News
Ad
Ad
Ad
Tag

alghe

Browsing

La fisica del biliardo per guidare i microrganismi a esplorare l’ambiente

Lo studio, coordinato dalla Sapienza, ha messo a punto un metodo ispirato alla dinamica del tavolo da biliardo, per orientare il movimento di microrganismi all’interno di un ambiente delimitato. Tra le possibili applicazioni, la progettazione di algoritmi di navigazione per robot in grado di esplorare ambienti complessi e sconosciuti.

Lo studio è pubblicato su PNAS.

Particelle inanimate, come le molecole di un gas, raggiungono l’equilibrio termico, uno stato stabile in cui si distribuiscono uniformemente all’interno di un contenitore, indipendentemente dalla sua forma o dal materiale di cui è composto.

Oggetti che si muovono autonomamente invece quali microrganismi o robot, sono molto sensibili a quello che succede sulle pareti dell’ambiente che li contiene. Comprendere la relazione tra gli effetti al bordo e le distribuzioni spaziali potrebbe permettere di progettare contenitori con forme ottimizzate per il controllo geometrico della cosiddetta materia attiva.

In uno studio pubblicato su PNAS, Roberto Di Leonardo del dipartimento di Fisica della Sapienza insieme a ricercatori del Centro di Ricerca Biologica (Biological Research Center) in Ungheria hanno introdotto un nuovo metodo che consente di guidare il movimento di particelle attive in base alle regole con cui rimbalzano sui bordi dell’ambiente in cui si muovono.

Il metodo è stato testato con la microalga unicellulare Euglena gracilis che, come una palla su un tavolo da biliardo, si muove in linea retta rimbalzando sul confine tra luce e ombra di una zona illuminata. A differenza delle molecole di un gas che si distribuiscono uniformemente all’interno di un contenitore, le microalghe possono ricoprire una “macchia” di luce con distribuzioni altamente sensibili alle condizioni al contorno. In particolare, attraverso la progettazione di una sorta di “microbiliardo” multistadio, è stato possibile guidare le microalghe in regioni di accumulazione definite soltanto dalla forma di questo “biliardo di luce”.

In generale, questo metodo rende possibile progettare la forma di contenitori in modo che i oggetti attivi al loro interno si accumulino spontaneamente o evitino determinate regioni.

Le applicazioni potrebbero essere numerose: dal controllo spaziale e all’isolamento dei microrganismi fino alla progettazione di algoritmi di navigazione per robot microscopici e macroscopici in grado di esplorare in modo più efficiente ambienti complessi e sconosciuti.

“È sempre entusiasmante vedere – dichiara Roberto Di Leonardo – come concetti della fisica classica, sviluppati originariamente per la materia inanimata, possono essere generalizzati a oggetti che si muovono autonomamente, ciò che oggi chiamiamo materia attiva. Ogni volta che questo accade, emergono nuove idee che non solo approfondiscono la nostra comprensione di ciò che pensavamo di sapere già, ma aprono anche la strada a nuove applicazioni per sistemi viventi o robotici”.

Riferimenti bibliografici:

R. Di Leonardo, A. Búzás, L. Kelemen, D. Tóth, S.Z. Tóth, P. Ormos, & G. Vizsnyiczai, Active billiards: Engineering boundaries for the spatial control of confined active particles, Proc. Natl. Acad. Sci. U.S.A. (2025) 122 (38) e2426715122, DOI: https://doi.org/10.1073/pnas.2426715122 

Testo e immagine dal Settore Ufficio stampa e comunicazione Sapienza Università di Roma

Inquinamento da farmaci: gli effetti degli antinfiammatori sull’ambiente marino

L’ibuprofene, il cui uso è cresciuto molto durante la pandemia di COVID-19, può ridurre la capacità delle piante marine di rispondere a stress ambientali. La ricerca dell’Università di Pisa pubblicata sul Journal of Hazardous Materials.

Una cura per noi, un pericolo per l’ambiente. Per la prima volta una ricerca dell’Università di Pisa, appena pubblicata sul Journal of Hazardous Materials, ha esaminato l’impatto di diverse concentrazioni di ibuprofene, un comune antinfiammatorio molto utilizzato durante la pandemia di COVID-19, sulle angiosperme marine.

“Le angiosperme marine svolgono ruoli ecologici cruciali e forniscono importanti servizi ecosistemici, ad esempio proteggono le coste dall’erosione, immagazzinano carbonio e producono ossigeno, supportano la biodiversità, e costituiscono una nursery per numerose specie animali”, spiega la professoressa Elena Balestri del dipartimento di Biologia dell’Ateneo pisano.

In particolare, la ricerca si è focalizzata su Cymodocea nodosa (Ucria, Ascherson), una specie che cresce in aree costiere poco profonde, anche in prossimità della foce dei fiumi, zone spesso contaminate da molti inquinanti, farmaci compresi.

La sperimentazione è avvenuta in mesocosmi all’interno dei quali le piante sono state esposte per 12 giorni a concentrazioni di ibuprofene rilevate nelle acque costiere del Mediterraneo. È così emerso che la presenza di questo antinfiammatorio a concentrazioni di 0,25 e 2,5 microgrammi per litro causava nella pianta uno stress ossidativo ma non danni irreversibili. Se invece la concentrazione era pari a 25 microgrammi per litro, le membrane cellulari e l’apparato fotosintetico erano danneggiate, compromettendo in tal modo la resilienza della pianta a stress ambientali.

“Il nostro è il primo studio che ha esaminato gli effetti di farmaci antinfiammatori sulle piante marine – dice Elena Balestri – Attualmente, si stima che il consumo globale di ibuprofene superi le 10.000 tonnellate annue e si prevede che aumenterà ulteriormente in futuro, e poiché gli attuali sistemi di trattamento delle acque reflue non sono in grado di rimuoverlo completamente anche la contaminazione ambientale aumenterà di conseguenza”.

“Per ridurre il rischio di un ulteriore aggravamento del processo di regressione delle praterie di angiosperme marine in atto in molte aree costiere – conclude Balestri – sarà quindi necessario sviluppare nuove tecnologie in grado di ridurre l’immissione di ibuprofene e di altri farmaci negli habitat naturali, stabilire concentrazioni limite di questo contaminante nei corsi d’acqua e determinare le soglie di tolleranza degli organismi, non solo animali ma anche vegetali”.

Complessivamente, le strutture dell’Ateneo pisano coinvolte nello studio sono i dipartimenti di Biologia, di Farmacia e di Scienze della Terra, il Centro per l’Integrazione della Strumentazione scientifica (CISUP) e il Centro Interdipartimentale di Ricerca per lo Studio degli Effetti del Cambiamento Climatico (CIRSEC).

In particolare, la ricerca è stata realizzata grazie alla collaborazione di tre team di ricerca. Il gruppo di Ecologia, costituito dalla professoressa Elena Balestri, dal professore Claudio Lardicci e dalla dottoressa Virginia Menicagli, assegnista di ricerca presso il Dipartimento di Biologia, si occupa da anni dello studio degli impatti di contaminanti, tra cui plastiche, microplastiche, nanoplastiche e filtri solari, e dei cambiamenti climatici sugli organismi vegetali marini e terrestri tipici della fascia costiera. Il gruppo di Botanica, con la professoressa Monica Ruffini Castiglione e quello di Fisiologia Vegetale, con le dottoresse Carmelina Spanò, Stefania Bottega e il dottor Carlo Sorce, studiano invece le risposte delle piante all’inquinamento da metalli e da micro e nanoplastiche. Inoltre, conducono ricerche sulla biologia delle piante degli ambienti costieri, in particolare sui meccanismi di risposta agli stress causati dai fattori ambientali, sia naturali, sia di origine antropica.  Il gruppo di Biologia Farmaceutica, infine, costituito dalla professoressa Marinella De Leo e dalla dottoressa Emily Cioni, dottoranda del Dipartimento di Farmacia, si occupa dello studio chimico di prodotti naturali prodotti dalle piante.

Prateria di Cymodocea nodosa in regressione
Inquinamento da farmaci: gli effetti degli antinfiammatori sull’ambiente marino; uno studio pubblicato sul Journal of Hazardous Materials. In foto, prateria di Cymodocea nodosa in regressione

Riferimenti bibliografici:

Virginia Menicagli, Monica Ruffini Castiglione, Emily Cioni, Carmelina Spanò, Elena Balestri, Marinella De Leo, Stefania Bottega, Carlo Sorce, Claudio Lardicci, Stress responses of the seagrass Cymodocea nodosa to environmentally relevant concentrations of pharmaceutical ibuprofen: Ecological implications,
Journal of Hazardous Materials, Volume 476, 2024, 135188, ISSN 0304-3894, DOI: https://doi.org/10.1016/j.jhazmat.2024.135188

 

Testo e foto dall’Ufficio stampa dell’Università di Pisa.

Riscaldamento globale: entro 2100 pericolo estinzione per alghe e foreste marine

L’Università di Pisa partner dello studio pubblicato sulla rivista Nature Communications, secondo il team di ricerca le regioni polari potrebbero essere l’ultimo rifugio per queste specie

Se non ci saranno interventi per mitigare subito le emissioni di gas serra, le foreste macroalgali e le fanerogame (fra cui Posidonia oceanica, una pianta superiore endemica del Mediterraneo) sono a rischio estinzione entro il 2100. Il riscaldamento globale rischia di provocare a livello mondiale una riduzione fra l’80 e il 90% degli ambienti adatti alla sopravvivenza di queste specie che potranno trovare rifugio solo nelle regioni polari. Lo scenario emerge da uno studio pubblicato sulla rivista Nature Communications e condotto dalle Università di Helsinki e di Pisa, dall’Istituto superiore per la protezione e la ricerca ambientale (ISPRA) e dal Centro di eccellenza australiano per la Biodiversità e il patrimonio naturale (CABAH).

Attraverso modelli statistici, la ricerca ha mappato la distribuzione di 207 specie, 185 macroalghe brune e 22 fanerogame, a partire dal 2015 con proiezioni annuali sino alla fine del secolo. Questi organismi, presenti attualmente in grande quantità sulle coste (le macroalghe occupano 2,63 milioni di km2 e le fanerogame 1,65), sono essenziali per la vita marina in quanto producono ossigeno attraverso la fotosintesi, immagazzinano anidride carbonica, contribuiscono a mantenere una elevata biodiversità, fanno da ‘nursery’ a numerose specie di pesci e crostacei di interesse commerciale e proteggono dall’erosione costiera.

“La questione è globale, le foreste macroalgali popolano le coste rocciose di tutto il mondo, dalla battigia ad alcune decine di metri di profondità – spiega il professore Lisandro Benedetti-Cecchi del dipartimento di Biologia dell’Università di Pisa – Nel Mediterraneo queste sono costituite prevalentemente da alghe brune arborescenti del genere Cystoseira, piante le cui “chiome” si innalzano dal fondo per alcune decine di centimetri formando delle vere e proprie foreste in miniatura. Insieme a Posidonia oceanicale alghe arborescenti sono una riserva di energia che alimenta il funzionamento dell’intero sistema marino costiero e in ultima analisi la nostra vita sulla terraferma”.

L’impatto del cambiamento climatico non sarà comunque uniforme a livello globale, con zone che potranno perdere o guadagnare in termini di biodiversità, in un bilancio complessivo comunque negativo. Secondo la stime, le foreste di macroalghe e le fanerogame diminuiranno soprattutto in Europa, nel Mar Baltico, nel Mar Nero, nella costa pacifica del Sud America, nella penisola coreana e nelle coste nord-occidentali e sud-orientali dell’Australia.

Gli studi sul cambiamento climatico di solito riguardano l’ambiente terrestre, mentre il mare resta di solito relativamente inesplorato – conclude il professore Lisandro Benedetti-Cecchi – questo lavoro vuole ribaltare la prospettiva, e quantificare i cambiamenti globali che riguardano l’ecosistema marino”.

Riferimenti bibliografici:

Manca, F., Benedetti-Cecchi, L., Bradshaw, C.J.A. et al. Projected loss of brown macroalgae and seagrasses with global environmental change, Nat Commun 15, 5344 (2024), DOI: https://www.nature.com/articles/s41467-024-48273-6

Riscaldamento globale: entro 2100 pericolo estinzione per alghe e foreste marine; lo studio è pubblicato sulla rivista Nature Communications. Nell’immagine, Posidonia oceanica. Foto di Frédéric Ducarme, CC BY-SA 4.0

Testo e foto (ove non indicato diversamente) dall’Ufficio Stampa dell’Università di Pisa

Dalla curcuma una soluzione per salvare i coralli dai cambiamenti climatici

L’Istituto Italiano di Tecnologia – IIT e l’Università di Milano-Bicocca hanno dimostrato l’efficacia di una sostanza estratta dalla curcuma nella protezione dei coralli dai danni dei cambiamenti climatici. La molecola viene somministrata attraverso un biomateriale biodegradabile, sviluppato dagli stessi partner, e nei test svolti all’Acquario di Genova si è dimostrata efficace nel proteggere i coralli dallo sbiancamento.

Milano, 19 luglio 2023 – L’Istituto Italiano di Tecnologia – IIT e l’Università degli Studi di Milano-Bicocca, in collaborazione con l’Acquario di Genova, hanno recentemente pubblicato su ACS Applied Materials and Interfaces, uno studio (“Biodegradable Zein-Based Biocomposite Films for Underwater Delivery of Curcumin Reduce Thermal Stress Effects in Corals”, DOI: 10.1021/acsami.3c01166) dove è stata dimostrata l’efficacia della curcumina, una sostanza antiossidante estratta dalla curcuma, nel ridurre lo sbiancamento dei coralli, fenomeno causato principalmente dai cambiamenti climatici. I due partner coinvolti hanno sviluppato un biomateriale biodegradabile per somministrare la molecola senza provocare danni all’ambiente marino circostante. I test eseguiti all’Acquario di Genova hanno dimostrato un’efficacia significativa nel prevenire lo sbiancamento dei coralli.

Scogliera corallina in fase di recupero nei pressi del MaRHE center, isola di Magoodhoo, Atollo di Faafu, Maldive. Crediti: Università Milano-Bicocca

Lo sbiancamento dei coralli è un fenomeno che, negli eventi estremi, determina la morte di questi organismi con conseguenze devastanti per le barriere coralline, queste ultime fondamentali per l’economia globale, la protezione delle coste dai disastri naturali e la biodiversità marina. La maggior parte dei coralli vive in simbiosi con alghe microscopiche, indispensabili per la loro sopravvivenza e responsabili dei loro colori brillanti. A causa dei cambiamenti climatici le temperature di mari e oceani sono in aumento, condizione che interrompe il rapporto tra questi due organismi. Quando ciò accade, il corallo, ormai bianco per la perdita delle alghe, rischia letteralmente di morire di fame.

Negli ultimi anni, a seguito dei cambiamenti climatici, questa condizione ha colpito la maggior parte delle barriere scogliere coralline più importanti del mondo, inclusa la Grande Barriera Corallina australiana. Tuttavia, a oggi non esistono interventi di mitigazione efficaci per prevenire lo sbiancamento dei coralli senza mettere in serio pericolo l’integrità di questi habitat e l’eccezionale biodiversità associata.

curcuma coralli
Corallo Stylophora pistillata ricoperto del biomateriale durante le prove di stress termico.
Crediti: Acquario di Genova

I ricercatori e le ricercatrici dell’Istituto Italiano di Tecnologia e dell’Università degli Studi di Milano-Bicocca, in collaborazione con l’Acquario di Genova, hanno dimostrato l’efficacia di una molecola, la curcumina, nel bloccare lo sbiancamento dei coralli provocato dai cambiamenti climatici. La curcumina viene somministrata in maniera controllata sul corallo applicando un biomateriale a base di zeina, una proteina derivata dal mais, che è stato sviluppato dagli stessi partner per essere sicuro per l’ambiente.

Durante i test, svolti nell’Acquario di Genova, si sono simulate le condizioni di surriscaldamento dei mari tropicali alzando la temperatura dell’acqua fino a 33°C. In questa condizione tutti i coralli non trattati sono risultati colpiti dal fenomeno dello sbiancamento come succederebbe in natura mentre, al contrario, tutti gli esemplari trattati con la curcumina non hanno mostrato segni di tale fenomeno, risultati che rendono questo metodo efficace nel ridurre la suscettibilità dei coralli allo stress termico. Per questo studio è stata utilizzata una specie di corallo (Stylophora pistillata) tipica dell’oceano Indiano tropicale e inserita nella Lista rossa IUCN (Unione Internazionale per la Conservazione della Natura) tra le specie minacciate dal rischio di estinzione.

Simone Montano
Simone Montano. Crediti: Università Milano-Bicocca

«Questa tecnologia è oggetto di una domanda di brevetto depositata, infatti i prossimi passi di questa ricerca si focalizzeranno sull’applicazione in natura e su larga scala – afferma il primo autore dello studio Marco Contardi, ricercatore affiliato del gruppo Smart Materials dell’Istituto Italiano di Tecnologia e ricercatore del DISAT (Dipartimento di Scienze dell’Ambiente e della Terra) dell’Università degli Studi di Milano-Bicocca – allo stesso tempo, esamineremo l’utilizzo di altre sostanze antiossidanti di origine naturale per bloccare il processo di sbiancamento e prevenire così la distruzione delle barriere coralline».

Marco Contardi, Foto di D. Farina.Crediti: Istituto Italiano di Tecnologia - © IIT, all rights reserved
Marco Contardi. Foto di D. Farina. Crediti: Istituto Italiano di Tecnologia – © IIT, all rights reserved

«L’utilizzo di nuovi materiali biodegradabili e biocompatibili capaci di rilasciare sostanze naturali in grado di ridurre lo sbiancamento dei coralli rappresenta una novità assoluta – dichiara Simone Montano ricercatore del DISAT e vice direttore del MaRHE Center (Marine Research and High Education Center) dell’Università degli Studi di Milano-Bicocca – credo fortemente che questo approccio innovativo rappresenterà una trasformazione significativa nello sviluppo di strategie per il recupero degli ecosistemi marini».

Testo e foto dall’Ufficio stampa Università di Milano-Bicocca

Dinamiche evolutive e biodiversità: nuove scoperte dal lago più antico d’Europa

Un nuovo studio internazionale, a cui hanno preso parte ricercatrici del Dipartimento di Biologia ambientale della Sapienza, ha evidenziato come i cambiamenti climatici in corso costituiscano un pericolo anche per un ecosistema antico e resiliente come quello del lago di Ocrida, serbatoio di biodiversità per il nostro continente. Il lavoro è stato pubblicato sulla rivista Science Advances 

Lago di Ocrida biodiversità Europa
Il lago di Ocrida, formatosi 1,4 milioni di anni, al confine tra l’Albania e la Macedonia del Nord (Photo credit: Thomas Wilke)

Un gruppo di ricerca internazionale guidato da Thomas Wilke dell’Università Justus Liebig di Giessen (Germania) a cui hanno partecipato Laura Sadori e Alessia Masi del Dipartimento di Biologia ambientale della Sapienza Università di Roma, ha gettato nuova luce sull’evoluzione biologica utilizzando il record sedimentario profondo del lago di Ocrida (al confine tra l’Albania e la Macedonia del Nord) il quale, con una storia lunga 1,4 milioni di anni e oltre 300 specie endemiche, non è solo il lago più antico d’Europa, ma anche uno dei più ricchi di biodiversità. I risultati del lavoro sono stati pubblicati sulla rivista Science Advances

Per studiare le dinamiche evolutive del lago a partire dalla sua formazione, i ricercatori hanno confrontato dati ambientali e climatici con i reperti fossili di oltre 150 specie endemiche di diatomee (alghe unicellulari spesso presenti in depositi lacustri) ritrovate lungo la sequenza sedimentaria lunga 568 metri.

Lago di Ocrida biodiversità Europa
Immagine al microscopio elettronico a scansione in falsi colori della diatomea Scoliodiscus glaber, specie endemica del lago di Ocrida. Dimensione del guscio di silice 0,1 mm (Photo credit: Z. Levkov)

“I dati – spiega Alessia Masi della Sapienza – hanno mostrato che poco dopo la formazione del lago, e nel giro di poche migliaia di anni, sono avvenuti i primi eventi evolutivi che hanno portato velocemente alla formazione di nuove specie. Molte di queste specie hanno avuto vita breve, perché si estinsero altrettanto rapidamente, quando il lago era ancora relativamente piccolo e poco profondo”.

Lo studio evidenzia infatti come laghi “nuovi” e di piccole dimensioni offrono grandi opportunità di speciazione. D’altra parte, però, questi ecosistemi sono anche particolarmente sensibili ai cambiamenti ambientali quali le fluttuazioni di temperatura, le variazioni edafiche e di livello lacustre.

Con l’aumento della superficie e della profondità del lago i processi di speciazione ed estinzione hanno subito un drastico rallentamento. Ciò è imputabile alla riduzione del numero di nuovi habitat, all’elevato numero di specie, prossimo alla massima capacità dell’ambiente e delle sue risorse, nonché alla crescente capacità del lago nel mitigare il microclima.

“La novità di questo lavoro – conclude Laura Sadori della Sapienza – sta nel fatto che la storia ecosistemica del Lago di Ocrida, raccontata da un insieme di specie “effimere”, cioè evolutivamente di breve durata ma sviluppate in una comunità stabile di specie longeve, sia in realtà ricca di elementi utili alla comprensione delle dinamiche evolutive biologiche. Per tale ragione i risultati del lavoro potranno avere un forte grande impatto anche per le future ricerche sulla biodiversità”.

Piattaforma di perforazione utilizzata per recuperare la sequenza di sedimenti studiata nel lavoro (Photo credit: Thomas Wilke)

Riferimenti:

Wilke T., Hauffe T., Jovanovska E., Cvetkoska A., Donders T., Ekschmitt K., Francke A., Lacey J.H., Levkov Z., Marshall C.R., Neubauer T.A., Silvestro D., Stelbrink B., Vogel H., Albrecht Ch., Holtvoeth J., Krastel S., Leicher N., Leng M.J., Lindhorst K., Masi A., Ognjanova-Rumenova N., Panagiotopoulos K., Reed J.M., Sadori L., Tofilovska S., Van Bocxlaer B., Wagner-Cremer F., Wesselingh F.P., Wolters V., Zanchetta G. , Zhang X., Wagner B., 2020. Deep drilling reveals massive shifts in evolutionary dynamics after formation of ancient ecosystem. Science Advances, 6, eabb2943. doi.org/10.1126/sciadv.abb2943

Testo e immagini dall’Ufficio Stampa Sapienza Università di Roma sul lago più antico d’Europa, il lago di Ocrida, serbatoio di biodiversità.