Ad
Ad
Ad
Tag

Science Advances

Browsing

Prebunking: preemptively debunking falsehoods about elections can rebuild people’s confidence in election integrity

Inoculating people against misinformation by preemptively sharing factual information – a strategy termed “prebunking” – can sucessfully restore confidence in elections, according to a new study analyzing recent national elections in the US and Brazil. Confidence in elections can also increase when political elites go against their own interests and actively debunk election falsehoods. John Carey and colleagues call this latter phenomenon “credible source corrections.”

Both Brazilian President Jair Bolsonaro and US President Donald Trump leveled false accusations about election fraud after losing their respective bids for reelection in 2020 and 2022, respectively, galvanizing their supporters to attempt democracy-threatening insurrections. These allegations persisted in the US throughout the country’s 2022 midterm elections.

Here, Carey et al. investigate the impact of two strategies to correct mistaken beliefs about elections’ credibility: prebunking and credible source corrections. The first introduces people to brief descriptions of circulating falsehoods and then disproves that misinformation with evidence, essentially vaccinating people against viral conspiracies. The second happens when sources whom already-misinformed people deem credible – typically those in the same political party as the leader who lost – defend election integrity by challenging the leader’s false narrative. The fact that these sources do so in opposition to their own political interests renders their statements more convincing.

To quantify the success of these tactics, Carey et al. conducted three studies. The first (involving 2,643 people) examined how prebunking and credible source corrections repaired election confidence before the 2022 US midterm elections. Participants interacted with factual short articles about the elections, short articles citing credible sources, or a placebo.

The second (involving 2,949 people) mirrored the first study’s methods, looking at the effects of prebunking and credible source corrections after Brazil’s 2022 presidential election. For both studies, prebunking was most successful in re-establishing election confidence. Credible source corrections also proved successful, but less consistently so.

In the third study (involving 2,030 people), the authors examined whether prebunking with a forewarning message that shared conspiracies worked better or worse than prebunking without it. This study focused on the 2022 US midterm elections and also considered expectations about the upcoming 2024 US general election. Prebunking without exposure to conspiracies was far more effective, likely because exposure induced skepticism toward subsequent factual articles. Notably, both tactics had the biggest impact on those who were already the most misinformed.

“Together, these approaches are practical, efficient, and scalable – key traits for real-world implementation by civil society groups, journalists, or election agencies,” Natalia Bueno suggests in a related Focus. “Equally promising is the fact that these strategies are relatively low-cost. Prebunking messages can be delivered in brief posts, using publicly available information.”

January 6 United States Capitol attack. Flickr Photo by Tyler Merbler, CC BY 2.0

Bibliographic information:

John M. Carey, Brian Fogarty, Marília Gehrke, Brendan Nyhan, Jason Reifler, Prebunking and credible source corrections increase election credibility: Evidence from the US and Brazil, Science Advances, DOI: 10.1126/sciadv.adv3758

 

Press release from the American Association for the Advancement of Science – AAAS, by Abigail Eisenstadt.

Discovered a correlation between earthquakes and carbon dioxide in the Apennines

The analysis of ten years of sampling of CO2 dissolved in the groundwaters of the Apennines showed its maximum concentration during intense seismic activity

terremoti anidride carbonica Appennino
Strong free CO2 emission associated with groundwater discharge (San Vittorino plain, Rieti). The emission is located about 30 km far from the epicentre of the April 2009 L’Aquila earthquake.

In the Apennine chain, the emission of CO2 of deep origin appears to be well correlated with the occurrence and evolution of the seismic sequences of the last decade. This is the result of the studyCorrelation between tectonic CO2 Earth degassing and seismicity is revealed by a ten-year record in the Apennines, Italy‘ conducted by a team of researchers from the Istituto Nazionale di Geofisica e Vulcanologia (INGV, Italy) and the University of Perugia (UNIPG, Italy) just published in ‘Science Advances’.

For the first time an analysis of geochemical and geophysical data collected from 2009 to 2018 was carried out“, explains Giovanni Chiodini, INGV researcher and coordinator of the study. “Results of this research have shown a correspondence between deep CO2 emissions and seismicity. In periods of intense seismic activity, peaks in the deep CO2 flux are observed, meanwhile they dampen when the seismic energy and the number of earthquakes decrease“.

The Earth releases CO2 of deep origin mainly from volcanoes, although these emissions also occur in seismic areas where there are no active volcanoes. In particular, this phenomenon is more intense in regions characterized by extensional tectonics, such as the area of ​​the Apennines.

Although the temporal relationships between the occurrence of a seismic event and the release of CO2 are not yet fully understood“, continues Chiodini, “In this study we hypothesize that the evolution of seismicity in the Apennines is modulated by the rise of CO2 accumulated in crustal reservoirs and produced by the partial melting of the plate subducting beneath the mountain chain“.

The continuous large-scale production of CO2 at depth favors the formation of overpressurized reservoirs. “Seismicity in mountain ranges”, add Francesca Di Luccio and Guido Ventura, INGV researchers and co-authors of the study, “could be related to the depressurization of these reservoirs and the consequent release of fluids which, in turn, activate the faults responsible for earthquakes“.

The study was conducted by sampling the high-flow rate springs (tens of thousands of liters per second) located in the vicinity of the epicentral areas of the earthquakes that occurred in central Italy between 2009 and 2018. “These samplings allowed us to characterize the origin of the CO2 dissolved in the water of the aquifers and to quantify the amount of the dissolved deep CO2“, explains Carlo Cardellini, researcher of the Department of Physics and Geology of the University of Perugia, co-author of the discovery.

The close relationship between the CO2 release and the number and magnitude of the earthquakes, along with the results of previous seismological surveys, indicate that the earthquakes in the Apennines occurred in the last decade are associated with the rise of deeply derived CO2. It is worth mentioning that the amount of CO2 involved is of the same order as that emitted during volcanic eruptions (approximately 1.8 million tons in ten years)”, concludes Chiodini.

Therefore, the results of the study provide evidence on how the fluids derived from the decarbonation of a subducting plate play an important role in the genesis of earthquakes, opening new horizons in the assessment of CO2 emissions at global scale. Finally, this work demonstrates and supports how the modern study of earthquakes requires a multidisciplinary approach in which geochemical, geophysical and geodynamic data need to be integrated.

earthquakes carbon dioxide Apennines
The Apennine earthquakes during 2007-2019 (including the destructive events of 2009 and 2016) were accompanied by evident peaks in the amount of CO2 dissolved and transported by the large Apennine water springs (tonnes per day of CO2 in the diagram)

———

Abstract 

Deep CO 2 emissions characterize many non-volcanic, seismically active regions worldwide and the involvement of deep CO 2 in the earthquake cycle is now generally recognized. However, no long-time records of such emissions have been published and the temporal relations between earthquake occurrence and tectonic CO 2 release remain enigmatic. Here we report a ten-year record (2009-2018) of tectonic CO 2 flux in the Apennines (Italy) during intense seismicity. The gas emission correlates with the evolution of the seismic sequences: peaks in the deep CO 2 flux are observed in periods of high seismicity and decays as the energy and number of earthquakes decrease. We propose that the evolution of seismicity is modulated by the ascent of CO 2 accumulated in crustal reservoirs and originating from the melting of subducted carbonates. This large scale, continuous process of CO 2 production favors the formation of overpressurized CO 2 -rich reservoirs potentially able to trigger earthquakes at crustal depth.

Press release on the correlation between earthquakes and carbon dioxide in the Apenninesfrom the Istituto Nazionale di Geofisica e Vulcanologia and the University of Perugia.