News
Ad
Ad
Ad
Tag

Andrea Possenti

Browsing

NGC 1851E, NELLA COSTELLAZIONE DELLA COLOMBA, È IL BUCO NERO PIÙ LEGGERO O LA STELLA DI NEUTRONI PIÙ PESANTE?

Un articolo pubblicato oggi su Science ci svela la presenza di un oggetto dalla natura misteriosa all’interno dell’ammasso globulare NGC 1851, visibile nella costellazione della Colomba a oltre 39 mila anni luce dalla Terra. Di cosa si tratta? Un team internazionale di astronomi, guidato da ricercatori dell’Istituto Max Planck per la Radioastronomia di Bonn e a cui partecipano anche ricercatori dell’Istituto Nazionale di Astrofisica (INAF) e dell’Università di Bologna, ha sfruttato la sensibilità delle antenne del radiotelescopio sudafricano MeerKAT per scoprire un oggetto massiccio dalle caratteristiche uniche: è più pesante delle stelle di neutroni più pesanti conosciute e allo stesso tempo è più leggero dei buchi neri più leggeri trovati finora. Altro particolare non di poca rilevanza: l’indagato speciale è in orbita attorno a una pulsar al millisecondo in rapida rotazione. Questa potrebbe essere la prima scoperta del tanto ambito sistema binario radio pulsar – buco nero: una coppia stellare che consentirebbe nuovi test della teoria della relatività generale di Einstein.

Rappresentazione artistica del sistema NGC 1851 partendo dal presupposto che la stella compagna massiccia sia un buco nero. La stella sullo sfondo, la più luminosa, è la sua compagna orbitale, la radio pulsar NGC 1851E. Le due stelle sono separate da 8 milioni di km e ruotano l’una attorno all’altra ogni 7 giorni. Credit: Daniëlle Futselaar (artsource.nl)
Rappresentazione artistica del sistema NGC 1851 partendo dal presupposto che la stella compagna massiccia sia un buco nero. La stella sullo sfondo, la più luminosa, è la sua compagna orbitale, la radio pulsar NGC 1851E. Le due stelle sono separate da 8 milioni di km e ruotano l’una attorno all’altra ogni 7 giorni. Credit: Daniëlle Futselaar (artsource.nl)

Luminose e intermittenti come dei potenti fari cosmici puntati verso la Terra, le pulsar sono stelle di neutroni, ossia i resti compatti (una ventina di chilometri di diametro) ed estremamente densi, derivati da potenti esplosioni di supernova. La teoria mostra che deve esistere una massa massima per una stella di neutroni. Il valore di tale massa massima non è noto con precisione, ma esistono indicazioni sperimentali che almeno fino ad una massa totale pari a circa 2,2 volte la massa del Sole, la stella continua comunque ad essere una stella di neutroni.  D’altro canto, molteplici evidenze osservative indicano che i buchi neri (oggetti così densi e compatti per cui nemmeno la luce può allontanarsi da essi) si formano dal collasso che ha luogo alla fine della evoluzione di stelle molto più massicce di quelle che producono le stelle di neutroni. In questo caso la massa minima osservata finora per il nascente buco nero è circa 5 volte la massa del Sole. Bisogna allora domandarsi quale tipo di oggetto compatto si formi nell’intervallo di masse fra 2,2 e 5 volte la massa del Sole, in quello che i ricercatori chiamano “gap di massa per i buchi neri”: una stella di neutroni estremamente massiccia, un buco nero estremamente leggero o altro? Ad oggi non esiste una risposta chiara.

Nell’ambito delle due collaborazioni internazionali “Transients and Pulsars with MeerKAT” (TRAPUM) e “MeerTime”, gli esperti sono stati in grado prima di rilevare e poi di studiare ripetutamente i deboli impulsi provenienti da una delle stelle dell’ammasso, identificandola come una pulsar radio, un tipo di stella di neutroni che gira molto rapidamente ed emette onde radio nell’Universo come un faro cosmico. Questa pulsar, denominata NGC 1851E (ossia la quinta pulsar nell’ammasso globulare NGC 1851), ruota su se stessa più di 170 volte al secondo, e ogni rotazione produce un impulso ritmico, come il ticchettio di un orologio.

Spiega Ewan Barr, dell’Istituto Max Planck per la Radioastronomia di Bonn e primo autore (assieme alla dottoranda dello stesso istituto Arunima Dutta) dello studio:

“Il ticchettio di questi impulsi è incredibilmente regolare. Osservando come cambiano i tempi dei ticchettii, tramite una tecnica chiamata pulsar timing, siamo stati in grado di effettuare misurazioni estremamente precise del moto orbitale di questo oggetto”.

L’estrema regolarità degli impulsi osservati ha permesso anche una misurazione molto precisa della posizione del sistema, dimostrando – tramite osservazioni col telescopio spaziale Hubble – che l’oggetto in orbita attorno alla pulsar non era una normale stella, bensì un residuo estremamente denso di una stella collassata. Inoltre, il fatto che l’orbita stia progressivamente cambiando l’orientamento rispetto a noi (un effetto chiamato tecnicamente “precessione del periastro” e previsto dalla relatività generale) ha mostrato che la compagna ha una massa che era contemporaneamente più grande di quella di qualsiasi stella di neutroni conosciuta e tuttavia più piccola di quella di qualsiasi buco nero conosciuto, posizionandola esattamente nel gap di massa dei buchi neri.

Le antenne del radiotelescopio MeerKAT, in Sudafrica. Crediti: SARAO
Le antenne del radiotelescopio MeerKAT, in Sudafrica. Crediti: SARAO

Alessandro Ridolfi, primo autore della scoperta di NGC 1851E (conosciuta anche col nome alternativo PSR J0514-4002E), nel 2022, co-autore della pubblicazione su Science, nonché postdoc presso l’INAF di Cagliari, sottolinea:

“Sin dalle prime osservazioni successive alla scoperta, questo sistema binario mostrava caratteristiche peculiari, in particolare per quanto riguarda l’elevata massa della stella compagna. Ulteriori osservazioni hanno evidenziato che si trattava addirittura di un sistema unico, con una stella compagna avente una massa in quella che per ora è la “terra di nessuno” per gli oggetti compatti, ovverosia quell’intervallo di masse per le quali la teoria non è oggi in grado di stabilire se si abbia a che fare con un buco nero leggero o una stella di neutroni pesante”.

Ridolfi è uno dei vincitori del bando “Astrofit-INAF” e lavora alla ricerca di nuove pulsar esotiche ospitate in ammassi globulari.

Potenziale storia della formazione della radiopulsar NGC 1851E e della sua stella compagna. Crediti: Thomas Tauris (Aalborg University / MPIfR)
Potenziale storia della formazione della radiopulsar NGC 1851E e della sua stella compagna. Crediti: Thomas Tauris (Aalborg University / MPIfR)

Cristina Pallanca, ricercatrice al Dipartimento di Fisica e Astronomia “Augusto Righi” dell’Università di Bologna, prosegue:

“Se si rivelerà essere un buco nero, avremo individuato il primo sistema binario composto da una pulsar e un buco nero, una sorta di Santo Graal dell’astronomia. Grazie ad esso avremo un’opportunità senza precedenti per testare con altissima precisione la teoria della relatività generale di Albert Einstein e, di conseguenza, per comprendere meglio le proprietà fisiche dei buchi neri”.

E aggiunge Marta Burgay, un’altra ricercatrice di INAF-Cagliari coinvolta nel progetto:

“Se invece si trattasse di una stella di neutroni, la sua massa elevata imporrà nuovi vincoli alla natura delle forze nucleari, vincoli che non si possono ottenere con nessun esperimento di laboratorio”.

Il sistema si trova nell’ammasso globulare NGC 1851, un denso insieme di vecchie stelle molto più fitte rispetto alle stelle del resto della Galassia. Mario Cadelano, ricercatore al Dipartimento di Fisica e Astronomia “Augusto Righi” dell’Università di Bologna, lo descrive:

“Un sistema binario così non poteva che crearsi in un ambiente altrettanto straordinario: l’ammasso globulare NGC 1851 è un insieme di centinaia di migliaia di stelle mantenute unite dalla loro stessa forza di gravità, formatosi circa 13 miliardi di anni fa, quando l’universo aveva appena 800 mila anni e la nostra Galassia stava attraversando le prime fasi di formazione. All’interno degli ammassi globulari, le stelle interagiscono continuamente durante il corso della loro vita: si scambiano energia, collidono, si uniscono in nuovi sistemi binari e così via. Il nucleo di NGC 1851 è dinamicamente molto attivo, anche più rispetto a quello di altri ammassi globulari, e questo ha favorito la formazione del sistema binario unico nel suo genere che abbiamo scoperto”.

Le regioni centrali di NGC 1851 sono così affollate che le stelle possono interagire tra loro, sconvolgendo le loro orbite e nei casi più estremi scontrandosi. Si ritiene che sia stata una di queste collisioni tra due stelle di neutroni a creare l’oggetto massiccio che ora orbita attorno alla radio pulsar. Tuttavia, prima che venisse creata l’attuale binaria, la radio pulsar deve aver acquisito materiale da un’altra stella in una cosiddetta binaria a raggi X di piccola massa. Un tale processo di “riciclaggio” è necessario per riportare la pulsar alla velocità di rotazione attuale.

La scoperta di questo oggetto misterioso mette in luce le potenzialità degli strumenti utilizzati in questa survey e delle antenne che arriveranno nel futuro. Andrea Possenti, ricercatore anch’egli presso la sede sarda dell’INAF, commenta:

“Questa scoperta è l’apice degli studi finora condotti, grazie al sensibilissimo telescopio MeerKAT, sulle pulsar negli ammassi globulari, un campo di ricerca dove INAF, tramite il gruppo di Cagliari, ricopre dall’inizio un ruolo primario. Ruolo importante sia sul fronte della ricerca di nuove pulsar, 87 quelle scoperte fino ad oggi con il solo radiotelescopio sudafricano, sia ai fini dello studio di quelle note. Il bello è che c’è ancora tanto da scoprire in questi densi sistemi stellari, sia con le osservazioni a MeerKAT, sia, ancor più, con l’avvento del rivoluzionario radiotelescopio SKA. Senza contare – conclude Possenti – che collisioni fra stelle di neutroni come quella ipotizzata per spiegare l’origine di questo sistema potrebbero costituire ulteriori eventi, rari ma di grande interesse, per telescopi per onde gravitazionali, come Virgo, Ligo e il futuro Einstein Telescope”.


 

Per ulteriori informazioni:

L’articolo “A pulsar in a binary with a compact object in the mass gap between neutron stars and black holes”, di  E. Barr, Arunima Dutta, Paulo C. C. Freire, Mario Cadelano, Tasha Gautam, Michael Kramer, Cristina Pallanca, Scott M. Ransom, Alessandro Ridolfi, Benjamin W. Stappers, Thomas M. Tauris, Vivek Venkatraman Krishnan, Norbert Wex, Matthew Bailes, Jan Behrend, Sarah Buchner, Marta Burgay, Weiwei Chen, David J. Champion, C.-H. Rosie Chen, Alessandro Corongiu, Marisa Geyer, Y. P. Men, Prajwal V. Padmanabh, Andrea Possenti, è stato pubblicato sulla rivista Science.

 

 

Testo e immagini dagli Uffici Stampa INAF e Alma Mater Studiorum – Università di Bologna

LE PULSAR CI SVELANO IL RESPIRO DELLO SPAZIO-TEMPO: SI APRE UNA NUOVA FINESTRA NELL’OSSERVAZIONE DELLE ONDE GRAVITAZIONALI

Una collaborazione internazionale di astronomi europei, fra cui ricercatori dell’Istituto Nazionale di Astrofisica (INAF) e dell’Università di Milano-Bicocca, coadiuvata da colleghi indiani e giapponesi, ha pubblicato i risultati di oltre 25 anni di osservazioni effettuate da sei dei radiotelescopi più sensibili del mondo. Dall’analisi di questi dati e di quelli di altre collaborazioni in nord America, Australia e Cina, emergono i segni distintivi della presenza nel cosmo di onde gravitazionali di bassissima frequenza. Questi risultati rappresentano una pietra miliare per l’astrofisica contemporanea: da un lato aprono una nuova finestra osservativa nella scienza delle onde gravitazionali e dall’altro confermano l’esistenza di onde gravitazionali ultra lunghe che, secondo le teorie correnti, dovrebbero essere generate da coppie di buchi neri super-massicci formatisi nel corso del processo di fusione fra le galassie.

Le pulsar ci svelano il lento respiro dello spazio-tempo: si apre una nuova finestra nell’osservazione delle onde gravitazionali. Crediti: Danielle Futselaar / MPIfR

In una serie di articoli pubblicati oggi sulla rivista Astronomy and Astrophysics, gli scienziati dell’European Pulsar Timing Array (EPTA), in collaborazione con i colleghi indiani e giapponesi dell’Indian Pulsar Timing Array (InPTA), riportano i risultati ottenuti analizzando dati raccolti in oltre 25 anni, che promettono di condurre a scoperte senza precedenti nello studio della formazione e dell’evoluzione del nostro Universo e delle galassie che lo popolano.

“I risultati presentati oggi dalla collaborazione EPTA sono straordinari per la loro importanza scientifica e per le prospettive future di ulteriore consolidamento dei risultati” commenta Marco Tavani, presidente dell’INAF. “L’Astrofisica italiana e l’INAF sono leader mondiali in una grande impresa finalizzata a esplorare il Cosmo con le onde gravitazionali, un filone di ricerca che vedrà l’Italia protagonista nei prossimi anni”.

Le pulsar ci svelano il lento respiro dello spazio-tempo: si apre una nuova finestra nell’osservazione delle onde gravitazionali. Crediti: Danielle Futselaar / MPIfR

L’EPTA è una collaborazione di scienziati di undici istituzioni in tutta Europa, fra cui due in Italia (l’INAF con la sua sede di Cagliari e l’Università di Milano-Bicocca), e riunisce astronomi e fisici teorici, al fine di utilizzare le osservazioni degli impulsi ultra regolari provenienti da stelle di neutroni chiamate “pulsar” per costruire un rilevatore di onde gravitazionali delle dimensioni della nostra Galassia.

«Le pulsar sono eccellenti orologi naturali e possiamo usare l’incredibile regolarità dei loro segnali per cercare minuscoli cambiamenti nel loro ticchettio causati da sottili dilatazioni e compressioni dello spazio-tempo provocati da onde gravitazionali provenienti dall’Universo lontano»,

spiega Golam Shaifullah, ricercatore presso l’Università di Milano-Bicocca nel gruppo di ricerca ‘B Massive’ diretto da Alberto Sesana, professore ordinario dell’Ateneo, e finanziato dall’European Research Council.

Infatti le pulsar si comportano come orologi naturali di alta precisione e dalla misura ripetuta di piccolissime variazioni (inferiori ad un milionesimo di secondo e correlate fra loro) nei tempi di arrivo dei loro impulsi è possibile misurare le minute dilatazioni e compressioni dello spazio-tempo provocate dal passaggio di onde gravitazionali provenienti dall’Universo lontano.

Questo gigantesco rivelatore di onde gravitazionali – che dalla Terra si estende in direzione di 25 pulsar, selezionate all’interno della nostra Via Lattea e distanti migliaia di anni luce da noi – rende possibile sondare un tipo di onde gravitazionali aventi un ritmo lentissimo, corrispondente a lunghezze d’onda enormemente più lunghe di quelle osservate, a partire dal 2015, dai cosiddetti interferometri per onde gravitazionali, tra cui spiccano Virgo a Cascina (vicino a Pisa) e LIGO negli USA.

All’INAF di Cagliari, l’entusiasmo è palpabile:

“Grazie alle osservazioni di EPTA, stiamo aprendo una nuova finestra nell’universo delle onde gravitazionali ultra lunghe (corrispondenti a frequenze di oscillazione del miliardesimo di Hertz) che sono associate a sorgenti e fenomeni unici”,

afferma la ricercatrice Caterina Tiburzi. La collega Marta Burgay precisa

Queste onde gravitazionali ci permettono di studiare alcuni dei misteri finora irrisolti nell’evoluzione dell’Universo, fra cui, ad esempio, le proprietà della elusiva popolazione cosmica dei sistemi binari formati da due buchi neri supermassici, aventi masse miliardi di volte maggiori di quella del Sole”. 

Questi buchi neri si trovano ad orbitare al centro di galassie che stanno fondendosi l’una con l’altra, e durante il loro orbitare, la teoria della relatività generale di Albert Einstein prevede che emettano onde gravitazionali ultra lunghe.

Gli strumenti utilizzati per raccogliere i dati sono l’Effelsberg Radio Telescope in Germania, il Lovell Telescope dell’Osservatorio Jodrell Bank nel Regno Unito, il Nancay Radio Telescope in Francia, il Westerbork Radio Synthesis Telescope nei Paesi Bassi, e il Sardinia Radio Telescope (SRT) in Italia.

“Questi risultati – aggiunge l’astronoma Delphine Perrodin, sempre dell’INAF di Cagliari – si basano su decenni di certosine e instancabili campagne di osservazione effettuate utilizzando i cinque più grandi radiotelescopi in Europa. Inoltre, una volta al mese i dati di questi telescopi vengono anche sommati fra loro, aumentando ulteriormente la sensibilità dell’esperimento”.

Queste osservazioni sono poi state ulteriormente integrate dai dati forniti dal Giant Metrewave Radio Telescope in India, con ciò rendendo l’insieme di dati ancora più accurato.

“È una grande soddisfazione per tutta l’astrofisica italiana che SRT, il grande radiotelescopio gestito da INAF, sia fra i  testimoni dell’emergere nei dati di questo lento respiro dello spazio-tempo”, spiega Andrea Possenti, Primo Ricercatore dell’INAF di Cagliari e fra i fondatori di EPTA, assieme all’ex presidente dell’Istituto Nazionale di Astrofisica Nichi D’Amico: “Si tratta di nuovo grande risultato scientifico, che conferma, a livello mondiale, il ruolo centrale dell’Italia, e vieppiù della Sardegna (con SRT e speriamo presto anche con l’Einstein Telescope), nello studio delle onde gravitazionali per molti decenni a venire “.

I risultati dell’EPTA si confrontano con una serie di pubblicazioni indipendenti oggi annunciate in parallelo da altre collaborazioni in tutto il mondo, facenti capo agli esperimenti di tipo PTA (pulsar timing array) australiano, cinese e nordamericano, noti rispettivamente come PPTA, CPTA e NANOGrav. I vari risultati sono consistenti fra tutte le collaborazioni, ciò che corrobora ulteriormente la presenza nei dati di un segnale dovuto ad onde gravitazionali. Il lavoro però non termina qui, in quanto la natura stessa del segnale osservato prevede che esso si manifesti in maniera progressivamente più chiara.

“Ho cominciato il mio dottorato al momento giusto – ricorda Francesco Iraci, dottorando dell’Università di Cagliari che da circa un anno svolge le sue ricerche presso l’INAF di Cagliari proprio nel contesto di EPTA – e non vedo l’ora di contribuire all’ulteriore affinamento dei dati!”

Spiegando l’importanza di questo risultato, il professor Alberto Sesana afferma: «L’insieme di dati dell’EPTA è straordinariamente lungo e denso ed ha permesso di ampliare la finestra di frequenza in cui possiamo osservare queste onde, permettendo una migliore comprensione della fisica delle galassie che si fondono e dei buchi neri supermassicci che esse ospitano».

La lunghezza del set di dati consente infatti di sondare onde gravitazionali che oscillano in maniera incredibilmente lenta consentendo di esplorare sistemi binari di buchi neri con periodi orbitali di decine di anni. D’altra parte, la cadenza dei dati consente anche di studiare onde che compiono molte oscillazioni al mese, dando accesso a sistemi di buchi neri con periodi orbitali molto più brevi, dell’ordine di pochi giorni.

I risultati dell’analisi dei dati EPTA presentati oggi sono in linea con quanto atteso dalle predizioni degli astrofisici. Nataliya Porayko, ‘visiting researcher’ all’Università di Milano-Bicocca tuttavia sottolinea che

«una regola d’oro in fisica per conclamare la scoperta di un nuovo fenomeno è che il risultato dell’esperimento abbia una probabilità di verificarsi casualmente meno di una volta su un milione».

Il risultato riportato da EPTA – così come dalle altre collaborazioni internazionali – non soddisfa ancora questo criterio, infatti c’è ancora circa una probabilità su mille che fonti di rumore casuali cospirino per generare il segnale.

«Ma i lavori sono già in corso –  come spiega Aurelien Chalumeau, assegnista del gruppo B Massive – gli scienziati delle quattro collaborazioni – EPTA, InPTA, PPTA e NANOGrav – stanno combinando i loro dati con il coordinamento dell’International Pulsar Timing Array».

L’obiettivo è quello di ampliare gli attuali insiemi di dati, sfruttando misure effettuate su oltre 100 pulsar, osservate con tredici radiotelescopi in tutto il mondo. L’accresciuta quantità e qualità dei dati dovrebbe consentire agli astronomi di raggiungere l’obiettivo nel prossimo futuro, fornendo la prova inconfutabile che una nuova era nell’esplorazione dell’Universo è iniziata.

Testo, video e immagini dall’Ufficio stampa – Struttura per la Comunicazione di Presidenza Istituto Nazionale di Astrofisica (INAF) e dall’Ufficio stampa Università di Milano-Bicocca

“ESSERE (POLARIZZATI) O NON ESSERE (POLARIZZATI)?”

La missione NASA-ASI IXPE svela i misteri di una storica supernova, Tycho

supernova Tycho
Immagine composita del resto di supernova Tycho con riprese dei raggi X delle missioni IXPE e Chandra e nel visibile del progetto NASA Digital Sky Survey. Crediti: X-ray: Chandra: Nasa/Cxc/Sao, Ixpe: Nasa/Msfc/Ferrazzoli et al.; Optical: Nasa/DSS

È una missione da record quella dell’osservatorio spaziale IXPE, nata dalla collaborazione tra la NASA e l’Agenzia Spaziale Italiana (ASI). La sonda sta sfornando nuove immagini che sono una fonte inesauribile di preziosi dati per i ricercatori di tutto il mondo. Infatti è stato proprio un team internazionale di scienziati che ha scoperto nuove informazioni sui resti di una stella esplosa nel 1572. I risultati hanno fornito nuovi indizi sulle condizioni fisiche presenti nelle onde d’urto create in queste titaniche esplosioni stellari chiamate supernove.

Il resto della supernova si chiama Tycho, in onore dell’astronomo danese Tycho Brahe che notò il bagliore luminoso di questa nuova “stella” situata in direzione della costellazione di Cassiopea più di 450 anni fa. Nel nuovo studio, gli astronomi hanno utilizzato l’Imaging X-Ray Polarimetry Explorer (IXPE) per studiare i raggi X polarizzati emessi dal resto della supernova Tycho, scoprendo nuove informazioni sulla geometria dei suoi campi magnetici che sono una componente essenziale per l’accelerazione di particelle ad alta energia.

Lanciata nello spazio il 9 dicembre 2021, IXPE è una missione interamente dedicata allo studio dell’Universo attraverso la misura della polarizzazione dei raggi X. Utilizza tre telescopi installati a bordo con rivelatori finanziati dall’ASI e sviluppati da un team di scienziati dell’Istituto Nazionale di Fisica Nucleare (INFN) e dell’Istituto Nazionale di Astrofisica (INAF), con il supporto industriale di OHB-Italia.

“L’importanza del resto di supernova di Tycho va al di là del suo interesse scientifico”, dice Riccardo Ferrazzoli, ricercatore presso l’INAF di Roma. “Essendo una delle cosiddette supernove storiche, Tycho è stata osservata dall’umanità in passato e ha avuto un duraturo impatto sociale e persino artistico. È emozionante essere qui, 450 anni dopo la sua prima apparizione nel cielo, rivedere questo oggetto con occhi nuovi e imparare da esso”. Ferrazzoli è il primo autore del lavoro che appare nell’ultimo numero della rivista The Astrophysical Journal.

La polarizzazione in banda X indica agli scienziati la direzione e l’ordine del campo magnetico della radiazione proveniente da una sorgente altamente energetica come Tycho. I raggi X polarizzati sono prodotti dagli elettroni che si muovono nel campo magnetico in un processo chiamato “emissione di sincrotrone”. La direzione di polarizzazione X può essere ricondotta alla direzione dei campi magnetici nel punto in cui sono stati generati i raggi X. Queste informazioni aiutano gli scienziati ad affrontare alcune delle più grandi domande in astrofisica, come il modo in cui Tycho e altri oggetti accelerano le particelle fino a velocità prossime a quelle della luce.

IXPE ha aiutato a mappare la forma del campo magnetico di Tycho con una chiarezza e un livello di dettaglio senza precedenti. L’osservatorio ha misurato la forma del campo magnetico a scale più piccole di un parsec ossia circa 3 anni luce – una dimensione enorme in termini umani, ma tra le più piccole mai raggiunte nelle osservazioni di queste sorgenti. Queste informazioni sono preziose per comprendere come le particelle vengano accelerate sulla scia dell’onda d’urto dell’esplosione iniziale.

I ricercatori hanno anche documentato somiglianze e differenze sorprendenti tra le scoperte di IXPE fra Tycho e il resto di supernova Cassiopea A, osservato in precedenza dall’osservatorio spaziale e studiato dal suo team scientifico. La forma complessiva del campo magnetico di entrambi i resti di supernova sembra essere radiale, estendendosi verso l’esterno. Ma Tycho ha prodotto un grado di polarizzazione dei raggi X molto più elevato rispetto a Cassiopea A, suggerendo che potrebbe possedere un campo magnetico più ordinato e meno turbolento.

“Dopo un anno di osservazioni, IXPE non smette di stupirci. Abbiamo osservato solo due resti di supernova, e già con così poco è emersa una diversità. La polarimetria X sta davvero aggiungendo tasselli mancanti alla nostra comprensione degli oggetti cosmici. Questo ci ripaga dell’investimento fatto sul lavoro di ricercatori e ricercatrici, che ha reso IXPE la magnifica realtà che è oggi” commenta Laura Di Gesu, ricercatrice ASI e co-autrice dell’articolo.

La supernova Tycho è classificata come tipo I-a, evento che si verifica quando una stella nana bianca in un sistema binario fa a pezzi la sua stella compagna, catturandone parte della massa ed innescando una violenta esplosione. L’annientamento della nana bianca scaglia i detriti nello spazio ad altissime velocità. Si ritiene comunemente che tali eventi siano la fonte della maggior parte dei raggi cosmici galattici trovati nello spazio, compresi quelli che bombardano continuamente l’atmosfera terrestre.

“Il processo mediante il quale un resto di supernova diventa un gigantesco acceleratore di particelle richiede una delicata danza tra ordine e caos”,

afferma l’astrofisico Patrick Slane dell’Harvard & Smithsonian Center for Astrophysics a Cambridge nel Massachusetts, Stati Uniti.

“Sono necessari campi magnetici forti e turbolenti, ma IXPE ci sta mostrando che è coinvolta anche un’uniformità o coerenza su larga scala, che si estende fino ai siti in cui si verifica l’accelerazione”.

L’esplosione della supernova stessa rilasciò un’energia pari a quella prodotta dal Sole nel corso di 10 miliardi di anni. Quella brillantezza rese la supernova di Tycho visibile ad occhio nudo qui sulla Terra nel 1572, quando fu avvistata da Brahe e da molti altri personaggi dell’epoca, incluso potenzialmente il giovanissimo William Shakespeare, che l’avrebbe poi descritta in un passaggio “dell’Amleto” all’inizio del XVII secolo.

“La Supernova Tycho è stata la sfida perfetta per gli strumenti di IXPE” conclude Enrico Costa dell’INAF, coautore dell’articolo: “I luoghi del fronte d’urto dove i Raggi Cosmici vengono accelerati vanno individuati con un’attenta analisi dell’immagine, dominata dall’emissione non polarizzata dei filamenti termalizzati. Ciò è possibile grazie alle buone proprietà di imaging dei rivelatori e all’eccellente qualità del telescopio, entrambi eccezionali per una piccola missione di massa così ridotta. Alla fine abbiamo trovato qualcosa di molto diverso dalle previsioni e questa è la migliore ricompensa per un astronomo”.

 

Per ulteriori informazioni:

L’articolo “X-ray polarimetry reveals the magnetic field topology on sub-parsec scales in Tycho’s supernova remnant“, di Riccardo Ferrazzoli, Patrick Slane, Dmitry Prokhorov, Ping Zhou, Jacco Vink, Niccolò Bucciantini, Enrico Costa, Niccolò Di Lalla, Alessandro Di Marco, Paolo Soffitta, Martin C. Weisskopf, Kazunori Asakura, Luca Baldini, Jeremy Heyl, Philip E. Kaaret, Frédéric Marin, Tsunefumi Mizuno, C.-Y. Ng, Melissa Pesce-Rollins, Stefano Silvestri, Carmelo Sgrò, Douglas A. Swartz, Toru Tamagawa, Yi-Jung Yang, Iván Agudo, Lucio A. Antonelli, Matteo Bachetti, Wayne H. Baumgartner, Ronaldo Bellazzini, Stefano Bianchi, Stephen D. Bongiorno, Raffaella Bonino, Alessandro Brez, Fiamma Capitanio, Simone Castellano, Elisabetta Cavazzuti, Chien-Ting Chen, Stefano Ciprini, Alessandra De Rosa, Ettore Del Monte, Laura Di Gesu, Immacolata Donnarumma, Victor Doroshenko, Michal Dovčiak, Steven R. Ehlert, Teruaki Enoto, Yuri Evangelista, Sergio Fabiani, Javier A. Garcia, Shuichi Gunji, Kiyoshi Hayashida, Wataru Iwakiri, Svetlana G. Jorstad, Fabian Kislat, Vladimir Karas, Takao Kitaguchi, Jeffery J. Kolodziejczak, Henric Krawczynski, Fabio La Monaca, Luca Latronico, Ioannis Liodakis, Simone Maldera, Alberto Manfreda, Andrea Marinucci, Alan P. Marscher, Herman L. Marshall, Giorgio Matt, Ikuyuki Mitsuishi, Fabio Muleri, Michela Negro, Stephen L. O’Dell, Nicola Omodei, Chiara Oppedisano, Alessandro Papitto, George G. Pavlov, Abel L. Peirson, Matteo Perri, Pierre-Olivier Petrucci, Maura Pilia, Andrea Possenti, Juri Poutanen, Simonetta Puccetti, Brian D. Ramsey, John Rankin, Ajay Ratheesh, Oliver Roberts, Roger W. Romani, Gloria Spandre, Fabrizio Tavecchio, Roberto Taverna, Yuzuru Tawara, Allyn F. Tennant, Nicholas E. Thomas, Francesco Tombesi, Alessio Trois, Sergey S. Tsygankov, Roberto Turolla, Kinwah Wu, Fei Xie, Silvia Zane è stato pubblicato sulla rivista The Astrophysical Journal.

 

Testo e immagine dagli Uffici Stampa Istituto Nazionale di Astrofisica (INAF) e Agenzia Spaziale Italiana (ASI).

Una rete di pulsar per “ascoltare” il brusio cosmico di fondo delle onde gravitazionali

Pubblicato su Monthly Notices of the Royal Astronomical Society uno studio internazionale che ha visto coinvolti i ricercatori dell’Università di Milano-Bicocca e di INAF-Cagliari

pulsar delle Vele stelle a neutroni onde gravitazionali bassissima frequenza
Una rete di pulsar per “ascoltare” il brusio cosmico di fondo delle onde gravitazionali. Nella foto, la Pulsar delle Vele. Foto NASA/CXC/PSU/G.Pavlov et al., in pubblico dominio
Milano, 12 gennaio 2021 – I ricercatori del progetto International Pulsar Timing Array (IPTA), avvalendosi dei lavori e delle competenze di diverse collaborazioni di astrofisici di tutto il mondo – inclusi membri dell’Università di Milano-Bicocca e dell’Istituto Nazionale di Astrofisica (INAF) – hanno recentemente completato l’analisi del più completo archivio oggi disponibile di dati sui tempi di arrivo degli impulsi di 65 pulsar, ciò che resta di stelle di grande massa esplose come supernove. Questa accurata indagine sperimentale rafforza le indicazioni teoriche che suggerirebbero la presenza di un vero e proprio “brusio” cosmico, prodotto da onde gravitazionali di frequenze ultra basse (da miliardesimi a milionesimi di Hertz) emesse da una moltitudine di coppie di buchi neri super-massicci.

Le pulsar studiate dal team sono dette “al millisecondo” perché ruotano attorno al proprio asse centinaia di volte al secondo, emettendo stretti fasci di onde radio che ci appaiono come impulsi a causa del loro moto di rotazione. I tempi di arrivo di questi impulsi sono stati poi combinati in un unico insieme di dati, unendo le osservazioni indipendenti di tre collaborazioni internazionali: l’European Pulsar Timing Array (EPTA, a cui appartengono i ricercatori dell’INAF e dell’Università di Milano-Bicocca coinvolti nel progetto), il North American Nanohertz Observatory for Gravitational Waves (NANOGrav), e il Parkes Pulsar Timing Array in Australia (PPTA). Queste tre collaborazioni sono anche le fondatrici dell’IPTA.

L’indagine del team di IPTA su questi dati combinati ha messo in luce la presenza di un segnale a bassissima frequenza. «È un segnale molto emozionante! Anche se non abbiamo ancora prove definitive, potrebbe essere il primo passo verso la rivelazione del fondo cosmico di onde gravitazionali», dice Siyuan Chen, membro delle collaborazioni EPTA e NANOGrav, e il coordinatore per IPTA della pubblicazione dell’indagine in un articolo sulla rivista Monthly Notices of the Royal Astronomical Society (“The International Pulsar Timing Array second data release: Search for an isotropic Gravitational Wave Background” – DOI: 10.1093/mnras/stab3418).

Boris Goncharov del PPTA è comunque ancora cauto sulle possibili interpretazioni di tali segnali: «Stiamo anche esaminando a cos’altro potrebbe essere associato questo segnale. Per esempio, potrebbe magari derivare da un rumore presente nei dati delle singole pulsar che potrebbe essere stato modellato in modo improprio nelle nostre analisi».

Spiega Delphine Perrodin, dell’INAF di Cagliari, coautrice del lavoro: «Questo risultato conferma e rafforza notevolemente il graduale emergere di segnali simili che sono stati trovati negli ultimi anni nei singoli insiemi di dati, indipendentemente dalle varie collaborazioni partecipanti a IPTA. In particolare, nel quadro dell’esperimento EPTA, siamo abituati da oltre due decenni a combinare i dati provenienti da cinque diversi radiotelescopi europei, fra cui il Sardinia Radio Telescope (SRT, localizzato in Sardegna), e spesso ad osservare simultaneamente la stessa pulsar. Questa esperienza è stata molto utile nella creazione dell’attuale versione dei dati. Inoltre, all’interno di EPTA è stata sviluppata buona parte della metodologia utilizzata per capire le caratteristiche del possibile segnale nel corso dei molti anni di monitoraggio».

Sulla possibile origine del segnale lavora un altro coautore della pubblicazione, Alberto Sesana, che studia queste tematiche col suo team presso l’Università di Milano Bicocca: «Le caratteristiche di questo segnale comune tra le pulsar sono in ottimo accordo con quelle attese per il fondo cosmico di onde gravitazionali, frutto della sovrapposizione di molteplici segnali di onde gravitazionali emessi da una popolazione di buchi neri binari super-massicci. Si tratta di coppie di buchi neri di grande massa che orbitano spiraleggiando l’uno intorno all’altro, con ciò liberando grandi quantità di energia sotto forma di onde gravitazionali».

La sovrapposizione di tutte queste onde, di frequenze leggermente diverse fra loro e provenienti da tutte le direzioni del cosmo, può essere immaginato come un brusio indistinto (in quel caso prodotto da onde sonore) che potremmo ascoltare all’interno di una sala affollata.

Il prossimo passo per il team di IPTA sarà la misura della cosiddetta “correlazione spaziale” tra le pulsar. Spiega Andrea Possenti, dell’INAF di Cagliari, e coautore del lavoro: «La correlazione del segnale tra le coppie di pulsar è la chiave per chiarire la fonte del segnale. Perché si tratti del fondo di onde gravitazionali, ogni coppia di pulsar deve comportarsi in un modo molto specifico, a seconda della loro separazione angolare nel cielo. Al momento non si può concludere nulla al proposito: abbiamo infatti bisogno di un segnale più forte per misurare questa correlazione».

Gli fa eco Bhal Chandra Joshi, membro dell’InPTA (il consorzio sperimentale con base in India, da poco entrato a sua volta nel IPTA): «Il primo indizio è un segnale come quello ora veduto nei dati dell’IPTA. Poi, con più dati, speriamo che il segnale inizierà a mostrare le attese correlazioni spaziali: a quel punto sapremo che si tratta davvero del fondo cosmico di onde gravitazionali».

Il lavoro già ferve all’interno di IPTA per aggiungere nuove osservazioni, sempre più precise, alla combinazione di dati esistenti.  Conclude Delphine Perrodin: «Questo è un vero lavoro di squadra internazionale, all’interno del quale il contributo italiano, fra INAF e Università di Milano Bicocca, diviene sempre più importante, con le osservazioni presso SRT, la combinazione con i dati degli altri radio telescopi, la loro analisi ed interpretazione astrofisica. Non si può che essere ottimisti circa le capacità di arrivare presto ad una scoperta che sarebbe epocale».

Testo dall’Ufficio Stampa Università di Milano-Bicocca sulla rete di pulsar per “ascoltare” il brusio cosmico di fondo delle onde gravitazionali.
Articoli Correlati:
https://www.scientificult.it/2021/10/27/european-pulsar-timing-array-osservazione-onde-gravitazionali-a-bassissima-frequenza/