News
Ad
Ad
Ad
Tag

Atacama Large Millimeter/submillimeter Array

Browsing

VLT E ALMA CATTURANO RAFFICHE DI VENTO RELATIVISTICO DAL QUASAR DELLA GALASSIA J0923+0402, IN PIENA ATTIVITÀ

Un team di ricerca guidato dall’Istituto Nazionale di Astrofisica (INAF) e dall’Università degli studi di Trieste ha di nuovo imbrigliato i lontanissimi ed energici venti relativistici generati da un quasar lontano ma decisamente attivo (uno dei più luminosi finora scoperti). In uno studio pubblicato sulla rivista The Astrophysical Journal viene riportata la prima osservazione a diverse lunghezze d’onda dell’interazione tra buco nero e il quasar della galassia ospite durante le fasi iniziali dell’Universo, circa 13 miliardi di anni fa. Oltre all’evidenza di una tempesta di gas generata dal buco nero, gli esperti hanno scoperto per la prima volta un alone di gas che si estende ben oltre la galassia, suggerendo la presenza di materiale espulso dalla galassia stessa tramite i venti generati dal buco nero.

alone quasar della galassia J0923+0402 Alone gigante di gas freddo, esteso quasi 50 mila anni luce, rivelato attorno ad una galassia dell’Universo di circa 13 miliardi di anni fa tramite osservazioni multibanda. Questa scoperta fornisce informazioni chiave su come il gas venga espulso o catturato dalle galassie dell’Universo giovane. Crediti: International Gemini Observatory/NOIRLab/NSF/AURA/M. Zamani, J. da Silva & M. Bischetti
Alone gigante di gas freddo, esteso quasi 50 mila anni luce, rivelato attorno ad una galassia dell’Universo di circa 13 miliardi di anni fa tramite osservazioni multibanda. Questa scoperta fornisce informazioni chiave su come il gas venga espulso o catturato dalle galassie dell’Universo giovane. Crediti: International Gemini Observatory/NOIRLab/NSF/AURA/M. Zamani, J. da Silva & M. Bischetti

La galassia protagonista dello studio è J0923+0402, un oggetto lontanissimo da noi, per la precisione a redshift z = 6.632 (ossia la sua radiazione che osserviamo è stata emessa quando l’Universo aveva meno di un miliardo di anni) con al centro un quasar. La luce dei quasar (o quasi-stellar radio source) viene prodotta quando il materiale galattico che circonda il buco nero supermassiccio si raccoglie in un disco di accrescimento. Infatti, nell’avvicinarsi al buco nero per poi esserne inghiottita, la materia si scalda emettendo grandi quantità di radiazione brillante nella luce visibile e ultravioletta.

“L’utilizzo congiunto di osservazioni multibanda ha permesso di studiare, in un range di scale spaziali molto ampio e dalle regioni più nucleari fino al mezzo circumgalatico, il quasar più lontano con misura di vento nucleare e l’alone di gas più esteso rilevato in epoche remote (circa 50 mila anni luce)”, spiega Manuela Bischetti, prima autrice dello studio e ricercatrice presso l’INAF e l’Università degli studi di Trieste.

I dati descritti nell’articolo sono frutto della collaborazione di gruppi di ricerca che lavorano su frequenze diverse dello spettro elettromagnetico. In primis lo spettrografo X-Shooter, installato sul Very Large Telescope (VLT) dell’ESO, ha captato raffiche di materia, in gergo BAL winds (dall’inglese venti con righe di assorbimento larghe o broad absorption line), in grado di raggiungere velocità relativistiche fino a decine di migliaia di chilometri al secondo, misurandone e calcolandone le caratteristiche. Le potenti antenne cilene di ALMA (l’Atacama Large Millimeter/submillimeter Array sempre dell’ESO), ricevendo frequenze dai 242 ai 257 GHz provenienti dall’alba del Cosmo, sono state attivate per cercare la controparte nel gas freddo dei venti BAL e capire se si estendesse oltre la scala della galassia.

La ricercatrice sottolinea: “I BAL sono venti che si osservano nello spettro ultravioletto del quasar che, data la grande distanza da noi, osserviamo a lunghezze d’onda dell’ottico e vicino infrarosso. Per fare queste osservazioni abbiamo usato lo spettrografo X-Shooter del Very Large Telescope. Avevamo già scoperto il BAL di questo quasar due anni fa. Il problema è che non sapevamo quantificare quanto fosse energetico. Questo vento BAL è un vento di gas caldo (decine di migliaia di gradi) che si muove a decine di migliaia di km/s. Allo stesso tempo le osservazioni in banda millimetrica di ALMA ci hanno permesso di capire cosa stia succedendo nella galassia e attorno a essa andando a vedere cosa succede al gas freddo (qualche centinaio di gradi). Abbiamo trovato che il vento si estende anche sulla scala della galassia (ma ha delle velocità più basse, 500 km/s. Questa è una cosa aspettata, il vento decelera man mano che si espande), il che ci ha fatto pensare che questo mega alone di gas sia stato creato dal materiale che i venti hanno espulso dalla galassia”.

La posizione della sorgente energetica è stata poi “immortalata” dapprima dalla Hyper Suprime-Cam (HSC), una gigantesca fotocamera installata sul telescopio Subaru e sviluppata dall’Osservatorio Astronomico Nazionale del Giappone (National Astronomical Observatory of Japan – NAOJ), e – con una misura molto più accurata – dalla NIRCam, una fotocamera a raggi infrarossi installata sul telescopio spaziale James Webb (JWST delle agenzie spaziali NASA, ESA e CSA).

“Questo quasar verrà osservato nuovamente dal JWST in futuro per studiare meglio sia il vento che l’alone”, annuncia Bischetti.

La ricercatrice prosegue spiegando il perché di questa survey: “Ci siamo chiesti se l’attività del buco nero potesse avere un impatto sulle fasi iniziali di evoluzione delle galassie, e tramite quali meccanismi questo avvenga. Vincente è stata la combinazione di dati multibanda che vanno dall’ottico e vicino infrarosso – per misurare le proprietà del buco nero, e cosa avviene nel nucleo della galassia – fino alle osservazioni in banda millimetrica – per studiare cosa avviene all’interno e attorno alla galassia”. Le misure effettuate “sono di routine nell’Universo locale, ma questi risultati non erano mai stati ottenuti prima a redshift z>6”, aggiunge.

“Il nostro studio ci aiuta a capire come il gas venga espulso o catturato dalle galassie dell’Universo giovane e come i buchi neri crescono e possono avere un impatto sull’evoluzione delle galassie. Sappiamo che il fato delle galassie come la Via Lattea è strettamente legato a quello dei buchi neri, poiché questi possono generare tempeste galattiche in grado di spegnere la formazione di nuove stelle. Studiare le epoche primordiali ci permette di capire le condizioni iniziali dell’Universo che vediamo oggi”, conclude Bischetti.


 

Per altre informazioni:

L’articolo “Multi-phase black-hole feedback and a bright [CII] halo in a Lo-BAL quasar at z∼6.6”, di Manuela Bischetti, Hyunseop Choi, Fabrizio Fiore, Chiara Feruglio, Stefano Carniani, Valentina D’Odorico, Eduardo Bañados, Huanqing Chen, Roberto Decarli, Simona Gallerani, Julie Hlavacek-Larrondo, Samuel Lai, Karen M. Leighly, Chiara Mazzucchelli, Laurence Perreault-Levasseur, Roberta Tripodi, Fabian Walter, Feige Wang, Jinyi Yang, Maria Vittoria Zanchettin, Yongda Zhu, è stato pubblicato sulla rivista The Astrophysical Journal.

 

 

Testo e immagine dall’Ufficio stampa dell’Istituto Nazionale di Astrofisica (INAF).

PROTOSTELLE: LA VIA PER STUDIARE LA FORMAZIONE DEI PIANETI

Uno studio condotto da un team internazionale a cui hanno partecipato ricercatrici e ricercatori dell’Istituto Nazionale di Astrofisica ha analizzato le primissime fasi di formazione delle stelle di piccola massa per comprendere in dettaglio il processo di accrescimento che porta alla nascita di stelle come il Sole e pianeti come quelli del Sistema solare. La ricerca ha rivelato una relazione tra il tasso di accrescimento delle protostelle e il disco di materia che le circonda sin dai primordi della formazione stellare. Questi risultati, basati su osservazioni di 26 protostelle, permetteranno di individuare le condizioni iniziali che danno luogo alla formazione dei pianeti.

PROTOSTELLE: LA VIA PER STUDIARE LA FORMAZIONE DEI PIANETI
Illustrazione che mostra i diversi stadi della formazione stellare. Crediti: Bill Saxton, Nrao/Aui/Nsf

Le stelle di piccola massa, come il nostro Sole, si formano a partire da concentrazioni di gas e polveri cosmiche che collassano sotto la loro stessa gravità. Durante il collasso, questi oggetti ruotano e condensano la massa al centro, dando origine a una protostella, attorno alla quale si forma un disco circumstellare, il tutto all’interno di un alone, o inviluppo, di materia. Un nuovo studio, guidato da Eleonora Fiorellino dell’Istituto Nazionale di Astrofisica (INAF), ha analizzato queste prime fasi della formazione stellare in cerca di una possibile relazione fra il tasso di accrescimento di una stella in formazione e il suo disco circumstellare. I risultati sono stati pubblicati su The Astrophysical Journal Letters.

“Pensiamo che sia l’inviluppo che il disco attorno a una protostella dissipino la propria massa nel tempo, espellendola nel mezzo interstellare e al contempo accrescendo la massa della stella in formazione”, afferma Fiorellino, ricercatrice post-doc presso la sede INAF di Napoli, che ha svolto parte dello studio anche presso il Konkoly Observatory di Budapest, in Ungheria. “Questo lavoro tratta proprio del processo di accrescimento per il quale una parte del materiale del disco, seguendo le linee di campo magnetico della stella in formazione, arriva sulla stella, accrescendone la massa”.

Una simile analisi era già stata realizzata per oggetti un po’ più evoluti: le cosiddette “stelle di pre-sequenza principale”, ovvero lo stadio che precede la sequenza principale, fase fondamentale dell’evoluzione di una stella, caratterizzata dalla fusione dell’idrogeno nel nucleo della stella. Per questi oggetti si era trovata una relazione fra le varie grandezze fisiche in gioco, individuando alcuni modelli teorici, in particolare il modello viscoso e quello che prevede venti idrodinamici, in grado di spiegare i dati osservativi. Il nuovo studio si concentra, per la prima volta, sulle protostelle, cioè lo stadio precedente alle stelle di pre sequenza, registrando un trend evolutivo con le stelle di pre-sequenza, come aspettato, ma anche alcune differenze.

“Paradossalmente, come spesso accade in fisica, sono proprio le differenze che troviamo ad essere interessanti”, commenta Fiorellino, “perché potrebbero dirci non solo come si formano le stelle ma anche darci le condizioni iniziali per la formazione planetaria, che sempre più lavori ci indicano avvenire proprio durante la fase prestellare. Per interpretare al meglio questi dati osservativi, abbiamo capito che abbiamo bisogno di modelli teorici ancora più accurati perché quelli che abbiamo al momento non tengono conto di aspetti specifici della fase protostellare”.

I processi fisici che avvengono mentre le stelle in formazione acquistano massa non sono ancora del tutto chiari. La conoscenza attuale è limitata alla fase di pre-sequenza, facile da osservare in banda ottica. Al contrario, gli oggetti più giovani, nella fase protostellare, non sono visibili nell’ottico ed è molto più complicato studiarli, poiché occorrono osservazioni in banda infrarossa.

La ricercatrice Eleonora Fiorellino, post-doc presso l’Istituto Nazionale di Astrofisica a Napoli (a sinistra) e Lukasz Tychoniec, ricercatore post-doc presso il quartier generale dell’ESO a Garching (a destra). Crediti: E. Fiorellino; L. Tychoniec

Grazie a nuovi strumenti, tra i quali KMOS montato sul Very Large Telescope dell’ESO – European Southern Observatory in Cile, e all’uso di nuove tecniche di analisi, Fiorellino ha studiato le 26 protostelle più brillanti entro circa 1600 anni luce da noi, calcolando i loro tassi di accrescimento. Inoltre, osservazioni ottenute con l’Atacama Large Millimeter/submillimeter Array (ALMA) hanno permesso al collega Lukasz Tychoniec, ricercatore post-doc presso il quartier generale dell’ESO a Garching, in Germania, di calcolare la massa dei dischi che circondano queste protostelle, per capire se i processi fisici che valgono per le stelle di pre-sequenza sono gli stessi che valgono per le protostelle.

“Questo lavoro mostra un trend evolutivo evidente fra protostelle brillanti (dette di classe I) e stelle di pre-sequenza (classe II), suggerendoci di andare a studiare protostelle ancora più giovani e meno brillanti (classe 0) con strumenti più potenti da Terra o con JWST nello spazio. Inoltre mostra che i modelli che hanno successo nello spiegare le fasi di pre-sequenza falliscono se applicati alle protostelle. Pensiamo che il motivo per cui ciò avvenga sia dovuto al fatto che l’inviluppo delle protostelle, trascurato nelle stelle di pre-sequenza, giochi invece un ruolo cruciale durante l’accrescimento”, conclude Fiorellino. “Queste grandezze non sono utili solo a capire come le stelle si formano ma anche a dare le condizioni iniziali per la formazione dei pianeti, come la Terra, che hanno origine sempre nel disco circumstellare”.


 

Per ulteriori informazioni:

L’articolo “The relation between the Mass Accretion Rate and the Disk Mass in Class I Protostars” di Eleonora Fiorellino, Lukasz Tychoniec, Carlo F. Manara, Giovanni Rosotti, Simone Antoniucci, Fernando Cruz-Sáenz de Miera, Ágnes Kóspál e Brunella Nisini, è stato pubblicato online sulla rivista The Astrophysical Journal Letters.

Testo e foto dall’Ufficio stampa – Struttura per la Comunicazione di Presidenza Istituto Nazionale di Astrofisica (INAF)

Scoperte due nuove galassie formatesi all’alba dell’universo nascoste dietro la polvere interstellare

Lo svela un team di ricerca internazionale, che in Italia coinvolge cosmologi della Scuola Normale Superiore di Pisa e della Sapienza Università di Roma, che spiegano: «L’attuale censimento della formazione e della crescita delle galassie dopo il Big Bang è ancora incompleto».

due nuove galassie polvere interstellare REBELS
Elaborazione grafica della galassia REBELS-12-2

L’universo primordiale è probabilmente molto più ricco di quanto sembri. La polvere interstellare potrebbe celare intere popolazioni di galassie finora sconosciute. È di queste settimane la scoperta ad opera di un team di ricerca internazionale, che in Italia vede coinvolte la Scuola Normale Superiore di Pisa e la Sapienza di Roma, di due galassie antichissime, risalenti a circa un miliardo di anni dopo il Big Bang, quando l’Universo aveva raggiunto poco meno dell’8% della sua età.

Utilizzando i dati di ALMA (Atacama Large Millimeter/submillimeter Array), un potentissimo radiointerferometro situato a 5000 metri d’altitudine nel deserto di Atacama in Cile, il dottor Yoshinobu Fudamoto, della Waseda University in Giappone, ha notato una forte presenza di polvere e carbonio ionizzato da zone dello spazio che precedentemente si ritenevano vuote. Fudamoto e i colleghi della collaborazione REBELS (in Italia, Andrea Ferrara e Andrea Pallottini della Scuola Normale Superiore, Raffaella Schneider e Luca Graziani della Sapienza Università di Roma, associati all’Istituto Nazionale di Astrofisica, INAF) hanno approfondito le ricerche di questi misteriosi segnali, che provenivano da relativamente vicino – decine di migliaia di anni luce – agli oggetti astronomici che originariamente stavano studiando.

Fig1: rappresentazione schematica dei risultati di questa ricerca. In un’immagine ripresa dal telescopio spaziale Hubble (a sinistra) una regione di spazio sembra completamente vuota. Invece, ALMA ha ora rivelato una galassia precedentemente sconosciuta poiché era sepolta in profondità in nuvole di gas e polvere. A destra è mostrata una elaborazione grafica della galassia. Credito: ALMA (ESO/NAOJ/NRAO), NASA/ESA Hubble Space Telescope

Nel loro ultimo articolo pubblicato oggi su Nature la sorprendente rivelazione: le emissioni inspiegabili appartengono a due galassie precedentemente sconosciute, non visibili nelle lunghezze d’onda dell’ultravioletto in quanto completamente oscurate dalla polvere cosmica.

Fig2: galassie lontane riprese con ALMA, il telescopio spaziale Hubble e il telescopio VISTA dello European Southern Observatory (ESO). I colori verde e arancione rappresentano le radiazioni degli atomi di carbonio ionizzato e delle particelle di polvere, rispettivamente, osservate con ALMA, e il blu rappresenta le radiazioni del vicino infrarosso osservate con i telescopi VISTA e Hubble. Per REBELS-12 e REBELS-29 si è rilevata sia la radiazione nel vicino infrarosso che la radiazione da atomi di carbonio e polvere ionizzati. D’altra parte, REBELS-12-2 e REBELS-29-2 non sono stati rilevati nel vicino infrarosso, il che suggerisce che queste galassie siano profondamente sepolte nella polvere. Credito: ALMA (ESO/NAOJ/NRAO), NASA/ESA Hubble Space Telescope, ESO, Fudamoto et al.

Denominate REBELS-12-2 e REBELS-29-2, le due galassie si sono formate più di 13 miliardi di anni fa e presentano caratteristiche simili a quelle delle galassie della stessa epoca, se si esclude la massiccia oscurazione dovuta alla polvere che esse stesse hanno prodotto, un effetto che tipicamente si osserva solo per oggetti astronomici molto più evoluti. Lo studio rivela come la presenza di questi due oggetti potrebbe essere solo la punta dell’iceberg dell’esistenza di una popolazione di galassie precedentemente sconosciuta agli astronomi.

“La scoperta ci suggerisce che l’attuale censimento della formazione delle prime galassie è molto probabilmente incompleto e richiederà indagini più profonde – spiega Andrea Ferrara -. Le nuove strumentazioni, come il telescopio spaziale James Webb Space Telescope (JWST) che presto sarà lanciato in orbita e che interagirà fortemente con ALMA, ritengo che porteranno a significativi progressi in questo campo nei prossimi anni”.

“La scoperta di galassie così oscurate in un’epoca in cui l’Universo è ancora relativamente giovane apre degli interessanti interrogativi sui meccanismi di formazione della polvere interstellare – spiega Raffaella Schneider -. I modelli teorici e le simulazioni numeriche che stiamo sviluppando ci consentiranno di interpretare questi risultati sorprendenti, preparandoci alle straordinarie osservazioni del JWST”.

due nuove galassie polvere interstellare REBELS
Elaborazione grafica della galassia REBELS-29-2

Il programma REBELS (Reionization-Era Bright Emission Line Survey), ha l’obiettivo di osservare l’origine dell’Universo, miliardi di anni fa, quando giovani galassie avevano appena iniziato a formare le stelle e produrre la polvere cosmica. Studiare questo mondo primordiale è una delle ultime frontiere dell’astronomia, essenziale per la costruzione accurata e coerente di modelli di astrofisica e per la comprensione di come evolve l’Universo.

Riferimenti:

Normal, dust-obscured galaxies in the epoch of reionization – Y. Fudamoto, P. A. Oesch, S. Schouws, M. Stefanon, R. Smit, R. J. Bouwens, R. A. A. Bowler, R. Endsley, V. Gonzalez, H. Inami, I. Labbe, D. Stark, M. Aravena, L. Barrufet, E. da Cunha, P. Dayal, A. Ferrara, L. Graziani, J. Hodge, A. Hutter, Y. Li, I. De Looze, T. Nanayakkara, A. Pallottini, D. Riechers, R. Schneider, G. Ucci, P. van der Werf & C. White – Nature 2021. https://doi.org/10.1038/s41586-021-03846-z

 

Testo e foto dal Settore Ufficio stampa e comunicazione Sapienza Università di Roma

QUEGLI SCONTRI E FUSIONI ALL’ALBA DELL’UNIVERSO CHE HANNO AIUTATO LE GALASSIE A CRESCERE

Un team internazionale di astronomi, coordinato da Michael Romano, dottorando presso l’Università degli Studi di Padova e associato all’Istituto Nazionale di Astrofisica (INAF), ha scoperto che circa il 40% delle galassie nell’Universo primordiale si trova in sistemi in fase di fusione. Viene così confermato lo scenario secondo cui, nelle prime fasi della loro evoluzione, le galassie hanno accresciuto in modo significativo la loro massa fondendosi tra loro.

scontri galassie universo
Quegli scontri e fusioni all’alba dell’universo che hanno aiutato le galassie a crescere. Due galassie a spirale; un simile fato è quello che si ipotizza per la nostra Via Lattea, che gli scienziati ritengono avrà una simile interazione con la vicina galassia di Andromeda

Tra gli eventi più spettacolari che si possono osservare nell’Universo locale ci sono sicuramente gli “scontri tra galassie” (galactic mergers, in gergo tecnico): questi avvengono quando due o più galassie si avvicinano a tal punto da iniziare a spiraleggiare l’una sull’altra a causa della gravità, fino a fondersi in un’unica galassia più grande. Se le due galassie hanno più o meno lo stesso numero di stelle (quindi la stessa massa stellare), la galassia risultante avrà circa il doppio della massa di quelle individuali: questo infatti è il meccanismo più veloce con cui le galassie possono crescere. Tuttavia, solo l’1% delle galassie nell’Universo locale sono osservate nell’atto di fondersi: al giorno d’oggi le galassie crescono prevalentemente perché accrescono gas freddo trasformandolo in stelle (il cosiddetto meccanismo di “formazione stellare”).

Nonostante sia noto già da tempo che gli eventi di mergers fossero più frequenti nel passato, la loro identificazione nell’Universo lontano è resa più complicata dalla presenza delle polveri interstellari, che impediscono alla luce prodotta da stelle giovani di raggiungere i classici telescopi ottici, e dalla difficoltà di questi telescopi di rilevare il moto delle galassie stesse.

Michael Romano

In un articolo appena pubblicato sulla rivista «Astronomy&Astrophysics» che vede come primo autore Michael Romano, dottorando presso l’Università di Padova e associato all’Istituto Nazionale di Astrofisica, il team ALPINE (ALMA Large Program to INvestigate C+ at Early times) riporta la scoperta di dozzine di galactic mergers nell’Universo primordiale grazie alle potenti antenne dell’interferometro ALMA (Atacama Large Millimeter/submillimeter Array), in Cile. Il radiotelescopio ALMA è infatti in grado di osservare la luce oscurata dalla polvere individuando galassie che altrimenti risulterebbero essere completamente invisibili, e di svelarne la struttura tridimensionale.

Il programma ALPINE, coordinato tra gli altri da Paolo Cassata, professore dell’Università degli Studi di Padova, ha studiato nel dettaglio un campione di un centinaio di galassie risalenti a quando l’Universo aveva “solo” un miliardo di anni. Grazie ad ALMA, è stato possibile rilevare la luce proveniente da queste galassie lontane ed emessa da un particolare ione del Carbonio, detto C+. Gli atomi di Carbonio infatti, vengono “ionizzati” dalla luce ultravioletta prodotta da stelle appena nate all’interno di nubi di polvere, emettendo luce ad una ben determinata frequenza. Tale “radiazione”, al contrario di quella ultravioletta, è in grado di viaggiare indisturbata attraverso la coltre di polvere che la circonda, fino a raggiungere le antenne di ALMA. La presenza di atomi di C+ fornisce quindi informazioni sul tasso di formazione stellare all’interno delle galassie e sulla loro morfologia.

Paolo Cassata

«Grazie al progetto ALPINE, siamo riusciti a osservare la struttura tridimensionale di queste galassie primordiali a diverse frequenze, identificando anche le componenti più polverose grazie all’emissione del C+, celate in precedenza persino agli occhi dei più potenti telescopi ottici, come l’Hubble Space Telescope – afferma Michael Romano -. Abbiamo scoperto che, 12 miliardi di anni fa, i mergers erano circa 40 volte più frequenti di oggi, fornendo un contributo significativo alla crescita in massa delle galassie nell’Universo lontano.

«Questa analisi ha permesso di stimare quante volte una galassia simile alla Via Lattea si sia scontrata con altre galassie vicine durante la sua evoluzione fino ad oggi – aggiunge Paolo Cassata -. Troviamo che, tipicamente, tali galassie possono subire fino a una decina di merging in circa 13 miliardi di anni, contribuendo alla formazione delle strutture che osserviamo attualmente nel nostro “vicinato cosmico».

«Con ALPINE abbiamo stimato per la prima volta la frazione di coppie di galassie nell’Universo primordiale che si stanno fondendo, o che sono in rotta di collisione, tramite misurazioni del C+. Questo ci ha permesso di confrontare il processo di crescita delle galassie dovuto a tali fusioni, con quello guidato dalla formazione stellare. I risultati del nostro lavoro evidenziano che la conversione di gas in stelle è il meccanismo primario che permette alle galassie di aumentare la propria massa, sebbene il contributo dovuto ai merging acquisti una sempre maggiore importanza con l’avvicinarsi agli albori dell’Universo, dove diventa almeno maggiore del 10% o, in alcuni casi, addirittura paragonabile al processo di formazione stellare – conclude Michael Romano -. In futuro, saremo sicuramente in grado approfondire il problema della crescita ed evoluzione delle galassie primordiali grazie ad ulteriori osservazioni ad alta risoluzione con ALMA e all’imminente lancio del James Webb Space Telescope».

 

Testo e foto dagli Uffici Stampa Università di Padova e Istituto Nazionale di Astrofisica sullo studio relativo a scontri e fusioni tra galassie all’alba dell’universo.