News
Ad
Ad
Ad
Tag

Ande

Browsing

LE PRIME IMMAGINI DALL’OSSERVATORIO VERA C. RUBIN (VERA C. RUBIN OBSERVATORY)

Dalle Ande cilene questo telescopio di nuova generazione è pronto a scrutare tutto il cielo australe. Nuove viste mozzafiato delle nebulose Laguna e Trifida, dell’ammasso di galassie della Vergine e molto altro nelle prime quattro immagini rilasciate dal Rubin Observatory, che rappresentano una piccola anteprima della missione scientifica finalizzata a esplorare e comprendere alcuni dei più grandi misteri dell’universo. Inizia ufficialmente il programma osservativo LSST (Legacy Survey of Space and Time).

L’Osservatorio Vera C. Rubin, situato a oltre 2.600 metri di altitudine sul Cerro Pachón, in Cile, è pronto a rivoluzionare l’astronomia moderna. A dimostrarlo, le nuove immagini che verranno svelate oggi al mondo e che mostrano le regioni di formazione stellare Laguna e Trifida, rispettivamente a 4000 e 5000 anni luce da noi, nella costellazione del Sagittario, le galassie dell’ammasso della Vergine, a circa 60 milioni di anni luce e molto altro ancora. In meno di dieci ore di osservazioni, il potente telescopio ha già catturato una moltitudine  di galassie e stelle nella nostra galassia, la Via Lattea, nonché moltissimi asteroidi nel nostro “vicinato cosmico”, il Sistema solare. Queste immagini e video, che verranno presentate in Italia durante il Watch Party nella Sala Piersanti Mattarella del Palazzo dei Normanni a Palermo, sono solo un assaggio delle straordinarie scoperte che questo osservatorio all’avanguardia potrà realizzare.

Frutto di una vasta collaborazione scientifica internazionale, l’Osservatorio Vera C. Rubin è stato progettato per realizzare la più estesa mappatura continua del cielo australe mai tentata grazie alla Legacy Survey of Space and Time (LSST), una campagna osservativa che, ogni notte per i prossimi dieci anni, raccoglierà una quantità di dati sull’universo senza precedenti (nello specifico circa 20 terabyte a notte).

Dal 2017 l’Italia partecipa attivamente al progetto attraverso l’Istituto Nazionale di Astrofisica (INAF), che rappresenta il nostro Paese nella comunità scientifica internazionale dell’Osservatorio Vera C. Rubin e coordina il contributo italiano all’analisi scientifica dei dati. L’INAF svolge un ruolo fondamentale anche nella gestione e nell’analisi di questa enorme mole di dati, garantendo alla comunità scientifica italiana l’accesso a questa straordinaria risorsa, promuovendo il contributo nazionale all’analisi e all’interpretazione dei dati, alla formazione di giovani ricercatori e ricercatrici, al raggiungimento di importanti risultati scientifici che apriranno nuove sfide, e allo sviluppo di tecnologie avanzate.

“L’Osservatorio Vera C. Rubin ci consentirà di aggiungere profondità e dinamismo all’osservazione dell’Universo”, afferma Roberto Ragazzoni, presidente INAF. “Con questo telescopio di classe 8 metri in grado di mappare continuamente il cielo australe ogni tre giorni, entriamo nell’epoca dell’’astro-cinematografia’, esplorando una nuova dimensione: quella del tempo, con la quale ci aspettiamo di studiare il cosmo con una nuova prospettiva, che oggi è possibile grazie anche all’uso di nuove tecnologie informatiche per trattare una mole di dati altrimenti imperscrutabile. L’Istituto Nazionale di Astrofisica, con le sue ricercatrici e ricercatori, anche in questa occasione coglie l’opportunità di partecipare a questo nuovo importante progetto”.

Al centro del progetto c’è la fotocamera astronomica più grande mai costruita: 3.200 megapixel, capace di riprendere ogni notte enormi porzioni del cielo australe con sensibilità e risoluzione eccezionali. Ogni immagine copre un’area del cielo grande come 45 volte la luna piena e per ammirarla in tutta la sua risoluzione servirebbero 400 monitor televisivi da 4K. Grazie a un design innovativo, l’Osservatorio Rubin sarà in grado di puntare una nuova porzione di cielo in meno di cinque secondi, osservando l’intero cielo australe in circa 3-4 notti. Nel corso del prossimo decennio, l’osservatorio sarà dunque in grado di riprendere ogni regione del cielo circa 800 volte, creando così un vero e proprio “film” del cosmo ad altissima risoluzione.

“Il Vera C. Rubin Observatory e il suo primo progetto LSST sono un’opportunità unica per la nuova generazione”, commenta Sara (Rosaria) Bonito, la quale rappresenta l’INAF nel Board of Directors della LSST Discovery Alliance del Vera C. Rubin Observatory ed è co-chair della Transients and Variable Stars Science Collaboration (TVSSC). “È una grande eredità per chiunque voglia avvicinarsi alle discipline scientifiche, offrendo uno strumento rivoluzionario per l’astrofisica e le nuove tecnologie per l’interpretazione  dei dati. L’astrofisica che si potrà fare con Rubin è estremamente diversificata: una singola campagna osservativa ci permetterà di rispondere a temi scientifici molto vasti, che riguardano la nostra Galassia ma anche la materia oscura, il nostro Sistema solare e anche i fenomeni più imprevedibili che si verificano nel cielo. Differenti gruppi di ricerca da tutto il mondo con differenti competenze hanno contribuito all’ottimizzazione della strategia osservativa e allo sviluppo di metodologie di analisi dati interdisciplinari. Il progetto coinvolge modelli teorici, big data e data science per indagare ambiti che vanno dalle esplosioni di supernove ai nuclei galattici attivi, fino alle stelle in formazione”, aggiunge.

La survey LSST, che avrà inizio nei prossimi mesi, permetterà di rilevare oggetti estremamente deboli fino a oggi difficili da osservare, ma fondamentali per affrontare questioni chiave della cosmologia e dell’astrofisica moderna: la natura della materia e dell’energia oscura, la struttura a grande scala del cosmo, l’evoluzione delle galassie, l’archeologia galattica, la formazione stellare, i fenomeni transienti e la sorveglianza di oggetti potenzialmente pericolosi. L’osservatorio porta il nome di Vera C. Rubin, astrofisica statunitense i cui studi sulla rotazione delle galassie rappresentano una delle prime prove a favore dell’esistenza della misteriosa materia oscura.

Uno degli ambiti di ricerca che beneficerà maggiormente di questa impresa è lo studio delle stelle variabili, oggetti che cambiano luminosità nel tempo. L’osservatorio sarà in grado di osservare oltre 100 milioni di stelle variabili permettendo studi senza precedenti sui meccanismi che regolano queste variazioni. Questi fenomeni possono derivare da processi interni alle stelle stesse – come pulsazioni dovute a instabilità termiche – oppure da fattori esterni, come eclissi da parte di stelle o pianeti compagni. Grazie alla sua precisione fotometrica, l’Osservatorio Rubin permetterà di esplorare la struttura interna delle stelle.

Non solo: l’osservatorio sarà anche testimone di milioni di esplosioni stellari, eventi catastrofici legati alla morte delle stelle. Analizzando la luce proveniente da alcune di queste esplosioni, le supernove di tipo Ia, sarà inoltre possibile stimare le distanze di galassie lontanissime, esplorando la storia di espansione dell’universo e la sua accelerazione, che si pensa sia causata dalla misteriosa energia oscura.

Bonito sottolinea: “Rubin è dotato della camera digitale più grande mai costruita per l’astronomia, che ha già ottenuto un altro record mondiale, quello della sua lente ottica più grande al mondo. Nonostante le sue dimensioni, è un telescopio molto veloce. Se qualcosa nel cielo si muove o cambia, Rubin lo rileverà e distribuirà l’informazione in tempo reale a tutto il mondo. Questo significa che potremo osservare fenomeni transienti in azione, rendendo possibili nuove scoperte astrofisiche, spesso inaspettate”.

E conclude: “Rubin produrrà un vero e proprio film multicolore del cielo, lungo un’intera decade. Un film che ci permetterà di vedere l’Universo come mai prima: non solo attraverso immagini statiche, ma in evoluzione dinamica”.

Capofila di questa imponente impresa sono il National Science Foundation (NSF) e il Dipartimento dell’Energia degli Stati Uniti (DOE), in collaborazione con il NOIRLab e lo SLAC National Accelerator Laboratory.

Testi, video e immagini dall’Ufficio Stampa Istituto Nazionale di Astrofisica – INAF

L’UNIONE EUROPEA FINANZIA LO STUDIO CONCETTUALE DELLA NUOVA INFRASTRUTTURA ASTRONOMICA DA TERRA WIDE FIELD SPECTROSCOPIC TELESCOPE – WST

È stato firmato lo scorso 4 novembre il contratto per il finanziamento dello studio concettuale di un nuovo telescopio, il Wide Field Spectroscopic Telescope (in breve WST), che potrebbe diventare operativo in Cile dopo il 2040.  Il consorzio internazionale che ha ottenuto il finanziamento, proporrà WST come progetto candidato a diventare la prossima infrastruttura osservativa dello European Southern Observatory (ESO) dopo il completamento dello Extremely Large Telescope (ELT), attualmente in costruzione nelle Ande Cilene.

Link: https://www.wstelescope.com/

Rendering del progetto WST. Crediti: G.Gausachs/WST
Rendering del progetto WST. Crediti: G.Gausachs/WST

L’innovativo progetto WST per realizzare un telescopio interamente dedicato a survey – campagne osservative estese – spettroscopiche di tutti i tipi di oggetti celesti, dalle galassie più lontane, agli asteroidi e comete del nostro Sistema Solare, è stato selezionato nell’ambito del Programma Quadro Horizon Europe dell’Unione Europea con un bando competitivo destinato alle infrastrutture di ricerca. Il consorzio internazionale alla guida del progetto WST ha ottenuto tre milioni di euro da utilizzare nei prossimi tre anni – durante il triennio 2025-2027 – per completare uno studio concettuale dettagliato del nuovo telescopio.

Il consorzio internazionale vede la partecipazione di diciannove istituti di ricerca in Europa e in Australia, con un team scientifico composto da oltre seicento membri provenienti da trentadue Paesi di tutti e cinque i continenti. Alla guida del consorzio Roland Bacon del Centro Nazionale della Ricerca Scientifica (Centre National de la Recherche Scientifique – CNRS, Francia) e Sofia Randich dell’Istituto Nazionale di Astrofisica (INAF), supportati da un Project Office e da uno Steering Commitee del quale fanno parte rappresentanti di tutti gli istituti coinvolti. L’Italia partecipa, oltre che con l’INAF, anche con l’Università di Bologna. Nutrito è il coinvolgimento di ricercatori e ricercatrici del nostro Paese in ruoli chiave e di responsabilità in WST, sia sugli aspetti scientifici che tecnologici.

WST promette di rispondere a una necessità individuata dalla comunità scientifica internazionale: un telescopio della classe dei 10 metri, con ampio campo visivo,  dedicato in modo esclusivo all’acquisizione di spettri delle sorgenti celesti. La necessità di avere a disposizione questo tipo di struttura osservativa compare esplicitamente in molti piani scientifici strategici internazionali che individuano i punti chiave della ricerca astrofisica della prossima decade, tra cui lo European Astronet Roadmap 2023.

Infatti, nonostante siano in fase di costruzione telescopi da terra con specchi principali di 30-40 metri, non esiste un telescopio fra quelli esistenti, in via di sviluppo, o proposti che presenti le stesse caratteristiche di WST e che lo rende un unicum: l’attuale disegno prevede infatti uno specchio principale del diametro di 12 metri, il funzionamento simultaneo di uno spettrografo multi-oggetto (MOS) in grado di osservare su un ampio campo visivo (tre gradi quadrati, quanto la superficie apparente di 12 lune piene) e altissime capacità di “multiplex” (20.000 fibre), insieme a uno spettrografo a campo integrale panoramico (IFS) che copre una superficie apparente di cielo di 9 minuti d’arco quadrati.

“Queste specifiche sono molto ambiziose e collocano il progetto WST al di sopra delle infrastrutture osservative da terra esistenti e in fase di programmazione. In soli cinque anni di attività, il MOS permetterebbe di ottenere spettri di 250 milioni di galassie e 25 milioni di stelle a bassa risoluzione spettrale e più 2 milioni di stelle ad alta risoluzione, mentre l’IFS fornirebbe 4 miliardi di spettri, grazie ai quali  i ricercatori potranno ottenere una caratterizzazione completa delle sorgenti. Per mettere questi numeri in contesto, sarebbero necessari 43 anni per ottenere gli stessi 4 miliardi di spettri utilizzando la IFS disponibile sul telescopio VLT dell’ESO oppure 375 anni dello strumento 4MOST che sta per diventare operativo, per osservare i 250 milioni di galassie, raggiungendo la stessa ‘profondità’ ”, dice Roland Bacon.

“Il Wide Field Spectroscopic Telescope produrrà scienza di punta e trasformativa, e permetterà di affrontare temi e domande scientifiche rilevanti riguardanti la cosmologia; la formazione, l’evoluzione, arricchimento chimico delle galassie (inclusa la Via Lattea); l’origine di stelle e pianeti; l’astrofisica che studia eventi transienti o variabili nel tempo; l’astrofisica-multimessaggera”, aggiunge Sofia Randich.

 Il Wide Field Spectroscopic Telescope (WST) verrà utilizzato per affrontare molte questioni aperte nell'astrofisica moderna: dalla formazione delle strutture su larga scala nell'universo primordiale, all'interazione delle galassie nella rete cosmica, dalla formazione della nostra stessa Galassia, fino all'evoluzione delle stelle e alla formazione di pianeti intorno a esse. Crediti: WST/V.Springel, Max-Planck-Institut für Astrophysik/ESO
Il Wide Field Spectroscopic Telescope (WST) verrà utilizzato per affrontare molte questioni aperte nell’astrofisica moderna: dalla formazione delle strutture su larga scala nell’universo primordiale, all’interazione delle galassie nella rete cosmica, dalla formazione della nostra stessa Galassia, fino all’evoluzione delle stelle e alla formazione di pianeti intorno a esse. Crediti: WST/V.Springel, Max-Planck-Institut für Astrophysik/ESO

Lo studio concettuale finanziato grazie ai fondi del programma Horizon Europe affronterà tutti gli aspetti rilevanti necessari per avere un quadro completo: il disegno del telescopio e degli strumenti che verranno installati a bordo, l’individuazione del sito in Cile dove collocare il telescopio stesso, l’ulteriore definizione dei casi scientifici, la predisposizione di un “survey plan” insieme allo sviluppo di un modello operativo per il telescopio, schemi e idee innovative per l’analisi dei dati acquisiti, con lo scopo di massimizzare il ritorno scientifico.

Lo studio concettuale presterà particolare attenzione alla sostenibilità ambientale.  L’impatto ambientale sarà infatti uno dei criteri che guiderà le scelte tecnologiche e si svilupperanno soluzioni che permetteranno di mitigare le principali fonti di emissione di anidride carbonica. L’impatto ambientale previsto sia in fase di costruzione, che in fase di operatività di WST sarà documentato in dettaglio alla fine dello studio.

Nel futuro prossimo, l’ESO aprirà una call for ideas per valutare i progetti più innovativi e promettenti dal punto di vista scientifico su cui investire dopo la realizzazione di Elt, la cui prima luce è prevista nel 2028. Se approvato, il WST diventerebbe la prossima grande infrastruttura dell’ESO, con il potenziale per affrontare questioni astrofisiche dal carattere rivoluzionario dal 2040 in poi.

Testo e immagini dall’Ufficio Stampa Istituto Nazionale di Astrofisica – INAF

PROGETTO FATE: PREVISIONI DELLA TURBOLENZA OTTICA PER SPINGERE IL VERY LARGE TELESCOPE AL MASSIMO DELLE SUE POTENZIALITÀ

Per ottenere immagini astronomiche sempre più accurate non basta solo aumentare le dimensioni dei nuovi telescopi o dotarli di strumentazione allo stato dell’arte. Le prestazioni della maggior parte degli strumenti che osservano il cielo, soprattutto nella luce visibile e nell’infrarosso, dipendono fortemente dalle condizioni meteorologiche in atto durante le operazioni, e in particolare dalla turbolenza dell’atmosfera sopra di essi.  Conoscere con sufficiente anticipo tali condizioni diventa quindi sempre più importante e decisivo per ottimizzare l’utilizzo dei migliori telescopi al mondo, come l’attuale Very Large Telescope (VLT) e il futuro Extremely Large Telescope (ELT), sulle Ande cilene, entrambi dell’European Southern Observatory (ESO). È cruciale poter sfruttare al massimo le capacità di questi gioielli della tecnologia compatibilmente con le condizioni atmosferiche massimizzando il ritorno scientifico prodotto.  Il costo tipico di una notte di osservazioni con il VLT si aggira infatti attorno ai 100mila euro: una cifra che spiega da sé quanto sia critico sfruttare al meglio le condizioni ideali dell’atmosfera. Con questi obiettivi l’Istituto Nazionale di Astrofisica ha vinto un bando internazionale di ESO finalizzato a produrre previsioni della turbolenza ottica (TO) e dei principali parametri atmosferici per ottimizzare le osservazioni astronomiche del VLT e di tutti gli strumenti di cui è equipaggiato. Il progetto selezionato, denominato FATE (Forecasting Atmosphere and Turbulence for ESO sites) vede la collaborazione del consorzio CNR/Regione Toscana LaMMA (Laboratorio di Monitoraggio e Modellistica Ambientale per lo sviluppo sostenibile), che fornisce servizi meteo anche per la Protezione Civile italiana.

Il progetto FATE è iniziato nel novembre 2022 e nel periodo settembre – dicembre 2023 è entrato in fase di ‘commissioning’, con i test di verifica delle specifiche tecniche e di funzionamento. Una volta terminato, si entrerà nella fase operativa in cui ESO potrà ottimizzare strategie osservative per il VLT e iniziare a pianificare quelle di ELT, la cui entrata in funzione è attualmente prevista per il 2028.

“Il commissioning è durato 4 mesi e aveva come scopo quello di verificare la robustezza del sistema di previsione e il rispetto delle specifiche tecniche richieste da ESO, ovvero dell’accuratezza delle previsioni dei distinti parametri a scale temporali differenti” dice Elena Masciadri, ricercatrice INAF e responsabile scientifica del progetto FATE. “Le fluttuazioni spazio-temporali della turbolenza ottica hanno scale tipiche molto più piccole di quelle dei classici parametri atmosferici e pertanto la previsione della turbolenza ottica è un obiettivo molto più difficile da raggiungere. Le specifiche tecniche di ESO sono inoltre abbastanza stringenti come è naturale aspettarsi, considerando che il VLT è senza dubbio uno dei telescopi di maggior prestigio al mondo ma anche uno dei più complessi, essendo costituito da ben quattro telescopi da 8,2 m di diametro più quattro telescopi ausiliari da 1.8 metri, dotati di una grande varietà di strumentazione e quindi di possibilità osservative. Possiamo dire di essere soddisfatti del commissioning – prosegue Masciadri – in quanto ci ha permesso di dimostrare la robustezza e l’affidabilità del sistema e allo stesso tempo di meglio definire i margini di miglioramento dell’accuratezza delle previsioni dove ci concentreremo nella seconda fase del progetto”.

I moderni telescopi sono ormai dotati di strumentazione intercambiabile che ha specifiche condizioni di utilizzo, che dipende anche dalle condizioni atmosferiche in essere durante le osservazioni. Alcuni di questi strumenti sono poco sensibili, ad esempio, ad una elevata concentrazione di umidità nell’aria, altri invece ne vengono quasi completamente “accecati”. Per alcune tipologie di programmi scientifici è molto importante raccogliere dati in presenza di poca turbolenza atmosferica, ad esempio in tutte le osservazioni che necessitano un elevato livello di dettaglio in piccole porzioni di cielo che sfruttano i benefici dell’ottica adattiva, come nella ricerca di esopianeti. In generale la conoscenza della turbolenza ottica è fondamentale in tutte le osservazioni supportate da ottica adattiva (OA).  L’ELT sarà una facility supportata al 100% dall’OA quindi la previsione della TO è certamente cruciale per l’astronomia del prossimo futuro.

Oltre a prevedere una serie di parametri atmosferici sopra il sito osservativo del VLT come temperatura, intensità e direzione del vento, umidità relativa, vapore acqueo e copertura nuvolosa, il progetto FATE si occuperà nelle ore notturne anche della previsione di parametri cosiddetti astroclimatici, tra cui il cosiddetto seeing, un parametro che indica il livello di perturbazione dell’atmosfera nella qualità delle immagini astronomiche. Ma cosa è la turbolenza ottica? Le fluttuazioni di temperatura nell’aria generano fluttuazioni dell’indice di rifrazione che a sua volta perturba il fronte d’onda della luce proveniente dagli oggetti celesti osservati. Tale fronte d’onda risulta così ‘imperfetto’ e l’immagine raccolta dal telescopio perde l’accuratezza dei dettagli, limitando così le potenzialità della strumentazione impiegata. Le tecniche di ottica adattiva hanno l’obiettivo di correggere queste perturbazioni, ma le loro prestazioni dipendono dallo stato della turbolenza: per questo è fondamentale poter disporre di una previsione accurata della turbolenza ottica.

Un sistema di previsione come quello previsto nel progetto FATE si basa su modelli idrodinamici che si definiscono a “mesoscala”: il modello viene applicato su una regione limitata della Terra, raggiungendo una più alta risoluzione rispetto a quello che potrebbe fornire una previsione su scala globale. Si tratta di una previsione che viene realizzata usando come dati di inizializzazione quelli prodotti da modelli a circolazione generale, ovvero applicati all’intero globo terrestre dallo European Centre for Medium Range Weather Forecast (ECMWF), il centro che agisce per conto dell’intera comunità europea.

L’esperienza di INAF nel campo delle previsioni di turbolenza ottica per l’astronomia acquisita negli anni è stata fondamentale per arrivare al progetto FATE:

“Abbiamo sviluppato un modello per la previsione della turbolenza ottica, denominato Astro-Meso-NH negli anni ’90 e da allora il sistema si è evoluto, è stato applicato a diversi tra i maggiori osservatori al mondo e più recentemente è stato automatizzato rendendo il modello utilizzabile in modalità operativa e non solo di ricerca” ricorda Elena Masciadri. “lo sviluppo delle moderne tecniche di ‘assimilation data’ e più in generale le tecniche statistiche di filtraggio spaziale ci hanno garantito livelli di accuratezza inimmaginabili solo una decina di anni fa. INAF – conclude Masciadri – ha la responsabilità scientifica del progetto FATE, curando lo sviluppo del sistema automatico di previsione operativa, dello studio e sviluppo degli algoritmi necessari per ottenere le specifiche tecniche del sistema di previsione e di tutte le attività necessarie al miglioramento delle prestazioni che verrà attuato nel corso dei primi anni della fase operativa. Il LaMMA ha la responsabilità operativa di gestire e monitorare il sistema di previsione, sia a livello giornaliero che su intervalli temporali più lunghi e di garantire quindi una copertura ottimale del sistema.” “Il software per la produzione delle previsioni della turbolenza ottica è operativo presso il LaMMA e sfrutta risorse computazionali dei sistemi HPC (High Performance Computing) dedicate esclusivamente a FATE e acquisite anche grazie ad un contributo di Regione Toscana. La collaborazione del LaMMA in questo progetto poggia in primis sul suo Centro di Calcolo che da oltre venti anni, ha mostrato la propria affidabilità in termini di robustezza e resilienza nell’ambito del servizio meteo svolto per la Regione Toscana” dice Alberto Ortolani, ricercatore del LaMMA e responsabile delle attività LaMMA in FATE. “Le notevoli competenze scientifiche sviluppate presso INAF nel campo della previsione della turbolenza ottica e la pluriennale esperienza del Consorzio LaMMA nel gestire servizi operativi ha fatto sì che la proposta risultasse vincitrice nella call internazionale aperta da ESO. Aver vinto con una proposta toscana ci rende particolarmente orgogliosi”.

Progetto FATE Very Large Telescope VLT La Via Lattea si staglia sopra ai telescopi che costituiscono il Very Large Telescope, all'Osservatorio del Paranal, in Cile. Crediti: P. Horálek/ESO
La Via Lattea si staglia sopra ai telescopi che costituiscono il Very Large Telescope, all’Osservatorio del Paranal, in Cile. Crediti: P. Horálek/ESO

Testo e immagine dall’Ufficio stampa dell’Istituto Nazionale di Astrofisica (INAF).

“LE PIANTE UTILIZZATE DALL’UOMO NON SONO SUFFICIENTEMENTE PROTETTE A LIVELLO GLOBALE”

L’allarme in una ricerca condotta dal UN Environment Programme World Conservation Monitoring Centre (UNEP-WCMC) e dai Royal Botanic Gardens, Kew, in collaborazione con l’Università di Torino e altri partner accademici.

In una ricerca pubblicata oggi, venerdì 19 gennaio, sulla rivista Science, gli scienziati del World Conservation Monitoring Centre del Programma delle Nazioni Unite per l’Ambiente e dei Royal Botanic Gardens, Kew, in collaborazione con l’Università di Torino e altri partner accademici, hanno quantificato per la prima volta la distribuzione globale delle piante utilizzate dall’uomo. L’analisi ha rivelato che le maggiori concentrazioni di piante si trovano ai tropici, “hotspot bioculturali” che dovrebbero essere aree prioritarie per la conservazione ma, ad oggi, sono in gran parte non protette. 

Le piante rendono possibile la vita e hanno permesso all’umanità di svilupparsi e prosperare. Oltre a nutrire gli esseri umani e il bestiame, a fornire medicinali vitali, carburante e materiali per l’abbigliamento e le infrastrutture, la diversità delle piante può fornire soluzioni ai problemi globali attuali e futuri, come la fame, le malattie e i cambiamenti climatici. Il team ha analizzato la distribuzione di 35.687 specie di piante con usi documentati da parte dell’uomo, che coprono 10 categorie, tra cui cibo umano e foraggio per animali, materiali, combustibili e medicinali.

L’analisi ha utilizzato oltre 11 milioni di osservazioni di specie vegetali registrate da botanici di tutto il mondo e algoritmi di apprendimento automatico all’avanguardia per prevedere la distribuzione geografica delle specie vegetali utilizzate e la loro rarità.

La ricerca ha identificato l’America centrale, le Ande tropicali, il Golfo di Guinea, l’Africa meridionale, l’Himalaya, il Sud-Est asiatico e la Nuova Guinea come centri eccezionali di specie vegetali rare e con alta diversità di piante utilizzate dall’uomo.

Nonostante la rete globale di aree protette copra il 16% delle terre emerse e delle acque interne della Terra, i modelli mostrano che c’è una maggiore probabilità che le piante utilizzate dall’uomo – in particolare le specie rare – si trovino al di fuori delle aree protette. Ciò è particolarmente evidente in aree ecologiche delle Americhe, dell’Africa meridionale, del Sud-est asiatico e dell’Australia.

La ricerca ha anche rilevato che un numero sproporzionato di specie vegetali utilizzate è presente in molti territori indigeni dell’America centrale, del Corno d’Africa, dell’Asia meridionale e sudorientale.

Le aree indigene che contengono una diversità vegetale eccezionalmente elevata dovrebbero essere considerate prioritarie, sia per la conservazione della natura che per la protezione delle conoscenze tradizionali. Sebbene i governi di tutto il mondo si siano impegnati a proteggere il 30% della Terra entro il 2030, rimangono ancora degli interrogativi su come le nuove aree protette possano garantire la conservazione a lungo termine della diversità vegetale e dei suoi contributi alle persone.

I risultati evidenziano la necessità di trovare modi per proteggere la biodiversità preservando al contempo la sussistenza, il benessere e le conoscenze tradizionali delle persone. La pianificazione della conservazione deve considerare meglio la diversità vegetale e il suo contributo alle popolazioni nella futura pianificazione della conservazione basata sulle aree, soprattutto nell’ambito dell’ambizioso obiettivo 3 del Kunming-Montreal Global Biodiversity Framework della COP 15 di aumentare le aree protette e conservate per coprire il 30% della terra, delle acque interne e degli oceani del mondo entro il 2030.

“Il risultato di questo lavoro collaborativo – dichiara Tiziana Ulian, docente del Dipartimento di Scienze della Vita e Biologia dei Sistemi dell’Università di Torino e senior research leader del Royal Botanic Gardens, Kew – è un passo importante per comprendere meglio l’enorme diversità delle piante utilizzate dall’uomo, la loro importanza culturale e la distribuzione in tutto il mondo. Proteggendo le aree con un’elevata diversità delle piante possiamo non solo contribuire ad affrontare la crisi globale che affligge la biodiversità, ma anche aiutare a sostenere la transizione verso un futuro sostenibile per l’umanità sul pianeta. Questa alta diversità vegetale può aiutarci a sviluppare Nature-based solutions (NBS) per affrontare sfide globali, come il cambiamento climatico, la sicurezza alimentare. la salute umana e la gestione del rischio di calamità ambientali”.

 

Testo e foto dall’Ufficio Stampa Area Relazioni Esterne e con i Media Università degli Studi di Torino

INAUGURATO QUBIC: UN MODO NUOVO DI STUDIARE L’UNIVERSO PRIMORDIALE

 
Oggi, mercoledì 23 novembre, viene ufficialmente inaugurato in Argentina il telescopio QUBIC (Q-U Bolometric Interferometer for Cosmology), uno strumento innovativo che osserverà il fondo cosmico a microonde, l’eco residua del Big Bang, da un sito desertico di alta quota (5000 m) sulle Ande argentine, vicino alla località San Antonio de Los Cobres.
Alla cerimonia, che prevede una visita al telescopio, partecipano i rappresentanti degli Istituti finanziatori del progetto e del team scientifico internazionale.

Il progetto vede l’Italia protagonista grazie ai contributi scientifici e tecnologici forniti dall’INFN (Istituto Nazionale di Fisica Nucleare) e dalle Università degli Studi di Milano, Università di Milano-Bicocca, Università di Roma “Tor Vergata” e Sapienza Università di Roma.

QUBIC si concentrerà sulla misura del segnale causato dall’interazione delle onde gravitazionali primordiali con la radiazione elettromagnetica che permea l’universo.
Dopo il suo sviluppo e l’integrazione avvenuta presso i laboratori europei delle Università e degli enti di ricerca coinvolti nella collaborazione, QUBIC è arrivato in Argentina, nella città di Salta, nel luglio 2021, dove è stato calibrato e testato in laboratorio.
Inaugurato QUBIC
I risultati di queste attività sono riportati in otto articoli apparsi sul “Journal of Cosmology and Astroparticle Physics” ad aprile di quest’anno e hanno confermato il corretto funzionamento dello strumento e dell’interferometria bolometrica, ossia la tecnica di nuova concezione su cui si baseranno le osservazioni di QUBIC, che combina l’elevatissima sensibilità dei rivelatori bolometrici raffreddati quasi allo zero assoluto (-273 °C) con la precisione degli strumenti interferometrici.
L’obiettivo di osservare i debolissimi effetti di polarizzazione nelle microonde originatesi nelle primissime fasi dell’espansione dell’universo dopo il Big Bang, ovvero la direzione in cui il campo elettricomagnetico a esse associato oscilla mentre si propaga, ha reso necessario sviluppare e realizzare uno strumento complesso e unico nel suo genere. Oggi QUBIC rappresenta infatti una risorsa unica nel panorama mondiale delle misure sull’universo primordiale.

“Non c’è altro modo di investigare sperimentalmente con esperimenti a terra quei fenomeni che si pensa siano avvenuti durante la cosiddetta ‘inflazione cosmica’, quando l’energia in gioco era spaventosamente grande. QUBIC è quindi importante sia per la cosmologia sia per la fisica fondamentale”, spiega Silvia Masi, docente presso Sapienza Università di Roma e ricercatrice INFN, che coordina la partecipazione italiana all’esperimento.

“QUBIC – aggiunge Oliviero Cremonesi, presidente della Commissione Scientifica Nazionale per le ricerche di Fisica Astroparticelare dell’INFN – mira a misurare la polarizzazione del fondo cosmico a microonde con una possibilità unica di individuare i segni lasciati dalle onde gravitazionali liberate nei primi istanti di vita dell’universo”.
L’efficacia di QUBIC e del metodo di misura impiegato per studiare l’universo primordiale sono state verificate dalla collaborazione nel corso del lungo periodo compreso tra i primi test condotti in laboratorio, a Parigi, e l’arrivo dello strumento in Argentina, nel laboratorio di Salta, dove sono state effettuate le prime osservazioni del cielo. L’installazione dell’esperimento a San Antonio de Los Cobres, avvenuta durante il mese di ottobre, sancisce quindi un successo che giunge al termine un periodo di lunga preparazione e che consentirà, grazie alla straordinaria trasparenza e stabilità dell’atmosfera del sito di osservazione, di iniziare misure ultrasensibili.
“Il team responsabile dell’installazione di QUBIC, al quale ha partecipato anche Francesco Cavaliere, responsabile dell’officina della Statale di Milano, ha svolto un lavoro eccellente in pochissimo tempo, in condizioni particolarmente impegnative a causa dell’altitudine e del forte vento in quota. Le prime misure dimostreranno ‘sul campo’ l’efficacia dell’interferometria bolometrica osservando sorgenti astronomiche. Approssimativamente fra un anno, lo strumento verrà inoltre reso ancora più competitivo, aumentando il numero di antenne e rivelatori, in modo da poter eseguire le misure di interesse cosmologico entro tre anni”, illustra Aniello Mennella, docente all’Università Statale di Milano e ricercatore INFN.
“La misura di un segnale così debole – specifica Mario Zannoni, docente all’Università di Milano-Bicocca e ricercatore INFN – verrà ritenuta esente da errori sistematici solo se si avranno risultati consistenti provenienti da strumenti molto diversi. Proprio per questo motivo QUBIC, unico interferometro bolometrico, rappresenta una risorsa insostituibile nello studio dei primi attimi di vita dell’universo”.
“Grazie alle capacità multispettrali e di autocalibrazione, QUBIC produrrà dati del tutto originali e complementari a quelli degli altri esperimenti, offrendo ai ricercatori innumerevoli possibilità di controllo incrociato e quindi una robustezza senza pari dei risultati”, conclude Giancarlo De Gasperis, ricercatore presso il Dipartimento di Fisica dell’Università di Roma “Tor Vergata” e INFN.
QUBIC è il risultato della collaborazione di 130 ricercatori, ingegneri e tecnici in Francia, Italia, Argentina, Irlanda e Regno Unito. Lo strumento è stato integrato a Parigi presso i laboratori APC nel 2018 e calibrato durante il 2019-2021.
Il contributo italiano è stato fondamentale per lo sviluppo dello strumento, e continuerà ad esserlo nelle fasi successive dell’esperimento. Lo strumento è ospitato in un criostato, realizzato nei laboratori della Sapienza e della Sezione di Roma dell’INFN, capace di raffreddare vicino allo zero assoluto non solo i rivelatori, ma anche tutto il sistema ottico dell’interferometro. Lo stesso gruppo ha realizzato anche il sistema crio-meccanico che permette di misurare lo stato di polarizzazione della radiazione. Italiane sono anche altre componenti criogeniche, che lavorano a una temperatura inferiore a -270 °C, come le avanzatissime antenne corrugate che raccolgono la radiazione dal cielo, realizzate nei laboratori dell’Università e della Sezione INFN di Milano Statale, mentre le ottiche che la focalizzano sui rivelatori e il sistema di otturatori che permette di variare la configurazione dell’interferometro e di autocalibrarlo sono realizzate dall’Università e dalla Sezione INFN di Milano Bicocca.
“L’inizio della presa dati di QUBIC è un segno tangibile dell’interesse dell’INFN per le ricerche sulla radiazione cosmica di fondo ed è stato reso possibile anche grazie a un significativo contributo dell’INFN”, conclude Marco Pallavicini, membro della Giunta Esecutiva dell’INFN.
Inaugurato QUBIC
Inaugurato QUBIC: un modo nuovo di studiare l’universo primordiale
RIFERIMENTI
● Pagina web di QUBIC: http://qubic.in2p3.fr/wordpress/
● Numero speciale di JCAP (Journal of Cosmology and Astroparticle Physics):
https://iopscience.iop.org/journal/1475-7516/page/Special%20Issues
Articoli correlati:
https://scientificult.it/2022/04/21/qubic-un-modo-nuovo-di-studiare-luniverso-primordiale/
Testo, video e foto dal Settore Ufficio stampa e comunicazione Sapienza Università di Roma

Come la vita e il nostro Pianeta sono evoluti insieme

Parte il progetto CoEvolve: indaga la coevoluzione della vita con la Terra

CoEvolve indaga la coevoluzione della vita con la Terra

CoEvolve, il progetto finanziato dal Consiglio Europeo delle Ricerche, guidato dal microbiologo della Federico II di Napoli, Donato Giovannelli, è ufficialmente decollato. Il progetto condurrà il team del Giovannelli-Lab dall’Artico ai deserti delle Ande cilene, e poi dal Costa Rica all’Islanda, alla ricerca di microrganismi che verranno raccolti negli ambienti estremi del nostro pianeta per capire come la Terra e la vita si sono mutualmente influenzati, in una sorta di coevoluzione tra la geosfera e la biosfera terrestre.

‘Quando guardiamo il nostro pianeta tendiamo a pensare che la geologia sia una forza inarrestabile che modella i continenti e gli oceani, e che la vita si adatti a questi cambiamenti ed evolva per tenere il passo. Questo è vero per la maggior parte del tempo, ma ci sono state diverse occasioni durante la storia della Terra in cui l’evoluzione di alcuni processi biologici hanno influenzato notevolmente la geologia, la mineralogia e quindi la traiettoria evolutiva della Terra’ – spiega il coordinator Donato Giovannelli. La realtà è che il nostro pianeta e la vita si sono coevoluti nel tempo, influenzandosi a vicenda per oltre 4 miliardi di anni. ‘È come una delicata danza in cui la vita e il pianeta Terra lavorano insieme per mantenere l’abitabilità del pianeta e sostenere la vita stessa’, dice Donato Giovannelli. Nonostante questo, l’estensione della coevoluzione e le sue forze motrici sono in gran parte sconosciute’.

Il progetto CoEvolve mira a capire come la vita, in particolare i microrganismi, e il pianeta si sono coevoluti nel tempo, concentrandosi sul ruolo dei metalli. Il progetto è finanziato con una sovvenzione di 2,1 milioni di euro dal Consiglio Europeo della Ricerca (ERC Starting Grant 2020).

I microrganismi sono fondamentali per il funzionamento del pianeta e sono stati la forza trainante nel ciclo dei nutrienti e degli elementi dall’origine della vita su questo pianeta. Per controllare il ciclo dei nutrienti e degli elementi, i microrganismi utilizzano un insieme di proteine che contengono metalli nel loro nucleo, utilizzati per controllare efficacemente le reazioni chimiche. A causa di questa relazione, il ruolo dei metalli è importante per la vita (basti pensare solo a cosa comporta un calo di ferro nel sangue).

‘Le conoscenze degli ultimi decenni sulla evoluzione della vita terrestre ci ha fatto comprendere che la disponibilità di metalli è cambiato drammaticamente nel tempo, in gran parte a causa del cambiamento delle concentrazioni di ossigeno nell’atmosfera – sottolinea Giovannelli -. In sintesi, metalli potrebbero aver controllato in una certa misura l’evoluzione della vita microbica stessa’.

Il progetto CoEvolve utilizza microrganismi raccolti in ambienti estremi, dai poli ai deserti, che sono una sorta di modello di antichi tempi geologici, per capire la relazione tra disponibilità di metallo e metabolismo microbico. Una selezione di ambienti diversi, da sorgenti termali negli altipiani del Cile all’Artico norvegese, saranno campionati nei prossimi 5 anni in una serie di missioni la cui delicata logistica richiede una lunga e attenta pianificazione.

CoEvolve coevoluzione
CoEvolve indaga la coevoluzione della vita con la Terra

Donato Giovannelli, dunque, sta raccogliendo nel Giovannelli-Lab un team di scienziati e scienziate con diversi background per affrontare la natura multidisciplinare del progetto CoEvolve, che richiede competenze in microbiologia, biologia molecolare, geochimica, geologia, astrobiologia e big data. La prima fase del progetto è attualmente in corso, con l’allestimento di un nuovo laboratorio geo-bio presso l’Università di Napoli Federico II, e a partire dal 20 febbraio 2022, il team comincia con la prima tappa delle missioni: presso la base artica Dirigibile Italia del CNR (Isole Svalbard, Norvegia) a Ny-Ålesund  (78°55′ N, 11°56′ E). La prima spedizione, i cui dati contribuiranno al CoEvolve, è finanziata con un Progetto di Ricerca in Artico del MUR.

“La mia speranza è che il progetto cambierà il modo in cui comprendiamo e interagiamo con il mondo microbico, aprendo nuove strade in diversi campi come la bioremediation, le biotecnologie e la ricerca sul microbioma umano e potrebbe anche cambiare il modo in cui cerchiamo la vita nell’Universo”, conclude Donato Giovannelli.

 

CoEvolve in breve:

–        Al via il progetto CoEvolve del Dipartimento di Biologia della Federico II di Napoli. Durerà 5 anni, beneficia di un finanziamento ERC europeo di 2.1 milioni di euro. Alla sua guida il microbiologo Donato Giovannelli.

–        Studierà organismi di ambienti estremi, raccolti in Cile, Islanda, Norvegia, Russia, Italia, Costa Rica, per comprendere come la geologia terrestre ha influenzato la vita, e come la vita, a modo suo, abbia a sua volta influenzato la geologia.

–        La prima tappa, in atto in questo momento, alle Isole Svalbard, in Norvegia, presso la base artica del CNR Dirigibile Italia. Il team di microbiologi raccoglierà microorganismi adattati ad un ambiente estremamente freddo.

 

Testo e foto dall’Ufficio Stampa Università Federico II di Napoli.