News
Ad
Ad
Ad
Tag

Beatrice Polacchi

Browsing

Un cloud quantistico sicuro: da oggi è possibile proteggere la privacy di gruppi di utenti che effettuano calcoli contemporaneamente su server distanti  

Un gruppo di ricerca internazionale ha ideato e dimostrato che è possibile effettuare calcoli da remoto su processori quantistici mantenendo intatta la privacy di tutti gli utenti coinvolti. I risultati dell’esperimento, condotto presso il Quantum Lab dell’Università Sapienza di Roma, sono stati pubblicati sulla rivista Nature Communications e costituiscono un passo in avanti fondamentale verso la realizzazione di reti quantistiche sicure.

Un numero crescente di aziende e laboratori in tutto il mondo sta mettendo a disposizione degli utenti diverse tipologie di prototipi di processori quantistici. Infatti, con le tecnologie attuali, i costi di acquisto e manutenzione di questi dispositivi sono inaccessibili per utenti comuni. Invece, tramite un approccio di cloud computing, chiunque può “mettersi in fila” per prenotare l’utilizzo di un piccolo processore e poter fare il proprio esperimento di calcolo quantistico. Il problema di mantenere la privacy di questi utenti costituisce di conseguenza un’importante sfida da affrontare.

Nonostante fosse già noto come mantenere la privacy di un singolo utente connesso a un server remoto, rimaneva comunque aperto il problema di proteggere la privacy di un gruppo di utenti che collaborino allo stesso calcolo. Questo potrebbe essere il caso, ad esempio, di un gruppo di banche che puntano ad elaborare in modo congiunto i dati dei propri clienti per sviluppare un modello finanziario comune, ma senza che né le altre banche partecipanti, né i gestori del processore remoto possano carpire alcuna informazione sui dati dei loro clienti.

In un nuovo studio, pubblicato sulla rivista Nature Communications, è stato dimostrato un protocollo di crittografia adattabile a piattaforme di crescente complessità e grandezza, che permette a più utenti di portare avanti un calcolo in comune mantenendo intatta la sicurezza dei loro dati e proteggendo tutti i dettagli del calcolo.

Questo è stato il risultato di una collaborazione scientifica nel campo di protocolli di computazione e crittografia quantistica tra la Sapienza Università di Roma, l’università La Sorbona di Parigi, il Centro Nazionale della Ricerca Scientifica (CNRS) francese e l’impresa VeriQloud.

Le piattaforme basate su stati di luce quantistica sono tra le principali candidate per la realizzazione di reti quantistiche densamente interconnesse, che possano mettere in comunicazione più utenti, sia tra di loro che con server dotati di potenza di calcolo. Infatti, le sue proprietà fisiche la rendono un sistema molto promettente per la trasmissione di informazioni su lunga distanza, come hanno dimostrato alcuni esperimenti di comunicazione quantistica tra stazioni terrestri e satelliti in orbita.

L’esperimento guidato da Fabio Sciarrino e condotto presso il Quantum Lab del Dipartimento di Fisica della Sapienza ha dimostrato, per la prima volta, un protocollo in cui due utenti elaborano un calcolo quantistico su un server distante, pur assicurando la totale sicurezza dei dati relativi al calcolo. La piattaforma sperimentale sfrutta fibre ottiche per collegare i clienti tra loro e con il server, dimostrando la sicurezza e l’efficacia del protocollo anche nel caso in cui i partecipanti al protocollo si trovino a distanza.

Il protocollo e la sua sicurezza sono stati ideati e dimostrati da gruppi di ricerca diretti da Elham Kashefi e Marc Kaplan ed affiliati rispettivamente all’Università La Sorbona di Parigi e all’azienda VeriQloud.

“Il nostro lavoro – commenta Beatrice Polacchi, dottoranda del team Quantum Lab – è la prima dimostrazione sperimentale di un protocollo sicuro di delegazione di calcolo quantistico che coinvolge più di un cliente, e costituisce pertanto un mattoncino per la costruzione di reti quantistiche più grandi e sicure.”

Un altro importante risultato di questa collaborazione è la possibilità di continuare su questa strada per dimostrare protocolli di computazione sempre più sicuri e investigare reti quantistiche di crescente dimensione e connettività.

“I nostri risultati – conclude Fabio Sciarrino, responsabile del Quantum Lab – motivano la ricerca volta ad identificare nuovi protocolli sicuri calcolo quantistico delegato e nuove architetture modulari per le reti quantistiche. Ci aspettiamo che questo lavoro fornirà uno stimolo significativo alla ricerca sulla futura realizzazione di un cloud quantistico”.

Questa linea di ricerca è supportata dal programma europeo per la ricerca e l’innovazione “European Union’s Horizon 2020” attraverso il progetto FET “PHOQUSING”: www.phoqusing.eu.

Riferimenti bibliografici: 

Multi-client distributed blind quantum computation with the Qline architecture – Beatrice Polacchi, Dominik Leichtle, Leonardo Limongi, Gonzalo Carvacho, Giorgio Milani, Nicolò Spagnolo, Marc Kaplan, Fabio Sciarrino & Elham Kashefi – Nature Communications 14, 7743 (2023). https://doi.org/10.1038/s41467-023-43617-0

cloud computing quantistico privacy
Immagine di Pete Linforth

Testo dal Settore Ufficio stampa e comunicazione Sapienza Università di Roma

Individuare fenomeni quantistici attraverso rapporti di causa-effetto

Per comprendere la relazione quantistica fra due eventi, un team di ricercatori del QuantumLab della Sapienza ha sviluppato un nuovo metodo basato sulla misura della forza dei rapporti causa-effetto tra le variabili. La tecnica, eseguita sperimentalmente nei laboratori dell’Ateneo, potrà essere utilizzata per verificare il corretto funzionamento di nuove tecnologie quantistiche

Individuare fenomeni quantistici attraverso rapporti di causa-effetto: un nuovo su Science Advances

“Qual è il motivo?”, “Perché sta succedendo?” sono domande molto frequenti nella vita quotidiana, in cui spesso si è portarti a chiedersi la causa degli eventi che succedono, cercando motivi più o meno diretti o astratti. La strategia intuitivamente più efficace per capire se due eventi siano l’uno la causa dell’altro è verificare la loro correlazione, ovvero chiedersi: l’evento A succede sempre quando succede l’evento B? Come quando ogni volta che viene spinto un interruttore (evento A) si accende una lampadina (evento B). Tuttavia, questo processo, apparentemente così semplice e immediato, nasconde una grande insidia: quando due eventi sono correlati, possono sia essere la causa l’uno dell’altro ma possono anche essere influenzati da una causa comune, di cui spesso non si tiene conto. Per esempio, ogni anno, in estate, aumentano parallelamente il consumo di gelati e il numero di persone che soffrono di cali di pressione. Questi due eventi sono indubbiamente correlati, ma non sono l’uno la causa dell’altro. Avvengono simultaneamente solo perché hanno una causa comune: l’aumento delle temperature.

Comprendere se due eventi siano causati da un fattore comune o se siano direttamente collegati non è affatto semplice, per cui tali relazioni sono da sempre una sfida per gli scienziati. Secondo la fisica classica è possibile comprendere appieno la relazione causa-effetto tra due eventi effettuando una serie di opportune misurazioni. Molto più difficile è quando entrano in gioco effetti quantistici, perché i rapporti di causa-effetto tra un evento A e un evento B hanno conseguenze diverse se questi hanno una causa comune non classica. Tuttavia, la discrepanza tra predizioni classiche e quantistiche può tornare utile proprio per rilevare la presenza di fenomeni quantistici, come avviene nei cosiddetti test di Bell, effettuati per misurare le proprietà di particelle fisicamente separate ma correlate in maniera non classica.

fenomeni quantistici causa-effetto

Il gruppo QuantumLab (https://www.quantumlab.it/) della Sapienza Università di Roma ha presentato, in un lavoro recentemente pubblicato sulla rivista Science Advances, un metodo altamente innovativo che è basato sulla misura della forza dei rapporti causa-effetto tra due variabili. Lo studio è nato nell’ambito di una collaborazione internazionale dell’Ateneo romano con l’International Institute of Physics di Natal (Brasile), l’Università di Colonia (Germania) e l’Università di Gdansk (Polonia).

Il team di fisici, da tempo impegnato nello studio di questi fenomeni con l’obiettivo di creare tecniche per rilevare la presenza di fenomeni quantistici, è partito dal caso in cui un evento A è causa di un evento B e, in più, questi hanno una causa comune quantistica. In tale situazione, si può dimostrare che, per ottenere determinati effetti su B, c’è bisogno di un’influenza causale più debole da parte di A, rispetto al caso classico. Quindi, misurando la forza del rapporto causa-effetto tra A e B, è possibile capire se il processo che stiamo osservando è quantistico oppure puramente classico.

“La novità di questo approccio – afferma Iris Agresti della Sapienza – sta nel fatto che permette di individuare comportamenti quantistici del tutto nuovi, che non potevano essere individuati con le tecniche note finora”.

Per mostrare queste nuove tracce di fenomeni quantistici è stato riprodotto nei laboratori di ottica e informazione quantistica della Sapienza lo schema di rapporti causa-effetto menzionato (chiamato processo strumentale) su una piattaforma fotonica.

In dettaglio, nell’esperimento, gli eventi A e B erano i risultati di due misure su fotoni, mentre la causa comune era una sorgente di stati quantistici.

“Abbiamo generato coppie di fotoni entangled (cioè correlati quantisticamente) e abbiamo implementato il rapporto di causa-effetto tra le misure A e B, scegliendo la misura B in base al risultato di A” – spiega Fabio Sciarrino, coordinatore del gruppo. “Siccome i due fotoni da misurare vengono generati nello stesso istante, per avere il tempo di eseguire la misura A, abbiamo dovuto ritardare il fotone misurato in B tramite una fibra lunga più di 100 metri e abbiamo sfruttato un dispositivo elettro-ottico per cambiare la misura B in pochi nanosecondi”.

Questa tecnica che si basa sulla misura della forza dell’influenza causale tra due eventi per dimostrare la presenza di fenomeni quantistici, che è stata eseguita sperimentalmente dai ricercatori del QuantumLab, ha dei risvolti sia dal punto di vista applicativo, perché potrà essere utilizzata per verificare il corretto funzionamento di nuove tecnologie quantistiche, sia teorico, perché ha permesso di individuare nuove tipologie di comportamenti non classici.

Riferimenti:

Experimental test of quantum causal influences – Iris Agresti, Davide Poderini, Beatrice Polacchi, Nikolai Miklin, Mariami Gachechiladze, Alessia Suprano, Emanuele Polino, Giorgio Milani, Gonzalo Carvacho, Rafael Chaves and Fabio Sciarrino – Science Advances, Vol 8, Issue 8 https://doi.org/10.1126/sciadv.abm1515 

Testo e immagini dal Settore Ufficio stampa e comunicazione Sapienza Università di Roma