali sono i target scientifici della missione e come vengono raggiunti?

A differenza di Hubble e JWST, Roman avrà poco spazio per richieste estemporanee di osservazioni. Sarà un telescopio essenzialmente dedicato a due programmi principali: una survey delle galassie lontane e una survey del centro della nostra Galassia. La prima survey effettuerà delle immagini di tutto il cielo alla ricerca di galassie deboli e lontane. Queste immagini consentiranno di capire meglio la distribuzione della materia nel nostro Universo, fissare le tappe dell’espansione cosmologica e chiarire i meccanismi alla base dell’espansione accelerata, scoperta venti anni fa attraverso lo studio delle supernovae Ia. I cosmologi si aspettano che Roman possa fornirci risposte fondamentali sulla natura della cosiddetta Dark Energy, che è stata ipotizzata per spiegare l’accelerazione del nostro Universo, ma la cui natura è del tutto sconosciuta.

Il secondo programma osservativo è una survey delle affollatissime regioni centrali della nostra galassia. Monitorando miliardi di stelle, ci aspettiamo che, almeno per una frazione di queste, la loro luce verrà amplificata da effetti temporanei di microlensing dovuti a stelle che attraversano la linea di vista. Il microlensing è un’amplificazione dovuta al ben noto effetto “lente gravitazionale” previsto dalla relatività generale di Einstein. Se la stella che fa da lente è anche accompagnata da un pianeta, l’amplificazione riporterà delle “anomalie” che potranno essere utilizzate per studiare e censire i sistemi planetari nella nostra galassia. Roman sarà così sensibile da rivelare anche pianeti piccoli come Marte o Mercurio!

microlensing
Il fenomeno del microlensing: la sorgente (in alto) appare più brillante quando una stella lente passa lungo la linea di vista. Se la lente è accompagnata da un pianeta, la luminosità mostra anche una breve anomalia. Credits: © ESA


Quali differenze tra le caratteristiche dei pianeti extrasolari che andrà a scoprire
Roman e quelle dei pianeti che ha osservato Kepler e che osserva TESS?

Il metodo del microlensing, utilizzato da Roman, è in grado di scoprire pianeti in orbite medio-larghe intorno alle rispettive stelle. Al contrario, sia Kepler che TESS, utilizzano il metodo dei transiti, in cui si misura l’eclisse parziale prodotta dal pianeta che oscura parte della sua stella. Questi due satelliti, quindi, hanno scoperto tipicamente pianeti molto vicini alle rispettive stelle.

Ipotizzando di osservare una copia del Sistema Solare, Kepler e TESS potrebbero vedere Mercurio o Venere, nel caso di un buon allineamento. Roman, invece, avrebbe ottime probabilità di rivelare tutti i pianeti da Marte a Nettuno.

Un’altra differenza è che Roman scoprirà pianeti distribuiti lungo tutta la linea di vista fino al centro della Galassia, consentendo un’indagine molto più ampia della distribuzione dei pianeti di quanto si possa fare con altri metodi, tipicamente limitati al vicinato del Sole. Purtroppo, però, i pianeti scoperti col microlensing non si prestano ad indagini approfondite, poiché, una volta terminato l’effetto di amplificazione, i pianeti tornano ad essere inosservabili e sono perduti per sempre.

In definitiva, la conoscenza dei pianeti nella nostra Galassia passa per il confronto tra diversi metodi di indagine complementari. Ognuno ci aiuta a comprendere una parte di un puzzle che si rivela sempre più complesso, mano mano che scopriamo mondi sempre più sorprendenti.

 

Nancy Grace Roman, in una foto NASA del 2015, in pubblico dominio