News
Ad
Ad
Ad
Tag

Accademia cinese delle scienze

Browsing

Evoluzione della Terra: come sono cambiati nel tempo i livelli di ossigeno e la temperatura interna del nostro pianeta 

Un nuovo studio del Dipartimento di Scienze della Terra della Sapienza di Roma e dell’Istituto di Oceanologia dell’Accademia Cinese delle Scienze fornisce una nuova prospettiva per comprendere come è cambiata nel tempo la composizione atmosferica terrestre. I risultati dello studio sono pubblicati su Nature Communications.

I livelli di ossigeno del mantello terrestre controllano la formazione e il movimento degli elementi leggeri al suo interno (idrogeno, carbonio e zolfo), influenzando fenomeni geologici come l’attività vulcanica, la tettonica delle placche e la composizione dell’atmosfera.

La ricerca sulla capacità dell’ossigeno di guidare tali reazioni chimiche, ovvero la fugacità dell’ossigeno (fO2), si concentra principalmente sullo studio della composizione chimica delle lave più antiche (komatiti e picriti) formatesi in aree profonde della Terra sino a circa 250 km.

Per confrontare direttamente le caratteristiche dell’ fO2 dei magmi formatisi in tempi e profondità diverse, Vincenzo Stagno della Sapienza Università di Roma in collaborazione con il Dr. Zhang e colleghi dell’Istituto di Oceanologia dell’Accademia Cinese delle Scienze (IOCAS) hanno proposto un nuovo parametro, definito “fugacità potenziale dell’ossigeno” che, insieme a delle stime precise di profondità e temperatura di un ampio dataset di rocce vulcaniche risalenti da più di 3 miliardi di anni fa ad oggi permettono di comprendere come la composizione atmosferica terrestre si sia evoluta nel tempo geologico.

Diversamente da quanto dimostrato da studi precedenti secondo cui l’aumento della fO2 del mantello sin dall’Archeano fosse avvenuto gradualmente in risposta a processi di subduzione della crosta terrestre o di segregazione del nucleo metallico, questo studio, pubblicato sulla rivista Nature Communications, rivela che l’aumento di fO2 dei magmi derivati dal mantello terrestre è stato causato da un lento raffreddamento dell’interno della Terra, con conseguente diminuzione della profondità alla quale si sono formati i magmi negli ultimi 4 miliardi di anni. L’aumento dei livelli di ossigeno dell’interno del pianeta ha modificato la chimica dei gas vulcanici e, quindi, la composizione dell’atmosfera.

“Le variazioni nella fO2 dei magmi derivati dal mantello sin dall’ Adeano sono principalmente dovute a cambiamenti nella profondità e temperatura alla quale i meccanismi di fusione avvenivano”, spiega Vincenzo Stagno del Dipartimento di Scienze della Terra della Sapienza. “La composizione chimica dell’atmosfera e’ una diretta conseguenza dei livelli di ossigenazione dell’interno della Terra sin dalla sua origine, e questo può aiutare a capire in quali pianeti possa esserci stata vita”.

Decifrare l’evoluzione dello stato di ossigenazione del mantello terrestre sin dall’Adeano è fondamentale per comprendere importanti questioni scientifiche come il ciclo profondo del carbonio, l’evoluzione della composizione atmosferica e le origini della vita, ma anche le analogie e le diversità tra i pianeti dello stesso sistema solare.

Evoluzione della Terra: come sono cambiati nel tempo i livelli di ossigeno e la temperatura interna del nostro pianeta. Foto di p2722754 

Riferimenti bibliografici:

The constant oxidation state of Earth’s mantle since the Hadean – Fangyi Zhang, Vincenzo Stagno, Lipeng Zhang, Chen Chen, Haiyang Liu, Congying Li, Weidong Sun, Nature Communications, DOI: 10.1038/s41467-024-50778-z.

Testo dal Settore Ufficio stampa e comunicazione Sapienza Università di Roma

MESSIER 87: FINALMENTE OSSERVATO IL COLLEGAMENTO TRA LA MATERIA CHE CIRCONDA IL BUCO NERO E LA BASE DEL GETTO RELATIVISTICO 

Un team internazionale di scienziati, a cui partecipano anche i ricercatori dell’Istituto Nazionale di Astrofisica (INAF), ha utilizzato nuove osservazioni a lunghezze d’onda millimetriche per “fotografare” per la prima volta la struttura ad anello che rivela la materia che cade nel buco nero centrale, insieme al potente getto relativistico, nella prominente radiogalassia Messier 87 (M87). Le immagini mostrano l’origine del getto e il flusso di accrescimento vicino al buco nero supermassiccio centrale. Le nuove osservazioni sono state ottenute con il Global Millimeter VLBI Array (GMVA), integrato dall’Atacama Large Millimeter/submillimetre Array (ALMA) e dal Greenland Telescope (GLT). L’aggiunta di questi due osservatori ha notevolmente migliorato le capacità di imaging del GMVA. I risultati sono pubblicati sulla rivista scientifica Nature.

Rappresentazione artistica che mostra uno zoom sul flusso di accrescimento e sul getto che emerge dalla regione del buco nero in Messier 87. Crediti: Sophia Dagnello, NRAO/AUI/NSF

Gabriele Giovannini e Marcello Giroletti, dell’INAF di Bologna e tra gli autori dello studio, raccontano:

“Il buco nero al centro della galassia M87 è ben noto essendo il primo di cui è stata ottenuta una immagine (dal team dell’Event Horizon Telescope EHT). Noi lo abbiamo osservato con alta sensibilità ad una lunghezza d’onda leggermente più grande (3,5 mm) e quindi più adatta a rivelare le strutture più estese della sorgente. Le immagini hanno infatti mostrato che la struttura ad anello intorno al buco nero è più estesa di quanto si credeva e che questo anello è collegato al getto relativistico visto in M87. Per la prima volta vediamo quindi il collegamento tra la materia che circonda il buco nero e la base del getto relativistico”.

Immagine GMVA+ALMA della regione centrale del buco nero in Messier 87 ottenuta il 14-15 aprile 2018 a una lunghezza d’onda di 3,5 mm. L’immagine grande raffigura il getto e l’anello centrale ricostruiti con il metodo CLEAN standard. L’inserto mostra un ingrandimento della regione interna ottenuta con il metodo SMILI a super risoluzione, rivelando la forma ad anello con un diametro di 64 microarcosecondi

Rusen Lu, dell’Osservatorio astronomico di Shanghai e leader del Max Planck Institute di Bonn partner group presso l’Accademia cinese delle scienze, primo autore di questa scoperta, commenta:

“In precedenza, avevamo visto sia il buco nero che il getto in immagini separate. Ora  è come se avessimo scattato una foto panoramica del buco nero insieme al suo getto a una nuova lunghezza d’onda”.

Si pensa che il materiale circostante cada nel buco nero in un processo noto come accrescimento, da cui ha origine il getto ma nessuno aveva mai visto direttamente l’origine del getto.

Mappa dei radiotelescopi utilizzati per l’immagine di Messier 87 a 3,5 millimetri nella campagna 2018 Global Millimeter VLBI Array (GMVA). Crediti: Helge Rottmann, MPIfR

La partecipazione di ALMA e GLT alle osservazioni del GMVA e il conseguente aumento della risoluzione e della sensibilità di questa rete intercontinentale di telescopi ha reso possibile per la prima volta l’immagine della struttura ad anello in M87 alla lunghezza d’onda di 3,5 mm. Il diametro dell’anello misurato dal GMVA è di 64 microsecondi d’arco, corrispondenti alle dimensioni di un piccolo anello luminoso (13 cm) visto da un astronauta sulla Luna che guarda la Terra. Questo diametro è del 50% più grande di quanto osservato dall’Event Horizon Telescope alla lunghezza d’onda di 1,3 mm, in accordo con le previsioni per l’emissione del plasma relativistico in questa regione.

L’emissione da questa regione di M87 è prodotta dall’interazione tra elettroni altamente energetici e campi magnetici, un fenomeno chiamato radiazione di sincrotrone. Le nuove osservazioni, a una lunghezza d’onda di 3,5 millimetri, rivelano maggiori dettagli sulla presenza e l’energia di questi elettroni. Ci dicono anche qualcosa sulle proprietà del buco nero, in particolare che non è molto “affamato”. Cosa vuol dire? Consuma materia a bassa velocità, convertendo solo una piccola frazione di essa in radiazioni.

I buchi neri sono la miglior macchina che conosciamo in grado di trasformare materia (la materia dell’anello) in energia (il getto relativistico espulso). Gli studi per saperne di più su Messier 87 non finiscono qui: ulteriori osservazioni e una flotta di potenti telescopi continueranno a svelarne i segreti. I radiotelescopi INAF (Medicina, Noto, Sardinia Radio Telescope) una volta completato il loro potenziamento attualmente in corso, saranno in grado di collaborare a queste osservazioni a 3,5 mm aumentandone ulteriormente la qualità.

Immagine GMVA+ALMA della regione centrale del buco nero in Messier 87 ottenuta il 14-15 aprile 2018 a una lunghezza d’onda di 3,5 mm. L’immagine grande raffigura il getto e l’anello centrale ricostruiti con il metodo CLEAN standard. L’inserto mostra un ingrandimento della regione interna ottenuta con il metodo SMILI a super risoluzione, rivelando la forma ad anello con un diametro di 64 microarcosecondi

 

Per ulteriori informazioni:

L’articolo “A ring-like accretion structure in M87 connecting its black hole and jet”, di Ru-Sen Lu et al. pubblicato su Nature.

Testo e immagini dall’Ufficio stampa – Struttura per la Comunicazione Istituto Nazionale di Astrofisica (INAF).