News
Ad
Ad
Ad
Tag

astrobiologia

Browsing

INDIVIDUATE NUOVE TRACCE DI SOSTANZE ORGANICHE NEI SOLFATI SU MARTE

Tracce di composti organici associati a solfati sono state individuate sulla superficie di Marte. A riportare la scoperta è un articolo pubblicato oggi sulla rivista Nature Astronomy, basato su dati raccolti dallo spettrometro Sherloc a bordo del rover Perseverance della NASA, in campioni prelevati nel cratere marziano Jezero. Non è possibile escludere che queste molecole organiche siano residui derivanti dalla degradazione di materia microbica antica, sebbene l’origine più probabile sia considerata abiotica, più specificamente attraverso reazioni di gas magmatici con ossidi di ferro presenti nelle rocce vulcaniche. A guidare il team è Teresa Fornaro, dell’Istituto Nazionale di Astrofisica (INAF).

Vista 3D del target Pilot Mountain, situato sulla sommità del ventaglio deltizio di Jezero crater, dove lo strumento Sherloc del rover Perseverance della NASA ha rilevato firme spettrali compatibili con idrocarburi policiclici aromatici all’interno di grani di solfato, suggerendo la preservazione di molecole organiche complesse in matrici minerali evaporitiche. Crediti: Teresa Fornaro, Andrew Alberini, Giovanni Poggiali, con modello 3D del target Pilot Mountain da: "M2020 WATSON -- Pilot Mountain, sol 874" (https://skfb.ly/oJWWx) by Mastcam-Z is licensed under Creative Commons Attribution (http://creativecommons.org/licenses/by/4.0/)
Vista 3D del target Pilot Mountain, situato sulla sommità del ventaglio deltizio di Jezero crater, dove lo strumento Sherloc del rover Perseverance della NASA ha rilevato firme spettrali compatibili con idrocarburi policiclici aromatici all’interno di grani di solfato, suggerendo la preservazione di molecole organiche complesse in matrici minerali evaporitiche. Crediti: Teresa Fornaro, Andrew Alberini, Giovanni Poggiali, con modello 3D del target Pilot Mountain da: “M2020 WATSON — Pilot Mountain, sol 874” (https://skfb.ly/oJWWx) by Mastcam-Z is licensed under Creative Commons Attribution (http://creativecommons.org/licenses/by/4.0/)

La ricerca di molecole organiche su Marte è centrale per capire se il pianeta abbia mai offerto condizioni favorevoli alla vita. Alcuni composti organici possono infatti rappresentare nutrienti, mentre altri, più complessi, potrebbero costituire vere e proprie biofirme. Nonostante in passato siano già state individuate molecole organiche, la loro origine e conservazione restano ancora poco chiare.

Proprio per questo il cratere Jezero, antica area deltizia che un tempo ospitava un lago e che potrebbe aver avuto un alto potenziale di abitabilità, è oggi uno dei luoghi più interessanti da studiare. Qui, lo strumento Sherloc (Scanning Habitable Environments with Raman and Luminescence for Organics and Chemicals) a bordo del rover Perseverance ha rilevato segnali Raman forti e complessi associati a solfati, in particolare nelle aree denominate Quartier e Pilot Mountain, rispettivamente sul fondo del cratere e sul ventaglio deltizio.

“Quando Sherloc ha rivelato forti segnali Raman nella regione spettrale degli organici nel target Quartier, ci siamo entusiasmati. Questi segnali erano associati spazialmente a solfati di magnesio e calcio, che sulla Terra mostrano grandi capacità di preservazione della materia organica”, sottolinea Teresa Fornaro. “L’associazione con i solfati era davvero un enigma affascinante e mi ha spinta a esaminare uno per uno gli 839 spettri acquisiti da Sherloc in cui sono stati rilevati solfati sul fondo del cratere e sul ventaglio deltizio di Jezero, alla ricerca di segnali potenzialmente indicativi di composti organici. In questo modo, ho scoperto che il target Pilot Mountain, situato sulla sommità del ventaglio, mostra segnali Raman simili a quelli osservati in Quartier”.

Per verificare l’ipotesi che i segnali osservati sono effettivamente dovuti a molecole organiche, il team ha condotto esperimenti nel Laboratorio di Astrobiologia dell’INAF a Firenze. Sono stati utilizzati materiali analoghi marziani e strumenti simili a Sherloc, riproducendo processi naturali in condizioni controllate. Il confronto con i dati acquisiti in situ ha permesso di consolidare l’interpretazione organica.

“Il Laboratorio di Astrobiologia di Arcetri, grazie al supporto dell’INAF e dell’Agenzia Spaziale Italiana, ha acquisito nel corso degli anni strumentazioni all’avanguardia che ci hanno permesso di ritagliarci un ruolo di rilievo nel contesto internazionale per quanto riguarda i temi dell’astrobiologia” spiega John Brucato dell’INAF, responsabile del laboratorio e coautore dello studio. “Siamo in grado di caratterizzare i composti organici presenti nei materiali che ci giungono dallo spazio, come le meteoriti o i campioni riportati a terra dalle missioni, e di simulare le condizioni e i processi chimico-fisici che possono verificarsi sulla superficie di Marte. Grazie alla partecipazione alle missioni marziane con i rover Perseverance della NASA e Rosalind Franklin dell’ESA, il nostro ambizioso obiettivo è riuscire a trovare le biofirme di una vita extraterrestre”.

“Nello specifico, abbiamo mescolato minerali solfati con molecole organiche aromatiche facilmente rilevabili da Sherloc, utilizzando metodi che imitano processi naturali potenzialmente avvenuti in passato in un ambiente acquoso a Jezero, seguiti da essiccazione. Successivamente, abbiamo analizzato i campioni preparati con strumenti analoghi a Sherloc”, spiega ancora Fornaro. “Questo metodo ci ha permesso di acquisire un set di dati di riferimento da confrontare direttamente con le osservazioni in situ, essenziali per interpretare correttamente i complessi segnali provenienti da Marte. Sulla base di queste indagini, abbiamo potuto attribuire questi segnali a idrocarburi policiclici aromatici preservati all’interno dei solfati”.

Il Cratere Jezero su Marte ripreso dalla sonda Mars Express dell'Agenzia Spaziale Europea (ESA). Crediti: ESA/DLR/FU Berlin
Il Cratere Jezero su Marte ripreso dalla sonda Mars Express dell’Agenzia Spaziale Europea (ESA). Crediti: ESA/DLR/FU Berlin

Il rilevamento in rocce vulcaniche suggerisce che gli idrocarburi policiclici aromatici possano essersi formati attraverso processi magmatici e, in seguito, essere stati mobilizzati dall’acqua e intrappolati nei solfati. I fluidi circolanti, comprese possibili acque idrotermali, avrebbero favorito il loro accumulo selettivo e la conservazione nelle rocce del cratere Jezero. Questi risultati si aggiungono a precedenti evidenze da meteoriti e dal cratere Gale, rafforzando il ruolo dei solfati nella conservazione della materia organica marziana.

“Sebbene non siano state trovate prove che questa materia organica sia di origine biologica, non è possibile escludere completamente che le sostanze organiche rilevate in queste rocce possano derivare dall’alterazione chimica di antichi composti biotici” conclude Fornaro“In attesa di un possibile futuro ritorno di questi campioni marziani per analisi più dettagliate sulla Terra, stiamo continuando a indagare sulla natura delle altre componenti di questi segnali complessi, la cui origine è ancora da chiarire del tutto”.

Riferimenti bibliografici:
L’articolo Evidence for polycyclic aromatic hydrocarbons detected in sulfates at Jezero crater by the Perseverance rover, di Teresa Fornaro, Sunanda Sharma, Ryan S. Jakubek, Giovanni Poggiali, John Robert Brucato, Rohit Bhartia, Andrew Steele, Ashley E. Murphy, Mike Tice, Mitchell D. Schulte, Kevin P. Hand, Marc D. Fries, William J. Abbey, Andrew Alberini, Daniela Alvarado-Jiménez, Kathleen C. Benison, Eve L. Berger, Sole Biancalani, Adrian J. Brown, Adrian Broz, Wayne P. Buckley, Denise K. Buckner, Aaron S. Burton, Sergei V. Bykov, Emily L. Cardarelli, Edward Cloutis, Stephanie A. Connell, Cristina Garcia-Florentino, Felipe Gómez, Nikole C. Haney, Carina Lee, Valeria Lino, Paola Manini, Francis M. McCubbin, Michelle Minitti, Richard V. Morris, Yu Yu Phua, Nicolas Randazzo, Joseph Razzell Hollis, Francesco Renzi, Sandra Siljeström, Justin I. Simon, Anushree Srivastava, Nicola Tasinato, Kyle Uckert, Roger C. Wiens, Amy J. Williams, è stato pubblicato su Nature Astronomy.

 

Testo e immagini dall’Ufficio Stampa Istituto Nazionale di Astrofisica – INAF

UNO SPETTROMETRO ITALIANO CI DARÀ RISPOSTE DECISIVE SULLA PRESENZA DI VITA SU MARTE

Progettato per studiare la mineralogia e le proprietà fisiche del sottosuolo marziano, lo spettrometro italiano Ma_MISS a bordo del rover Rosalind Franklin della missione ESA ExoMars potrà rivelare anche la presenza di sostanze organiche tra cui l’acido benzoico, sostanza già trovata su Marte dal rover Curiosity. Lo dimostra uno studio pubblicato su Astrobiology, guidato da ricercatori e ricercatrici dell’Istituto Nazionale di Astrofisica (INAF), dell’Agenzia Spaziale Italiana (ASI) e dell’Università Aix-Marseille.

Il sistema di misurazione di DAVIS, il nuovo modello di laboratorio dello strumento Ma_MISS.
Crediti: INAF/ASI/Ma_MISS team

Uno degli strumenti a bordo del rover Rosalind Franklin dell’Agenzia Spaziale Europea (ESA), che esplorerà Marte nell’ambito del programma ExoMars, è l’italiano Ma_MISS (Mars Multispectral Imager for Subsurface Studies), realizzato da Leonardo, con il finanziamento e coordinamento dell’Agenzia Spaziale Italiana (ASI) e la supervisione scientifica dell’Istituto Nazionale di Astrofisica (INAF). La missione si propone di rispondere a uno degli interrogativi più affascinanti mai affrontati dall’umanità: c’è, o c’è mai stata, vita sul Pianeta rosso?

Spettrometro italiano Ma_MISS darà risposte sulla presenza di vita su Marte
Uno spettrometro italiano darà risposte sulla presenza di vita su Marte. Dettaglio del trapano e di un campione di test trivellato: si nota la luce che fuoriesce dalla finestra di zaffiro dello strumento Ma_MISS.
Crediti: INAF/ASI/Ma_MISS team

Ma_MISS è uno spettrometro miniaturizzato a fibra ottica, operante nelle lunghezze d’onda del visibile e del vicino infrarosso, montato all’interno del trapano del rover che perforerà il suolo marziano, per la prima volta, fino a una profondità di due metri. Il suo principale obiettivo scientifico è quello di ricostruire l’evoluzione geologica di Oxia Planum, una delle più estese e antiche pianure argillose del pianeta, selezionata per l’atterraggio e le esplorazioni del rover Rosalind Franklin. Per farlo, Ma_MISS studierà in situ la composizione delle rocce del sottosuolo e le proprietà ottiche e fisiche dei materiali, come ad esempio la dimensione dei grani. Lo strumento contribuirà inoltre alla ricostruzione dei profili verticali dei siti di perforazione per arrivare a definire i processi geologici che hanno caratterizzato l’area di studio, ricavando importanti informazioni come la mineralogia e l’eventuale presenza e distribuzione di acqua e ghiaccio nel sottosuolo. In quest’ottica, la performance dello strumento era stata inizialmente testata solo su campioni geologici per la caratterizzazione di materiale inorganico. Ora un nuovo studio guidato da ricercatori e ricercatrici dell’INAF, dell’ASI e dell’Università Aix Marseille (Francia), ha dimostrato che Ma_MISS potrà avere un ruolo fondamentale per obiettivi ancora più ampi che rappresentano il focus principale della missione: la ricerca di tracce di vita su Marte. I risultati sono pubblicati sulla rivista Astrobiology.

“Lo strumento Ma_MISS sarà l’unico ad operare realmente in situ nel sottosuolo marziano, perché l’altro spettrometro a bordo del rover (MicrOmega) opererà sul campione prelevato in profondità successivamente ad un trattamento di macinazione, che ne modifica le caratteristiche originarie” spiega Marco Ferrari dell’INAF, primo autore del lavoro. “Allora ci siamo chiesti se Ma_MISS potesse in qualche modo dare informazioni non solo mineralogiche, ma anche relative alla presenza di sostanze organiche direttamente nel sottosuolo, ovvero prima del prelievo del campione, restituendo così una informazione completa del sottosuolo inalterato. E la risposta è stata affermativa: i dati di Ma_MISS sul sottosuolo inalterato potrebbero essere fondamentali nella scelta della profondità di prelievo dei campioni della missione. L’eventuale rilevamento di materia organica da parte di Ma_MISS risulterebbe quindi cruciale nella selezione del campione di una missione deputata alla ricerca di tracce di vita passata o presente nel sottosuolo marziano”.

Per questo lavoro, il team ha condotto dapprima un primo studio della composizione di Oxia Planum attraverso dati di missioni precedenti: questo ha permesso la preparazione di una serie di campioni, partendo da analoghi della composizione del suolo marziano con l’aggiunta di sostanze organiche in diverse quantità. In particolare, i campioni analoghi marziani sono stati arricchiti con la glicina (il più semplice tra gli amminoacidi); l’asfaltite (una forma di asfalto, o bitume, presente in natura); il poliossimetilene (un polimero cristallino); e l’acido benzoico (un composto aromatico che si trova naturalmente in molte piante). I ricercatori hanno quindi ottenuto uno spettro dei diversi campioni in laboratorio, utilizzando il modello di laboratorio dello strumento Ma_MISS disponibile presso l’INAF a Roma, per poi analizzare e interpretare i dati raccolti.

“Questa ricerca mostra le potenzialità dello strumento italiano Ma_MISS nel rilevamento di sostanze organiche all’interno di campioni minerali” aggiunge Maria Cristina De Sanctis, principal investigator di Ma_MISS e co-autrice del nuovo lavoro. “Solitamente, tramite la spettroscopia, le sostanze organiche vengono rivelate intorno ai 3 micron. Con Ma_MISS invece abbiamo tentato di rivelarle nell’intervallo tra 0.5 e 2.3 micron. Come risultato abbiamo ottenuto che Ma_MISS è in grado di rilevare diverse sostanze organiche all’interno di una miscela minerale quando queste sono presenti fino alla quantità minima dell’1% in peso”.

“Inizialmente, il compito di Ma_MISS era quello di fornire un contesto mineralogico per i campioni  prelevati nel terreno marziano e che sarebbero poi stati analizzati nel laboratorio analitico presente sul rover”, dichiara Eleonora Ammannito, ASI Project Scientist dello strumento Ma_MISS e co- autrice dello studio. “Con questo studio abbiamo dimostrato che Ma_MISS può fare molto di più cioè, ovvero può fare l’identificazione diretta di alcuni tipi di materiale organico. Questo risultato dimostra la centralità dello strumento Ma_MISS rispetto all’obiettivo primario della missione Rosalind Franklin che è quello di trovare eventuali tracce di vita presente o passata sul pianeta Marte”.

Dopo la sospensione e il successivo annullamento del lancio a marzo 2022, l’ESA sta ridefinendo i dettagli della missione ExoMars Rosalind Franklin insieme a partner internazionali e industriali, con nuovi elementi europei. La partenza è attualmente prevista per il 2028.


 

Per ulteriori informazioni:

L’articolo “Constraining the Rosalind Franklin Rover/Ma_MISS Instrument Capability in the Detection of Organics”, di M. Ferrari, S. De Angelis, M.C. De Sanctis, A. Frigeri, F. Altieri, E. Ammannito, M. Formisano, e V. Vinogradoff, è stato pubblicato online sulla rivista Astrobiology.

Testo e immagini dall’Ufficio stampa – Struttura per la Comunicazione di Presidenza Istituto Nazionale di Astrofisica (INAF)

DA ATACAMA A MARTE IN CERCA DI VITA

Identificare segni inequivocabili di vita su Marte è uno degli obiettivi che spinge gli scienziati a inviare missioni spaziali sul Pianeta Rosso. Studi effettuati in uno dei luoghi più aridi del nostro pianeta – Piedra Roja, in Cile – suggeriscono che scoprire le tracce di vita su Marte sarà più difficile del previsto. Da quanto è emerso, gli attuali strumenti di rilevamento di tracce biologiche già presenti sulla superficie di Marte o in fase di progettazione, potrebbero non essere abbastanza sensibili per mettere in evidenza tracce di vita estinta. Questo è quanto mette in luce sostanzialmente uno studio appena pubblicato sulla rivista Nature Communications firmato da un team internazionale di ricercatori di istituti sparsi in tutto il mondo, tra cui l’Istituto Nazionale di Astrofisica (INAF).

deserto di Atacama vita Piedras Rojas. Crediti: Armando Azua-Bustos
Da Piedras Rojas, nel deserto di Atacama, a Marte, in cerca di vita. Crediti: Armando Azua-Bustos

Piedra Roja è una regione estremamente inospitale per la vita: si tratta del delta di un ventaglio alluvionale formatosi in condizioni aride nel deserto di Atacama in un periodo che si estende dal Cretaceo inferiore al Giurassico superiore (163-100 milioni di anni).  Il sito è caratterizzato da rocce sedimentarie ricche di ossidi di ferro, ematite e fanghi contenenti argille come vermiculite e smectiti, e quindi geologicamente analogo a Marte.  I campioni prelevati presentano un numero importante di microrganismi con un insolito alto tasso di indeterminazione filogenetica – ciò che viene definito microbioma oscuro – e un mix di “firme biologiche” di microrganismi esistenti e antichi che sono a malapena rilevati con le più moderne attrezzature di laboratorio.

Questi risultati sottolineano l’importanza di riportare a Terra i campioni provenienti da Marte, al fine di utilizzare le più potenti tecniche di rilevamento a oggi disponibili nei laboratori.

Le analisi condotte con strumenti di prova che si trovano o saranno inviati su Marte rivelano che, sebbene la mineralogia di Piedra Roja corrisponda a quella rilevata dagli strumenti a terra sul Pianeta Rosso, livelli altrettanto bassi di sostanze organiche saranno difficili, se non impossibili, da rilevare nelle rocce marziane, a seconda dello strumento e della tecnica utilizzati. I risultati di questo studio sottolineano quindi l’importanza del ritorno dei campioni sulla Terra per stabilire con certezza se la vita sia mai esistita su Marte.

Dall’analisi del DNA dei microrganismi presenti in queste rocce è emerso un dato particolarmente interessante: circa il 9% è risultato non classificabile, mentre a circa il 41% è stato possibile assegnare solo il dominio o al massimo l’ordine, mettendo in evidenza che non sono chiare le relazioni di parentela evolutiva rispetto agli organismi terrestri noti. Si ritiene possano essere specie viventi che non sono ancora state individuate altrove sulla Terra, o in alternativa comunità superstiti di specie microbiche che un tempo abitavano il delta del fiume, delle quali però non sono conosciute specie parenti attualmente esistenti.

Inoltre, sono state rivelate biofirme molecolari di vita estinta e presente che potrebbero provenire da solfobatteri e fototrofi come i cianobatteri, ma che sono in concentrazioni ai limiti della sensibilità di strumentazione d’avanguardia presente nei nostri laboratori terrestri, difficilmente rilevabili con strumenti miniaturizzati come quelli a bordo dei rover marziani.

John Brucato, astrobiologo dell’INAF di Arcetri e tra i firmatari dell’articolo, osserva: “Questo è il classico esempio di come si lavora nell’ambito dell’astrobiologia, perché si tratta di un lavoro corale, che comprende la collaborazione di molteplici istituti di ricerca sparsi in tutto il mondo, in ognuno dei quali c’è una particolare expertise. Sono stati messi insieme risultati che riguardano la geologia, la petrologia, la mineralogia, la chimica, la biologia e la planetologia proprio perché questo tipo di lavori saranno utili per lo studio di Marte. Il lavoro congiunto dei diversi gruppi di ricerca è stato coordinato in maniera tale da raggiungere nuove conoscenze attraverso diverse tecniche, per capire la natura di questi microrganismi che vivono in un ambiente completamente arido. La regione in cui sono stati fatti questi prelievi è infatti il deserto più arido in assoluto che si possa trovare sulla Terra e questi microorganismi sembrano essere davvero peculiari e molto diversi da tutti gli altri conosciuti finora, se consideriamo che la quantità di microorganismi è talmente elevata che se ne scoprono continuamente di diversi. In questo caso, si tratta di una classe veramente nuova che ha permesso di capire la loro adattabilità in condizioni estreme che le può far considerare simili a quelle marziane”.

Teresa Fornaro, ricercatrice dell’INAF di Firenze, sottolinea: “Ci siamo occupati in particolare dell’analisi dei campioni utilizzando la tecnica di spettroscopia infrarossa a trasformata di Fourier di riflettanza diffusa (Drifts). Questo ci ha permesso di analizzare i campioni in modo analogo a strumenti a bordo di missioni marziane, come lo strumento SuperCam a bordo del rover Perseverance della missione della NASA Mars 2020 e lo strumento MicrOmega che volerà sulla futura missione dell’ESA ExoMars /Rosalind Franklin. Le nostre analisi hanno confermato la composizione mineralogica di queste rocce, ma la rivelazione di composti organici è stata possibile principalmente nella regione spettrale del medio infrarosso che non corrisponde a quella investigata dagli strumenti SuperCam e MicrOmega. Nella regione spettrale di SuperCam e MicrOmega abbiamo rivelato solo una banda a 1.36 μm che potrebbe essere dovuta a vibrazioni non fondamentali degli organici. La capacità quindi di questi strumenti di rivelare organici su Marte in concentrazioni basse come quelle di Piedra Roja è limitata”.


 

Per saperne di più:

L’articolo “Dark microbiome and extremely low organics in Atacama fossil delta unveil Mars life detection limits” di Armando Azua-Bustos, Alberto G. Fairén, Carlos González-Silva, Olga Prieto-Ballesteros, Daniel Carrizo, Laura Sánchez-García, Victor Parro, Miguel Ángel Fernández-Martínez, Cristina Escudero, Victoria Muñoz-Iglesias, Maite Fernández-Sampedro, Antonio Molina, Miriam García Villadangos, Mercedes Moreno-Paz, Jacek Wierzchos, Carmen Ascaso, Teresa Fornaro, John Robert Brucato, Giovanni Poggiali, Jose Antonio Manrique, Marco Veneranda, Guillermo López-Reyes, Aurelio Sanz-Arranz, Fernando Rull, Ann M. Ollila, Roger C.Wiens, Adriana Reyes-Newell, Samuel M. Clegg, Maëva Millan, Sarah Stewar Johnson, Ophélie McIntosh, Cyril Szopa, Caroline Freissinet, Yasuhito Sekine, Keisuke Fukushi, Koki Morida, Kosuke Inoue, Hiroshi Sakuma, Elizabeth Rampe, è stato pubblicato su Nature Communications.

Testo dall’Ufficio stampa – Struttura per la Comunicazione Istituto Nazionale di Astrofisica – INAF

Come la vita e il nostro Pianeta sono evoluti insieme

Parte il progetto CoEvolve: indaga la coevoluzione della vita con la Terra

CoEvolve indaga la coevoluzione della vita con la Terra

CoEvolve, il progetto finanziato dal Consiglio Europeo delle Ricerche, guidato dal microbiologo della Federico II di Napoli, Donato Giovannelli, è ufficialmente decollato. Il progetto condurrà il team del Giovannelli-Lab dall’Artico ai deserti delle Ande cilene, e poi dal Costa Rica all’Islanda, alla ricerca di microrganismi che verranno raccolti negli ambienti estremi del nostro pianeta per capire come la Terra e la vita si sono mutualmente influenzati, in una sorta di coevoluzione tra la geosfera e la biosfera terrestre.

‘Quando guardiamo il nostro pianeta tendiamo a pensare che la geologia sia una forza inarrestabile che modella i continenti e gli oceani, e che la vita si adatti a questi cambiamenti ed evolva per tenere il passo. Questo è vero per la maggior parte del tempo, ma ci sono state diverse occasioni durante la storia della Terra in cui l’evoluzione di alcuni processi biologici hanno influenzato notevolmente la geologia, la mineralogia e quindi la traiettoria evolutiva della Terra’ – spiega il coordinator Donato Giovannelli. La realtà è che il nostro pianeta e la vita si sono coevoluti nel tempo, influenzandosi a vicenda per oltre 4 miliardi di anni. ‘È come una delicata danza in cui la vita e il pianeta Terra lavorano insieme per mantenere l’abitabilità del pianeta e sostenere la vita stessa’, dice Donato Giovannelli. Nonostante questo, l’estensione della coevoluzione e le sue forze motrici sono in gran parte sconosciute’.

Il progetto CoEvolve mira a capire come la vita, in particolare i microrganismi, e il pianeta si sono coevoluti nel tempo, concentrandosi sul ruolo dei metalli. Il progetto è finanziato con una sovvenzione di 2,1 milioni di euro dal Consiglio Europeo della Ricerca (ERC Starting Grant 2020).

I microrganismi sono fondamentali per il funzionamento del pianeta e sono stati la forza trainante nel ciclo dei nutrienti e degli elementi dall’origine della vita su questo pianeta. Per controllare il ciclo dei nutrienti e degli elementi, i microrganismi utilizzano un insieme di proteine che contengono metalli nel loro nucleo, utilizzati per controllare efficacemente le reazioni chimiche. A causa di questa relazione, il ruolo dei metalli è importante per la vita (basti pensare solo a cosa comporta un calo di ferro nel sangue).

‘Le conoscenze degli ultimi decenni sulla evoluzione della vita terrestre ci ha fatto comprendere che la disponibilità di metalli è cambiato drammaticamente nel tempo, in gran parte a causa del cambiamento delle concentrazioni di ossigeno nell’atmosfera – sottolinea Giovannelli -. In sintesi, metalli potrebbero aver controllato in una certa misura l’evoluzione della vita microbica stessa’.

Il progetto CoEvolve utilizza microrganismi raccolti in ambienti estremi, dai poli ai deserti, che sono una sorta di modello di antichi tempi geologici, per capire la relazione tra disponibilità di metallo e metabolismo microbico. Una selezione di ambienti diversi, da sorgenti termali negli altipiani del Cile all’Artico norvegese, saranno campionati nei prossimi 5 anni in una serie di missioni la cui delicata logistica richiede una lunga e attenta pianificazione.

CoEvolve coevoluzione
CoEvolve indaga la coevoluzione della vita con la Terra

Donato Giovannelli, dunque, sta raccogliendo nel Giovannelli-Lab un team di scienziati e scienziate con diversi background per affrontare la natura multidisciplinare del progetto CoEvolve, che richiede competenze in microbiologia, biologia molecolare, geochimica, geologia, astrobiologia e big data. La prima fase del progetto è attualmente in corso, con l’allestimento di un nuovo laboratorio geo-bio presso l’Università di Napoli Federico II, e a partire dal 20 febbraio 2022, il team comincia con la prima tappa delle missioni: presso la base artica Dirigibile Italia del CNR (Isole Svalbard, Norvegia) a Ny-Ålesund  (78°55′ N, 11°56′ E). La prima spedizione, i cui dati contribuiranno al CoEvolve, è finanziata con un Progetto di Ricerca in Artico del MUR.

“La mia speranza è che il progetto cambierà il modo in cui comprendiamo e interagiamo con il mondo microbico, aprendo nuove strade in diversi campi come la bioremediation, le biotecnologie e la ricerca sul microbioma umano e potrebbe anche cambiare il modo in cui cerchiamo la vita nell’Universo”, conclude Donato Giovannelli.

 

CoEvolve in breve:

–        Al via il progetto CoEvolve del Dipartimento di Biologia della Federico II di Napoli. Durerà 5 anni, beneficia di un finanziamento ERC europeo di 2.1 milioni di euro. Alla sua guida il microbiologo Donato Giovannelli.

–        Studierà organismi di ambienti estremi, raccolti in Cile, Islanda, Norvegia, Russia, Italia, Costa Rica, per comprendere come la geologia terrestre ha influenzato la vita, e come la vita, a modo suo, abbia a sua volta influenzato la geologia.

–        La prima tappa, in atto in questo momento, alle Isole Svalbard, in Norvegia, presso la base artica del CNR Dirigibile Italia. Il team di microbiologi raccoglierà microorganismi adattati ad un ambiente estremamente freddo.

 

Testo e foto dall’Ufficio Stampa Università Federico II di Napoli.