News
Ad
Ad
Ad
Tag

Advanced Materials

Browsing

Salvaguardia dei coralli: una biopasta conduttiva è la nuova frontiera per il restauro; nasce un cerotto per curarli

Dalla collaborazione tra Università di Milano-Bicocca, Istituto Italiano di Tecnologia e Acquario di Genova arrivano soluzioni innovative per la conservazione dei reef: un materiale intelligente per accelerare la crescita dei coralli e uno per curarli da malattie infettive.

Milano/Genova, 30 luglio 2025 – Una biopasta green, completamente biodegradabile, in grado di ancorare i coralli e allo stesso tempo accelerarne la crescita grazie alla tecnologia della mineralizzazione elettrochimica. È la nuova soluzione sviluppata da un gruppo di ricerca congiunto dell’Università di Milano-Bicocca, dell’Istituto Italiano di Tecnologia (IIT) e dell’Acquario di Genova, e descritta in uno studio pubblicato sulla rivista Advanced Materials. Minacciate dai cambiamenti climatici e sempre più vulnerabili, le barriere coralline sono ecosistemi cruciali per la biodiversità marina e la sopravvivenza di molte comunità costiere. Oltre a rappresentare una risorsa fondamentale per pesca e turismo, i reef svolgono un ruolo chiave negli equilibri ecologici globali. Proprio per affrontare la loro progressiva degradazione, la ricerca sta puntando su soluzioni innovative che uniscano ecocompatibilità, efficacia e rapidità d’intervento.

Salvaguardia dei coralli: una biopasta conduttiva è la nuova frontiera per il restauro; nasce un cerotto per curarli. Gallery

Il nuovo materiale, battezzato “Active Biopaste”, è una pasta a base di olio di soia modificato e grafene che, una volta mescolata, indurisce in modo controllabile e diventa un substrato solido e conduttivo per ancorare frammenti di corallo e favorire la Mineral Accretion Technology (MAT), una tecnica che ne stimola la crescita.

«Ciò che rende unica la nostra soluzione è l’integrazione di due funzioni fondamentali in un solo materiale innovativo»,

spiega Gabriele Corigliano, primo autore dello studio e dottorando in Scienze Marine alla Bicocca e nell’unità Smart Materials, coordinata da Athanassia Athanassiou, di IIT.

«Da un lato, questa pasta semplifica il fissaggio dei coralli, rendendolo più sicuro e affidabile sia nei vivai subacquei sia sulla barriera corallina. Dall’altro, grazie alle sue proprietà conduttive, stimola la crescita dei coralli attraverso la Mineral Accretion Technology (MAT), una tecnica che utilizza correnti elettriche a bassa intensità per depositare su strutture metalliche carbonato di calcio, il materiale impiegato dai coralli per costruire i propri scheletri. A differenza della MAT tradizionale, non sono più necessarie strutture permanenti, scongiurando il rischio di corrosione e inquinamento nel tempo. Nel complesso, il nostro approccio favorisce attivamente la crescita dei coralli ed è sicuro per la vita marina».

«Cerchiamo di spingere al massimo le attuali conoscenze nel campo della Scienza dei materiali, al fine di produrre tecnologie che siano efficaci e multifunzionali sott’acqua, ma che lo siano nel rispetto dell’ambiente e in accordo con gli obiettivi di sostenibilità indicati dalle Nazioni Unite», aggiunge Marco Contardi, ricercatore MaRHE center alla Bicocca e nell’unità Smart Materials di IIT. «Questo approccio ci permette di fabbricare materiali con l’idea di essere usati in mare e per il mare, tenendo sempre presente gli effetti durante e dopo il loro utilizzo, per esempio la biodegradazione».

Un risultato importante per la salvaguardia di ecosistemi a rischio estinzione.

«Questo studio rivela il profondo cambiamento che sta coinvolgendo le Scienze marine»,

osserva Simone Montano, professore associato al Dipartimento di Scienze dell’ambiente e della terra e vicedirettore del MaRHE Center dell’Università di Milano-Bicocca.

«La sinergia nata tra i tre gruppi di ricerca ─ il MaRHE Center dell’Università di Milano-Bicocca, il team Smart Materials dell’IIT e l’Acquario di Genova ─ dimostra come lo sviluppo di tecnologie innovative e sostenibili consenta di guadagnare il tempo necessario affinché le politiche di mitigazione producano effetti concreti. Solo con sforzi congiunti come questo potremmo permettere alla natura di tornare al suo equilibrio originale».

Alla stessa collaborazione si deve anche un secondo importante contributo alla tutela dei reef, pubblicato sulla rivista One Earth. Il primo autore di questo articolo è Vincenzo Scribano, dottorando dell’Università di Milano-Bicocca e dell’unità Smart Materials dell’Istituto Italiano di Tecnologia, che ha sviluppato un sistema eco-compatibile per la somministrazione mirata di antibiotici ai coralli malati, una sorta di cerotto che unisce un film idrofilo caricato con antibiotici e realizzato con chitosano (polimero che deriva dai crostacei) a un sigillante naturale idrofobico a base di cera d’api e oli vegetali di girasole e lino, tutti materiali naturali che una volta degradati non danneggiano l’ecosistema marino.

«Questa tecnologia ci permette di curare i coralli da malattie aggressive che tendono a danneggiarne i tessuti e a diffondersi rapidamente nelle barriere coralline», spiega Scribano. «Grazie al doppio strato, gli antibiotici vengono rilasciati esclusivamente sulla zona infetta del corallo e la somministrazione è isolata grazie alla pasta sigillante che ne previene la diffusione nell’ambiente marino. La tecnologia si è dimostrata particolarmente efficace contro una malattia della famiglia delle necrosi tissutali, molto diffusa nelle acquaculture». Nei test in acquario, la terapia ha bloccato la progressione della malattia in oltre il 90 per cento dei casi trattati.

«Con questi studi abbiamo dimostrato il potenziale di un approccio responsabile alla progettazione dei materiali», afferma Athanassia Athanassiou, responsabile dell’unità Smart Materials dell’IIT. «L’obiettivo è sviluppare soluzioni sostenibili per supportare gli organismi viventi, tutelando la biodiversità. Portiamo avanti una ricerca approfondita su materiali sostenibili, valutandone efficacia e fine vita, con un approccio progettuale attento all’impatto ambientale. Oggi, ogni nostra scelta progettuale è guidata da una visione scientifica responsabile e sostenibile».

Questi risultati si inseriscono in un percorso di ricerca avviato da anni dal team congiunto dell’Università di Milano-Bicocca, dell’IIT e dell’Acquario di Genova, diventato un punto di riferimento internazionale nello sviluppo di tecnologie per la tutela dei coralli. Un approccio interdisciplinare che ha già portato in passato a soluzioni innovative come l’impiego della curcumina, una sostanza antiossidante naturale estratta dalla curcuma, nel ridurre lo sbiancamento dei coralli. Materiali e innovazioni sono stati sperimentati presso la sede del MaRHE Center all’interno dell’Acquario di Genova che, grazie al know how consolidato nel settore, l’ambiente controllato, l’attenzione al benessere animale, risulta un luogo ideale per sviluppare soluzioni utili per la conservazione del mondo marino. Questa visione integrata guarda al mare non solo come ecosistema da proteggere, ma anche come laboratorio per immaginare un futuro più sostenibile e in armonia con l’ambiente.

Riferimenti bibliografici:

“Eco-friendly active film and sealant for underwater drug delivery to diseased corals”, One Earth, 18 luglio 2025 https://doi.org/10.1016/j.oneear.2025.101356

“Active Biopaste for Coral Reef Restoration”, Advanced Materials, 4 luglio 2025, https://doi.org/10.1002/adma.202502078

Testo, video e immagini dall’Ufficio stampa Università di Milano-Bicocca.

ACQUA OSSIGENATA SOSTENIBILE GRAZIE A UN NUOVO IDROGEL

Ricerca dell’Università di Padova converte la luce del sole in prodotti chimici tramite il movimento

acqua ossigenata Idrogel

Ha proprietà ossidanti e disinfettanti, è utilizzata in ambito medico per la pulizia delle ferite, in ambito industriale come agente sbiancante e nell’ambiente domestico per la sanificazione e la rimozione di macchie: stiamo parlando dell’acqua ossigenata.

Attualmente questa importante sostanza chimica viene prodotta principalmente attraverso la riduzione dell’ossigeno tramite un processo che, sebbene efficiente e ampiamente utilizzato, presenta alcune criticità soprattutto in termini di sostenibilità perché necessita di solventi organici, idrogeno e metalli nobili. Proprio per questo motivo si stanno sviluppando processi alternativi che permettano di ridurre l’ossigeno ad acqua ossigenata utilizzando l’energia elettrica o direttamente la luce solare.

Ma come convertire la luce del sole in prodotti chimici nel modo più efficiente e naturale possibile? Una risposta arriva dal movimento: in natura, per esempio, le piante regolano la fotosintesi tramite il movimento degli stomi che si aprono e si chiudono per gestire lo scambio di gas e la perdita di acqua. Anche nel corpo umano il movimento degli organi svolge funzioni importantissime: basti pensare al cuore o ai polmoni che si espandono e si comprimono per pompare il sangue o permettere lo scambio di gas.

Proprio grazie al movimento un team internazionale di ricercatori delle Università di Padova e Northwestern (Chicago, USA) ha scoperto un nuovo materiale per rendere più efficiente la conversione dell’energia solare in prodotti chimici: lo studio, dal titolo Mechanical and Light Activation of Materials for Chemical Production, è stato pubblicato sulla rivista scientifica «Advanced Materials».

acqua ossigenata Idrogel
Grazie a un nuovo idrogel e al movimento, con la luce solare un metodo sostenibile per la riduzione in acqua ossigenata; lo studio pubblicato su Advanced Materials

Gli studi scientifici attuali testano i materiali per la fotosintesi artificiale – così vengono chiamate le ricerche che si ispirano a questo processo naturale e che si riferiscono a qualunque sistema per catturare e immagazzinare l’energia dalla luce del sole nei legami chimici di un combustibile – in condizioni statiche, ignorando le reazioni in caso di movimento, aspetto che hanno deciso di indagare i ricercatori delle Università di Padova e Northwestern.

«Per testare se il movimento potesse influenzare la fotosintesi artificiale è stato fondamentale preparare un materiale nuovo», spiega Luka Ðorđević, primo autore della ricerca e docente del Dipartimento di Scienze Chimiche dell’Università di Padova. «Questo materiale non solo doveva essere in grado di assorbire e convertire la luce solare, ma doveva essere anche abbastanza intelligente da gonfiarsi e contrarsi a seconda degli stimoli a cui veniva sottoposto».

A tale scopo i ricercatori hanno scelto degli idrogel, materiali ad alto contenuto acquoso che si deformano facilmente. Questi idrogel sono costituiti da due componenti: uno è il fotocatalizzatore, che permette di convertire la luce solare in reazioni chimiche, e l’altro è un materiale che lo rende termoresponsivo.

«Il nostro nuovo idrogel, di base completamente organica, si è rilevato efficiente nella produzione di acqua ossigenata, che abbiamo scelto come prodotto della fotosintesi artificiale», aggiunge Marianna Barbieri, autrice della ricerca e dottoranda del corso di dottorato in Materials Science and Technology dell’Università di Padova. «Oltre a rispondere alla luce, l’idrogel risponde in maniera notevole anche alla temperatura: in questo modo è possibile contrarre il materiale o ripristinare la sua forma espansa».

Marianna Barbieri
Marianna Barbieri

«È stato interessante osservare che l’efficienza di produzione di acqua ossigenata aumenta quando il nuovo materiale viene sottoposto a cicli di contrazione ed espansione: più sono veloci questi cicli e più efficiente è il materiale», conclude Ðorđević. «Similmente agli organi del corpo, abbiamo visto che il movimento meccanico aiuta a velocizzare lo scambio di prodotti e reagenti e ci auguriamo che possa essere applicato anche ad altri materiali e ad altre reazioni».

Luka Ðorđević

Lo studio è stato svolto nell’ambito del progetto europeo ERC Starting Grant recentemente finanziato dall’Unione Europea del prof. Luka Ðorđević.

Luka Đorđević, Tyler J. Jaynes, Hiroaki Sai, Marianna Barbieri, Jacob E. Kupferberg, Nicholas A. Sather, Steven Weigand, e Samuel I. Stupp, Mechanical and Light Activation of Materials for Chemical Production – «Advanced Materials» – 2025, Link: https://onlinelibrary.wiley.com/doi/10.1002/adma.202418137

Testo e immagini dall’Ufficio Stampa dell’Università di Padova

PER PRODURRE L’ETILENE CI VUOLE… IL SOLE: un’alternativa sostenibile al processo utilizzato in industria per convertire l’acetilene in etilene attraverso la luce solare e idruri di cobalto

Studio dell’Università di Padova rivoluziona i processi chimici di produzione di etilene puro con la luce solare per un futuro più sostenibile

Un catalizzatore a base di cobalto (in centro) promuove la conversione di molecole di acetilene (a sinistra) in molecole di etilene (a destra) mediante l’impiego della luce come fonte energetica
Un catalizzatore a base di cobalto (in centro) promuove la conversione di molecole di acetilene (a sinistra) in molecole di etilene (a destra) mediante l’impiego della luce come fonte energetica

L’etilene è la sostanza chimica organica più importante dell’industria moderna: con una produzione annua che raggiunge 200 milioni di tonnellate, le sue applicazioni spaziano dalla produzione di circa il 60% di tutte le plastiche alla gestione agricola, fino alla sintesi di numerosi prodotti chimici e composti organici.

Oggigiorno l’etilene viene prodotto principalmente attraverso la pirolisi petrolchimica di idrocarburi, un processo industriale che introduce delle impurezze di acetilene che limitano il diretto utilizzo dell’etilene prodotto. Per questo motivo, in industria, l’etilene deve essere prima purificato dall’acetilene in un processo di trasformazione che attualmente presenta grandi problematiche in termini di sostenibilità poiché necessita di alte temperature e metalli nobili – costosi e difficili da reperire – come catalizzatori. Nonostante i progressi compiuti, queste strategie tradizionali per la conversione dell’acetilene in etilene possiedono ancora una selettività relativamente bassa (ossia l’acetilene non viene soltanto convertito nel desiderato etilene, ma una parte di esso viene anche convertito in prodotti non desiderati).

Miscele fotocatalitiche illuminate dalla luce visibile nei laboratori Unipd di Arcudi e Ðorđević. Una molecola agisce da fotosensibilizzatore mediante l’assorbimento della luce e, in tal modo, promuove la reazione chimica ad opera di un’altra molecola che agisce da catalizzatore
Miscele fotocatalitiche illuminate dalla luce visibile nei laboratori Unipd di Arcudi e Ðorđević. Una molecola agisce da fotosensibilizzatore mediante l’assorbimento della luce e, in tal modo, promuove la reazione chimica ad opera di un’altra molecola che agisce da catalizzatore

Nello studio dal titolo Photocatalytic Semi-Hydrogenation of Acetylene to Polymer-Grade Ethylene with Molecular and Metal–Organic Framework Cobaloximes e pubblicato sulla prestigiosa rivista «Advanced Materials», il team di ricerca internazionale coordinato da Francesca Arcudi e Luka Ðorđević del Dipartimento di Scienze Chimiche dell’Università di Padova e da Joe Hupp della Northwestern University (Illinois, USA) ha riportato una strategia efficiente per convertire l’acetilene in etilene attraverso la luce solare, rappresentando un’alternativa sostenibile al processo utilizzato in industria.

«Abbiamo scoperto che una classe di molecole a base di cobalto, un metallo non nobile, è in grado di ridurre l’acetilene ad etilene impiegando la luce come fonte energetica. Con il nostro sistema, rispetto a quello utilizzato in industria, è possibile far avvenire questa importante trasformazione chimica a temperatura ambiente impiegando dei materiali poco costosi» spiega Francesca Arcudi, corresponding author dello studio e docente al dipartimento di Scienze Chimiche dell’Università di Padova.

I ricercatori hanno scoperto che a essere responsabile delle elevate prestazioni dei loro sistemi è la formazione di una particolare specie di cobalto.

«Grazie all’impiego della luce abbiamo generato dei cobalto idruri altamente reattivi e selettivi per questa reazione. Inoltre, è importante sottolineare che siamo stati in grado di sviluppare dei materiali che possono anche essere riciclati» aggiunge Anna Fortunato, assegnista di ricerca del dipartimento di Scienze Chimiche e co-prima autrice dell’articolo.

Francesca Arcudi e Luka Ðorđević sono stati i primi, nel 2022, a dimostrare un’alternativa sostenibile a questa reazione industriale mediante l’utilizzo della luce e lo studio appena pubblicato rappresenta un significativo passo avanti in termini di efficienza e selettività verso la reale implementazione industriale di questo rivoluzionario processo guidato dalla luce. Il sistema riportato dal gruppo di giovani ricercatori patavini ha mostrato sorprendenti risultati: rispetto ai processi tradizionali che raggiungono una selettività di circa l’85% per l’etilene con una conversione di acetilene del 90%, questo nuovo sistema che utilizza la luce raggiunge una selettività superiore al 99,9% per l’etilene con una completa conversione di acetilene. Tali efficienze e selettività sono state raggiunte in meno di un’ora di irradiazione.

«Le alte efficienze riportate in questo studio, oltre a rendere il nostro sistema un’alternativa sostenibile all’attuale processo di purificazione dell’etilene, aprono anche nuove prospettive per produrre etilene puro direttamente dall’acetilene utilizzando la luce solare, fonte di energia pulita, inesauribile e rinnovabile» spiega Luka Ðorđević, corresponding author dello studio e docente al dipartimento di Scienze Chimiche dell’Ateneo patavino.

La ricerca di nuove molecole e materiali è cruciale per facilitare la transizione verso un’industria chimica più sostenibile. Lo studio apre la strada a una rivoluzionaria metodologia che sostituisce le alte temperature con la luce per purificare questa importante molecola chimica, oltre a rappresentare un’alternativa produzione di etilene che potrebbe del tutto eliminare la pirolisi petrolchimica di idrocarburi utilizzando un metodo più pulito ed efficiente.

Da sinistra: Luka Đorđević, Anna Fortunato, Edoardo Saggioro, Francesca Arcudi
Da sinistra: Luka Đorđević, Anna Fortunato, Edoardo Saggioro, Francesca Arcudi

Lo studio è stato svolto nell’ambito del progetto europeo ERC Starting Grant recentemente finanziato dall’Unione Europea del professor Luka Ðorđević, e dei progetti di ricerca della dottoressa Francesca Arcudi per il programma Rita Levi Montalcini del Ministero dell’Università e della Ricerca e per lo STARS consolidator grant che le è stato recentemente finanziato dall’Università di Padova.

Link: https://onlinelibrary.wiley.com/doi/10.1002/adma.202408658

Titolo: Photocatalytic Semi-Hydrogenation of Acetylene to Polymer-Grade Ethylene with Molecular and Metal–Organic Framework Cobaloximes – «Advanced Materials» – 2024

Autori: Aaron E.B.S. Stone, Anna Fortunato, Xijun Wang, Edoardo Saggioro, Randall Q. Snurr, Joseph T. Hupp, Francesca Arcudi, Luka Ðorđević

Testo e immagini dall’Ufficio Stampa dell’Università di Padova

Un condensatore per accumulare energia in pochi nanometri. Una tecnologia innovativa dai laboratori dell’Università di Pisa

Un condensatore che permette di accumulare energia in pochi nanometri per applicazioni fino a media e alta frequenza. Il lavoro pubblicato su Advanced Materials, una delle più prestigiose riviste del settore

 

Una tecnologia innovativa per produrre condensatori robusti, flessibili e a basso costo, capaci di accumulare energia in pochi nanometri e posizionabili su ogni tipo di substrato, anche flessibile. 
Lo studio del team del Dipartimento di Ingegneria dell’Informazione dell’Università di Pisa coordinato da Giuseppe Barillaro è stato condotto in collaborazione con il Surflay Nanitec GmbH di Berlino e il Dipartimento di Fisica dell’Università di Pisa, ed è stato pubblicato su Advanced Materials (link), la rivista più prestigiosa nel settore della scienza dei materiali.
“Un condensatore – spiega Giuseppe Barillaro – è in grado di immagazzinare energia in un materiale isolante posto tra due conduttori metallici. La sua capacità aumenta al diminuire dello spessore del materiale isolante.
Il metodo che abbiamo sviluppato ci consente di controllare l’assemblaggio dei condensatori chiamati elettrolitici, cioè quelli che tipicamente usano come materiale isolante un liquido o un gel con un’elevata concentrazione di ioni (detto elettrolita). 
I condensatori elettrolitici prodotti con il nostro metodo hanno spessore ridotto di almeno cinquanta volte rispetto ai condensatori attuali, mentre una frequenza di funzionamento di almeno cinquanta volte superiore.
A differenza degli attuali condensatori elettrolitici, che funzionano per applicazioni a bassa frequenza, come le reti elettriche, i 
nano-condensatori dell’Università di Pisa possono essere usati per applicazioni a media ed alta frequenza, come per esempio le comunicazioni wireless”.
Il processo di produzione individuato dai ricercatori è molto semplice: un substrato metallico sul quale è stata indotta una carica superficiale viene immerso in un liquido contenente un polielettrolita di spessore nanometrico con carica opposta, che quindi si deposita sul metallo. Il substrato può essere poi immerso di nuovo in un altro liquido contenente un polielettrolita con carica opposta alla prima, per formare un altro strato. Il processo è semplicissimo e può essere automatizzato con una macchina che immerge alternativamente il metallo nei due liquidi, il che lo rende anche estremamente economico.
“Il condensatore  – conclude Barillaro – è realizzabile su qualunque tipo di substrato, anche su materiali curvi e flessibili, e su aree molto vaste, aprendo la strada a diverse possibili applicazioni in campo di sistemi wearable, automotive, e energy storage. Per esempio, la flessibilità intrinseca dei polielettroliti permetterebbe di usarli all’interno di una pelle elettronica – electronic skin -, come sensori di pressione e/o per immagazzinare energia, ma le potenzialità sono infinite, e in settori che nella nuova rivoluzione industriale del 5.0 assumeranno una rilevanza sempre più marcata.” 
 
Il lavoro su materiali innovativi per immagazzinare energia infatti è una delle ricerche condotte nel laboratorio FoReLab del Dipartimento, dedicato allo sviluppo delle tecnologie per industria e società 5.0.
 
Giuseppe Barillaro
Giuseppe Barillaro

Link all’articolo scientifico:

https://onlinelibrary.wiley.com/doi/10.1002/adma.202309365

 

Testo e foto dall’Unità Comunicazione Istituzionale dell’Università di Pisa.

Nanotecnologie per curare il diabete di tipo 1: una nuova strategia terapeutica scoperta al Centro di Ricerca Pediatrica Invernizzi della Statale di Milano

 I ricercatori del Centro di Ricerca Pediatrica Romeo ed Enrica Invernizzi dell’Università degli Studi di Milano hanno sviluppato una nuova strategia terapeutica per il diabete di tipo 1 basata su nanotecnologie che permette il targeting delle cellule T effettrici contemporaneamente nei linfonodi pancreatici e nel pancreas. Il lavoro, svolto in collaborazione con il Brigham and Women’s Hospital e la Harvard Medical School, è stato pubblicato su Advanced Materials.

COVID-19 albumina diabete tipo 1 nanotecnologie
Foto di Michal Jarmoluk

Milano – 17 luglio 2023 – I ricercatori del Centro di Ricerca Pediatrico Romeo ed Enrica Invernizzi dell’Università degli Studi di Milano, guidati dal Prof. Paolo Fiorina, in collaborazione con il Brigham and Women’s Hospital e la Harvard Medical School, hanno sviluppato una nuova strategia terapeutica per il diabete di tipo 1, basata su nanotecnologie che permette il targeting delle cellule T effettrici contemporaneamente nei linfonodi pancreatici e nel pancreas.

I risultati sono stati appena pubblicati sulla rivista internazionale Advanced Materials, una delle più prestigiose in ambito di scienza dei materiali. I ricercatori hanno sviluppato per la prima volta una nuova e specifica piattaforma basata su nanotecnologie per curare il diabete di tipo 1 che ha come target le HEVs (high endothelial venules) presenti nei linfonodi pancreatici e nel pancreas. L’anticorpo monoclonale anti-CD3 è incapsulato in nanoparticelle la cui superficie è coniugata con un anticorpo che riconosce le HEVs, questo consente il rilascio diretto dell’anti-CD3 mAb sia nei linfonodi pancreatici che nel pancreas. Il trattamento di topi NOD iperglicemici con queste nanoparticelle è risultato in una significativa remissione del diabete di tipo 1 rispetto ai gruppi di controllo.

 “Abbiamo scoperto come nel pancreas di topi NOD e di pazienti con diabete di tipo 1 vi siano HEVs di nuova formazione” afferma Paolo Fiorina, Professore Ordinario di Endocrinologia all’Università Statale di Milano, Direttore del Centro di Ricerca Internazionale sul Diabete di Tipo 1 presso il Centro di Ricerca Pediatrico Romeo ed Enrica Invernizzi, Direttore di Endocrinologia Ospedale Sacco-Fatebenefratelli-Melloni “questo trattamento, che ha come target le HEVs, può essere quindi utilizzato per rilasciare in modo specifico nei linfonodi pancreatici e nel pancreas agenti immunoterapici allo scopo di sopprimere in modo efficace il diabete autoimmune”.

Analizzando in vitro le caratteristiche immunologiche dei linfociti T dei topi NOD iperglicemici trattati con le nanoparticelle, i ricercatori hanno rilevato una riduzione significativa delle cellule T effettrici e una diminuzione nella produzione di citochine pro-infiammatorie.

“Questa piattaforma basata su nanotecnologie, creata in collaborazione con il Brigham and Women’s Hospital e la Harvard Medical School, ci ha permesso di preservare le isole pancreatiche, ridurre le cellule T effettrici, aumentare le cellule T regolatorie e curare il diabete autoimmune in un modello preclinico di diabete di tipo 1” afferma il Prof. Paolo Fiorina.

 Sarà necessario effettuare ulteriori studi ma sicuramente questi dati possono essere un punto di partenza per ottenere un’efficace strategia terapeutica per il trattamento dei pazienti diabetici di tipo 1.

Questo è un altro successo del Centro di Ricerca Pediatrica Romeo ed Enrica Invernizzi che si aggiunge a quelli già recentemente presentati”, commenta il Prof. Gian Vincenzo Zuccotti, Direttore del Centro di Ricerca Pediatrica Romeo ed Enrica Invernizzi. “Questo Centro sta facendo così tanto in termini di ricerca, deve diventare un punto di riferimento per la ricerca scientifica in Italia, un polo all’avanguardia anche per la scoperta di nuove terapie”, continua Zuccotti,senza la collaborazione internazionale tra l’Università di Milano e il Brigham Women’s Hospital Harvard Medical School questo sarebbe stato difficile, impossibile senza il sostegno fondamentale della Fondazione Romeo ed Enrica Invernizzi che ha permesso la costruzione di questo Centro e che ci motiva ogni giorno a lavorare per fare di più in questo campo”.

I coautori dello studio sono Sungwook Jung, Moufida Ben Nasr, Baharak Bahmani, Vera Usuelli, Jing Zhao, Gianmarco Sabiu, Andy Joe Seelam, Said Movahedi Naini, Hari Baskar Balasubramanian, Youngrong Park, Xiaofei Li, Salma Ayman Khalefa, Vivek Kasinath, MacKenzie D. Williams, Ousama Rachid, Yousef Haik, George C. Tsokos, Clive H. Wasserfall, Mark A. Atkinson, Jonathan S. Bromberg, Wei Tao, Paolo Fiorina, Reza Abdi.

Testo dall’Ufficio Stampa dell’Università Statale di Milano