News
Ad
Ad
Ad
Tag

cellula

Browsing

SLA: aggiunto un nuovo tassello nella comprensione degli aggregati molecolari nella malattia

Un gruppo di ricercatori della Sapienza e dell’Università degli Studi di Perugia, in collaborazione con l’Istituto italiano di tecnologia (IIT), ha pubblicato sulla rivista iScience uno studio che fa luce su una nuova forma di RNA e sul suo coinvolgimento in malattie neurodegenerative come la Sclerosi laterale amiotrofica. Il lavoro è stato supportato dall’European Research Council e da Fondazione AriSLA.

SLA aggregati molecolari
SLA: aggiunto un nuovo tassello nella comprensione degli aggregati molecolari nella malattia. Foto di Arek Socha

La Sclerosi laterale amiotrofica, nota come SLA, è una malattia neurodegenerativa che colpisce i motoneuroni, le cellule neuronali responsabili dell’innervazione muscolare, la cui degenerazione porta alla paralisi progressiva, culminando in una incapacità motoria e respiratoria.

Nella SLA si identificano due forme, quella familiare dovuta a specifiche mutazioni genetiche, e quella sporadica, la cui patogenesi non è correlata a chiara familiarità congenita e le cui cause sono ancora per lo più sconosciute. Sebbene numerosi studi abbiano permesso di caratterizzare varie proteine coinvolte nella SLA, c’è ancora molto da scoprire sulla complessità dell’insorgenza e progressione della malattia e, soprattutto, sulla sua possibile cura.

Il team di ricercatori del Dipartimento di Biologia e biotecnologie Charles Darwin di Sapienza Università di Roma e del Centro for Life Nano- & Neuro-Science dell’Istituto Italiano di Tecnologia (IIT) a Roma, coordinati da Irene Bozzoni e in collaborazione con Mariangela Morlando dell’Università degli studi di Perugia, ha aggiunto un nuovo tassello nella comprensione di questa patologia, individuando un nuovo componente molecolare degli aggregati patologici caratteristici della SLA, l’RNA circolare circ-Hdgfrp3.

Gli RNA circolari sono così chiamati proprio per la loro forma peculiare che li rende particolarmente resistenti alla degradazione. Essi rappresentano una nuova classe di molecole espresse in tutte le cellule e in particolar modo nel sistema nervoso, dove il loro malfunzionamento è stato associato a diversi stati patologici.

Lo studio, pubblicato sulla rivista iScience, analizza la presenza di questo specifico RNA circolare in associazione alla SLA: più esattamente, esso è stato evidenziato negli aggregati patologici prodotti da mutazioni della proteina FUS associate a una grave forma della malattia. La proteina FUS, infatti, che normalmente è localizzata nel nucleo, a seguito di specifiche mutazioni viene a trovarsi nel citoplasma, dove può aggregarsi formando grosse inclusioni, tipiche della SLA, che sequestrano molti componenti cellulari impedendone la corretta localizzazione e funzione.

Il gruppo di ricerca, impiegando avanzate tecniche di imaging e studiando motoneuroni di modelli animali analizzati in vitro, ha studiato gli effetti delle mutazioni della proteina FUS sulla localizzazione di questo RNA circolare. Mentre in motoneuroni sani esso si muove lungo i prolungamenti dei neuroni, facendo quindi pensare a una importante funzione di spola da e verso la periferia della cellula, in condizioni patologiche questo RNA circolare rimane intrappolato negli aggregati della proteina FUS; ciò indica che la formazione di tali agglomerati patologici può avere un effetto deleterio nelle normali funzioni di spola di questo RNA circolare e contribuire, così, al malfunzionamento dei motoneuroni.

“In questo studio abbiamo definito le caratteristiche di questo RNA – dichiara Irene Bozzoni a capo del gruppo della Sapienza – e descritto le alterazioni che si verificano nei motoneuroni che portano mutazioni della proteina FUS associate alla SLA”.

Questa ricerca, finanziata dall’European Research Council (ERC) e da Fondazione AriSLA, apre nuove interessanti frontiere nella comprensione delle malattie neurodegenerative, rispetto al ruolo degli aggregati patologici e degli RNA in essi contenuti.

Riferimenti:

Circ-Hdgfrp3 shuttles along neurites and is trapped in aggregates formed by ALS-associated mutant FUS – Eleonora D’Ambra, Tiziana Santini, Erika Vitiello, Sara D’Uva, Valentina Silenzi, Mariangela Morlando e Irene Bozzoni – iScience 2021 https://doi.org/10.1016/j.isci.2021.103504

 

Testo dal Settore Ufficio stampa e comunicazione Sapienza Università di Roma

La ciber-genetica sincronizza gli orologi delle cellule. Lo rivela la ricerca targata Federico II e Tigem appena pubblicata su Nature Communications

Lo studio, che fa capo ai professori Diego di Bernardo e Mario di Bernardo, dimostra che le cellule possono essere indotte a sincronizzare il proprio ciclo cellulare da un computer attraverso una apposita “interfaccia”. Ciò consentirà, ad esempio, di studiare i meccanismi biologici alla base del ciclo cellulare, la cui regolazione è il principio di molti farmaci antitumorali.

Le cellule, quindi, diventano smart grazie alla ciber genetica.

ciber genetica cellule
Cellule di lievito osservate al microscopio durante un esperimento di sincronizzazione. I segnali in basso mostrano che tutte le cellule osservate crescono all’unisono grazie alla nuova tecnologia sviluppata

I risultati di questa nuova ricerca sono stati pubblicati sulla rivista Nature Communications dal gruppo di ricercatori guidato dal professore Diego di Bernardo del Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale dell’Università degli Studi di Napoli Federico II – DICMAPI e del TIGEM in collaborazione con il gruppo del professore Mario di Bernardo del Dipartimento di Ingegneria Elettrica e delle Tecnologie dell’Informazione -DIETI della Federico II, nell’ambito del progetto europeo FET-OPEN H2020 “COSYBIO” (www.cosy-bio.eu).
La ricerca fortemente inter-disciplinare ricade nell’ambito della “ciber-genetica”, una nuovissima disciplina che integra l’ingegneria biomedica e la teoria dei sistemi nonlineari e dei controlli automatici con la biologia molecolare e cellulare al fine di costruire controllori automatici di processi biologici. Nello specifico i ricercatori hanno dimostrato che è possibile sincronizzare la replicazione cellulare in una popolazione di cellule interfacciandole con un computer, utilizzando tecniche di controllo simili a quelle utilizzate per la sincronizzazioni di reti e circuiti in ingegneria.
Questi nuovi sistemi “cibergenetici” potranno rivoluzionare nelle biotecnologie l’efficienza della produzione di farmaci biologici da cellule. Inoltre in un futuro non troppo lontano le stesse tecnologie potranno essere miniaturizzate per regolare processi biologici e dar vita a veri e proprio “ciberfarmaci” o smart drugs.
Alla ricerca hanno preso parte, tra gli altri, Sara Napolitano dottoranda presso il DICMAPI e Davide Fiore del Dipartimento di Matematica e Applicazioni sempre dell’Università Federico II.

 

L’articolo completo:
Automatic synchronisation of the cell cycle in budding yeast through closed-loop feedback control | Nature Communications

 Testo e immagine dall’Ufficio Stampa Università degli Studi di Napoli Federico II