Small shelly fauna biodiversity: fossils from archaeocyathid reef systems – University of Missouri study challenges assumptions about biodiversity near Earth’s first reef systems, such as the lower Cambrian Harkless Formation, found in Nevada.
Rocky outcrops that contain the ancient reefs. Photo courtesy Sarah Jacquet
More than 514 million years ago, long before dinosaurs roamed the Earth, sponge-like creatures called archaeocyathids were already busy building some of the planet’s earliest reefs — just north of Death Valley in present-day Nevada.
Emily Edwards collects rock samples from the ancient reefs. Photo courtesy Sarah Jacquet
In a recent study, University of Missouri researchers looked at how these ancient reef-building organisms shaped their environment. They also studied tiny, fossilized sea creatures called “small shelly fauna” — some of the earliest animals with hard shells ever found on Earth.
Small shelly fauna biodiversity: fossils from archaeocyathid reef systems, such as the lower Cambrian Harkless Formation. In the picture, various small shelly fossils recovered from the beds surrounding the Cambrian reefs. Scale bar is 1 mm. Photo courtesy Sarah Jacquet
Modern coral reefs are known as biodiversity hotspots, teeming with marine life and supporting entire ecosystems. But this study found that early reefs did not appear to boost biodiversity in the same way, Casey Bennett, a graduate student in the Department of Geological Sciences and lead author on the study, said.
“With modern reefs, biodiversity is expected to decrease as you move away from the reef structure due to reduced shelter and food access,” she said. “However, we didn’t find a consistent pattern with these ancient reefs — instead, it was pretty inconsistent and was largely dependent on localized conditions.”
This discovery offers a glimpse into how life evolved in early oceans and challenges assumptions about how ecosystems develop around reef structures. It’s a reminder that not all reefs are created equal, and understanding their ancient forms could offer insight into how modern marine systems might change.
Ancient ocean currents — and rocks
To conduct the study, the team analyzed fossil assemblages across multiple rock sections. Their results show a relatively low-diversity but high-abundance community, with some organisms dominating certain layers —possibly shaped by ancient ocean currents.
Sarah Jacquet, an assistant professor of paleontology in Mizzou’s College of Arts and Science and co-author on the study, believes hydrodynamics, or how water moved around the reef, played a significant role.
“Potentially, this happened by preferentially removing or keeping certain faunas, rather than the reef serving as a major food source for surrounding organisms,” she said.
Additionally, sediment conditions, including the type of rock, impacted the quality of fossil preservation.
“Different rock types around the reef appeared to represent different ‘sub environments’ that tended to preserve certain organisms better than others, leading to localized patches of specific fossil groups,” Bennett said.
The team emphasizes the need for continued fieldwork and fossil analysis to piece together how early reef habitats influenced the spread and organization of life in Earth’s oceans.
“Just because we know how the world works today doesn’t mean it worked the same way back then,” Jacquet said. “This research helps us step back and appreciate how life evolved under very different conditions.”
Casey Bennett and Emily Edwards sit below the ancient reefs with bags of rock samples collected from their field work. Photo courtesy Sarah Jacquet
Bibliographic information:
Casey C. Bennett, Clare Mate, Sarah M. Jacquet, Small shelly fauna biodiversity from reef-adjacent facies of the lower Cambrian Harkless Formation, Nevada, Palaeogeography, Palaeoclimatology, Palaeoecology, Volume 669 2025, 112922, ISSN 0031-0182, DOI: https://doi.org/10.1016/j.palaeo.2025.112922
Press release from University of Missouri, by Eric Stann
First named Pterosaur from Japan sheds light on ancient flying reptiles – Newly identified Nipponopterus mifunensis highlights international collaboration and Japan’s rich prehistoric heritage
A team of researchers from Japan, China, and Brazil has announced the discovery of a new species of pterosaur from the Late Cretaceous of Japan, marking the first time a pterosaur has been named based on body fossils found in the country.
The species, Nipponopterus mifunensis, was identified from a partial neck vertebra originally discovered in the 1990s in the Mifune Group geological formation in Kumamoto Prefecture, located on Japan’s southern island of Kyushu. After a detailed reassessment using advanced CT scanning provided by Kumamoto University and subsequent phylogenetic analysis, the research team concluded that the specimen represents a new genus and species within the Azhdarchidae family—a group known for containing some of the largest flying animals that ever lived. The fossil is now on public display at the Mifune Dinosaur Museum in Kumamoto Prefecture, offering visitors a rare glimpse into Japan’s ancient skies.
“This is a major step forward for Japanese paleontology,” said Dr. Naoki Ikegami from the Mifune Dinosaur Museum, “Until now, no pterosaur had been formally named from skeletal remains found in Japan. This discovery provides crucial new insight into the diversity and evolution of pterosaurs in East Asia.”
Interestingly, Nipponopterus may have had a wingspan approaching 3 to 3.5 meters and lived during the Turonian–Coniacian stages of the Late Cretaceous, making it one of the earliest known members of its lineage.
The newly identified sixth cervical vertebra (neck bone) of Nipponopterus mifunensis reveals a set of striking features not seen in any previously known species. Most notably, it has a prominent, elevated dorsal keel that runs along the back of the bone—extending not just over the epipophysis but across the entire postexapophyseal peduncle. Additional distinctive traits include a long groove running along the underside (ventral sulcus), a subtriangular-shaped condyle, and unusually positioned postexapophyses that project outward to the sides. These characteristics set Nipponopterus mifunensis apart from all other known azhdarchid pterosaurs. Phylogenetic analysis places it within the Quetzalcoatlinae subfamily, identifying it as a close relative of both the mysterious “Burkhant azhdarchid” from Mongolia and the giant Quetzalcoatlus of North America.
Published in the peer-reviewed journal Cretaceous Research, the study was the result of an international collaboration involving researchers from Shihezi University in China, the Zoology Museum at the University of São Paulo in Brazil, and a team in Japan from the Mifune Dinosaur Museum, Kumamoto University, and Hokkaido University. Researchers worked closely together, combining expertise in fossil analysis, imaging technology, analytical modeling and evolutionary studies.
“It’s a beautiful example of how science transcends borders,”
noted Professor Toshifumi Mukunoki from the Faculty of Advanced Science and Technology, Kumamoto University.
Nipponopterus mifunensis, a newly identified pterosaur known from a single neck vertebra, once soared through the ancient skies of what is now Japan. Picture Credits: Zhao Chuang
Bibliographic information:
Xuanyu Zhou, Naoki Ikegami, Rodrigo V. Pêgas, Toru Yoshinaga, Takahiro Sato, Toshifumi Mukunoki, Jun Otani, Yoshitsugu Kobayashi, Reassessment of an azhdarchid pterosaur specimen from the Mifune Group, Upper Cretaceous of Japan, Cretaceous Research Volume 167, 2025, 106046, ISSN 0195-6671, DOI: https://doi.org/10.1016/j.cretres.2024.106046
Hubble and a new study published in Nature Astronomy cast doubt on the certainty of a collision between the Milky Way and the Andromeda galaxy
Over a decade’s worth of NASA/ESA Hubble Space Telescope data was used to re-examine the long-held prediction that the Milky Way galaxy will collide with the Andromeda galaxy in about 4.5 billion years. The astronomers found that, based on the latest observational data from Hubble as well as the Gaia space telescope, there is only a 50-50 chance of the two galaxies colliding within the next 10 billion years. The study also found that the presence of the Large Magellanic Cloud can affect the trajectory of the Milky Way and make the collision less likely. The researchers emphasize that predicting the long-term future of galaxy interactions is highly uncertain, but the new findings challenge the previous consensus and suggest the fate of the Milky Way remains an open question.
Hubble and a new study published in Nature Astronomy cast doubt on the certainty of a collision between the Milky Way and the Andromeda galaxy. This selection of images of external galaxies illustrates three encounter scenarios between our Milky Way and the neighboring Andromeda galaxy. In the top left panel, a wide-field DSS image showing galaxies M81 and M82 serves as an example of the Milky Way and Andromeda passing each other at large distances. The top right panel shows NGC 6786, a pair of interacting galaxies displaying the telltale signs of tidal disturbances after a close encounter. The bottom panel shows NGC 520, a cosmic train wreck as two galaxies are actively merging together. Credit: NASA, ESA, STScI, Till Sawala (University of Helsinki), DSS, J. DePasquale (STScI)
As far back as 1912, astronomers realized that the Andromeda galaxy — then thought to be only a nebula — was headed our way. A century later, astronomers using the NASA/ESA Hubble Space Telescope were able to measure the sideways motion of Andromeda and found it was so negligible that an eventual head-on collision with the Milky Way seemed almost certain.
A smashup between our own galaxy and Andromeda would trigger a firestorm of star birth, supernovae, and maybe toss our Sun into a different orbit. Simulations had suggested it was inevitable.
However, a new study using data from Hubble and ESA’s Gaia suggests this may not necessarily be the case. Researchers combining observations from the two space observatories re-examined the long-held prediction of a Milky Way – Andromeda collision, and found it is far less inevitable than astronomers had previously suspected.
“We have the most comprehensive study of this problem today that actually folds in all the observational uncertainties,” said Till Sawala, astronomer at the University of Helsinki in Finland and lead author of the study, which appears today in the journal Nature Astronomy.
His team includes researchers at Durham University, United Kingdom; the University of Toulouse, France; and the University of Western Australia. They found that there is approximately a 50-50 chance of the two galaxies colliding within the next 10 billion years. They based this conclusion on computer simulations using the latest observational data.
Sawala emphasized that predicting the long-term future of galaxy interactions is highly uncertain, but the new findings challenge the previous consensus and suggest the fate of the Milky Way remains an open question.
“Even using the latest and most precise observational data available, the future of the Local Group of several dozen galaxies is uncertain. Intriguingly, we find an almost equal probability for the widely publicized merger scenario, or, conversely, an alternative one where the Milky Way and Andromeda survive unscathed,” said Sawala.
The collision of the two galaxies had seemed much more likely in 2012, when astronomers Roeland van der Marel and Tony Sohn of the Space Telescope Science Institute in Baltimore, Maryland published a detailed analysis of Hubble observations over a five-to-seven-year period, indicating a direct impact in no more than 5 billion years.
“It’s somewhat ironic that, despite the addition of more precise Hubble data taken in recent years, we are now less certain about the outcome of a potential collision. That’s because of the more complex analysis and because we consider a more complete system. But the only way to get to a new prediction about the eventual fate of the Milky Way will be with even better data,” said Sawala.
Astronomers considered 22 different variables that could affect the potential collision between our galaxy and our neighbor, and ran 100,000 simulations called Monte Carlo simulations stretching to 10 billion years into the future.
“Because there are so many variables that each have their errors, that accumulates to rather large uncertainty about the outcome, leading to the conclusion that the chance of a direct collision is only 50% within the next 10 billion years,” said Sawala.
“The Milky Way and Andromeda alone would remain in the same plane as they orbit each other, but this doesn’t mean they need to crash. They could still go past each other,” said Sawala.
Researchers also considered the effects of the orbits of Andromeda’s large satellite galaxy, M33, and a satellite galaxy of the Milky Way called the Large Magellanic Cloud (LMC).
“The extra mass of Andromeda’s satellite galaxy M33 pulls the Milky Way a little bit more towards it. However, we also show that the LMC pulls the Milky Way off the orbital plane and away from Andromeda. It doesn’t mean that the LMC will save us from that merger, but it makes it a bit less likely,” said Sawala.
In about half of the simulations, the two main galaxies fly past each other separated by around half a million light-years or less (five times the Milky Way’s diameter). They move outward but then come back and eventually merge in the far future. The gradual decay of the orbit is caused by a process called dynamical friction between the vast dark-matter halos that surround each galaxy at the beginning.
In most of the other cases, the galaxies don’t even come close enough for dynamical friction to work effectively. In this case, the two galaxies can continue their orbital waltz for a very long time.
The new result also still leaves a small chance of around 2% for a head-on collision between the galaxies in only 4 to 5 billion years. Considering that the warming Sun makes Earth uninhabitable in roughly 1 billion years, and the Sun itself will likely burn out in 5 billion years, a collision with Andromeda is the least of our cosmic worries.
Webb’s Titan forecast: partly cloudy with occasional methane showers
Astronomers see evidence of clouds bubbling up over Titan’s northern hemisphere.
A science team has combined data from the NASA/ESA/CSA James Webb Space Telescope and the Keck II telescope to see evidence of cloud convection on Saturn’s moon Titan in the northern hemisphere for the first time. Most of Titan’s lakes and seas are located in that hemisphere, and are likely replenished by an occasional rain of methane and ethane. Webb also has detected a key carbon-containing molecule that gives insight into the chemical processes in Titan’s complex atmosphere.
These infrared-light images of Titan were taken by the NASA/ESA/CSA James Webb Space Telescope on 11 July 2023. They show methane clouds appearing at different altitudes in Titan’s northern hemisphere. On the left side is a representative-colour image (1.4 microns is coloured blue, 1.5 microns is green, and 2.0 microns is red: filters F140M, F150W, and F200W, respectively). In the middle is a single-wavelength image taken by Webb at 2.12 microns. This wavelength is predominantly emitted from Titan’s lower troposphere. The rightmost image shows emission at 1.64 microns, which favours higher altitudes, in Titan’s upper troposphere and stratosphere (an atmospheric layer above the troposphere). Credit: NASA, ESA, CSA, STScI, Keck Observatory
Saturn’s moon Titan is an intriguing world cloaked in a yellowish, smoggy haze. Similar to Earth, the atmosphere is mostly nitrogen and has weather, including clouds and rain. Unlike Earth, whose weather is driven by evaporating and condensing water, frigid Titan has a methane (CH4) cycle. It evaporates from the surface and rises into the atmosphere, where it condenses to form methane clouds. Occasionally it falls as a chilly, oily rain onto a solid surface where water ice is hard as rocks.
“Titan is the only other place in our Solar System that has weather like Earth, in the sense that it has clouds and rainfall onto a surface,” explained lead author Conor Nixon of NASA’s Goddard Space Flight Center in Greenbelt, Maryland.
The team observed Titan in November 2022 and July 2023 using both Webb and one of the twin ground-based W.M. Keck telescopes. Those observations not only showed clouds in the mid and high northern latitudes on Titan — the hemisphere where it is currently summer — but also showed those clouds apparently rising to higher altitudes over time. While previous studies have observed cloud convection at southern latitudes, this is the first time evidence for such convection has been seen in the north. This is significant because most of Titan’s lakes and seas are located in its northern hemisphere and evaporation from lakes is a major potential methane source.
On Earth the lowest layer of the atmosphere, or troposphere, extends up to an altitude of about 12 kilometers. However, on Titan, whose lower gravity allows the atmospheric layers to expand, the troposphere extends up to about 45 kilometers. Webb and Keck used different infrared filters to probe to different depths in Titan’s atmosphere, allowing astronomers to estimate the altitudes of the clouds. The science team observed clouds that appeared to move to higher altitudes over a period of days, although they were not able to directly see any precipitation occurring.
“Webb’s observations were taken at the end of Titan’s northern summer, which is a season that we were unable to observe with the Cassini-Huygens mission,” said Thomas Cornet of the European Space Agency, a co-author of the study. “Together with ground-based observations, Webb is giving us precious new insights into Titan’s atmosphere, that we hope to be able to investigate much closer-up in the future with a possible ESA mission to visit the Saturn system.”
Titan’s chemistry
Titan is an object of high astrobiological interest due to its complex organic (carbon-containing) chemistry, despite its frigid temperature of about -180 degrees Celsius. Organic molecules form the basis of all life on Earth, and studying them on a world like Titan may help scientists understand the processes that led to the origin of life on Earth.
The basic ingredient that drives much of Titan’s chemistry is methane. Methane in Titan’s atmosphere gets split apart by sunlight or energetic electrons from Saturn’s magnetosphere, and then recombines with other molecules to make substances like ethane (C2H6) along with more complex carbon-bearing molecules.
Webb’s data provided a key missing piece for our understanding of the chemical processes: a definitive detection of the methyl radical CH3. This molecule (called “radical” because it has a “free” electron that is not in a chemical bond) forms when methane is broken apart. Detecting this substance means that scientists can see chemistry in action on Titan for the first time, rather than just the starting ingredients and the end products.
“For the first time we can see the chemical cake while it’s rising in the oven, instead of just the starting ingredients of flour and sugar, and then the final, iced cake,” said co-author Stefanie Milam of the Goddard Space Flight Center.
The future of Titan’s atmosphere
This hydrocarbon chemistry has long-term implications for the future of Titan. When methane is broken apart in the upper atmosphere, some of it recombines to make other molecules that eventually end up on Titan’s surface in one chemical form or another, while some hydrogen escapes from the atmosphere. As a result, methane will be depleted over time, unless there is some source to replenish it.
A similar process occurred on Mars, where water molecules were broken up and the resulting hydrogen lost to space. The result was the dry, desert planet we see today.
“On Titan, methane is a consumable. It’s possible that it is being constantly resupplied and fizzing out of the crust and interior over billions of years. If not, eventually it will all be gone and Titan will become a mostly airless world of dust and dunes,” said Nixon.
This data was taken as part of Heidi Hammel’s Guaranteed Time Observations program to study the Solar System. The results were published in the journal Nature Astronomy.
These images of Titan were taken by the NASA/ESA/CSA James Webb Space Telescope on 11July 2023 (top row) and the ground-based W.M. Keck Observatories on 14 July 2023 (bottom row). They show methane clouds (denoted by the white arrows) appearing at different altitudes in Titan’s northern hemisphere. On the left side are representative-colour images from both telescopes. In the Webb image light at 1.4 microns is coloured blue, 1.5 microns is green, and 2.0 microns is red (filters F140M, F150W, and F200W, respectively). In the Keck image light at 2.13 microns is coloured blue, 2.12 microns is green, and 2.06 microns is red (H2 1-0, Kp, and He1b, respectively). In the middle column are single-wavelength images taken by Webb and Keck at 2.12 microns. This wavelength is sensitive to emission from Titan’s lower troposphere. The rightmost images show emission at 1.64 microns (Webb) and 2.17 microns (Keck), which favour higher altitudes, in Titan’s upper troposphere and stratosphere (an atmospheric layer above the troposphere). It demonstrates that the clouds are seen at higher altitudes on July 14 than earlier on July 11, indicative of upward motion. Credit: NASA, ESA, CSA, STScI, Keck Observatory
Bibliographic information:
Nixon, C.A., Bézard, B., Cornet, T. et al., The atmosphere of Titan in late northern summer from JWST and Keck observations, Nat Astron (2025), DOI: https://doi.org/10.1038/s41550-025-02537-3
Mosura fentoni: Manitoba Museum and ROM palaeontologists discover 506-million-year-old predator
Palaeontologists at the Manitoba Museum and Royal Ontario Museum (ROM) have discovered a remarkable new 506-million-year-old predator from the Burgess Shale of Canada. The results are announced in a paper in the journal Royal Society Open Science.
Mosura fentoni was about the size of your index finger and had three eyes, spiny jointed claws, a circular mouth lined with teeth and a body with swimming flaps along its sides. These traits show it to be part of an extinct group known as the radiodonts, which also included the famous Anomalocaris canadensis, a meter-long predator that shared the waters with Mosura.
However, Mosura also possessed a feature not seen in any other radiodont: an abdomen-like body region made up of multiple segments at its back end.
“Mosura has 16 tightly packed segments lined with gills at the rear end of its body. This is a neat example of evolutionary convergence with modern groups, like horseshoe crabs, woodlice, and insects, which share a batch of segments bearing respiratory organs at the rear of the body,”
says Joe Moysiuk, Curator of Palaeontology and Geology at the Manitoba Museum, who led the study.
The reason for this intriguing adaptation remains uncertain, but the researchers postulate it may be related to particular habitat preference or behavioural characteristics of Mosura that required more efficient respiration.
With its broad swimming flaps near its midsection and narrow abdomen, Mosura was nicknamed the “sea-moth” by field collectors based on its vague appearance to a moth. This inspired its scientific name, which references the fictional Japanese kaiju also known as Mothra. Only distantly related to real moths – as well as spiders, crabs, and millipedes – Mosura belongs on a much deeper branch in the evolutionary tree of these animals, collectively known as arthropods.
“Radiodonts were the first group of arthropods to branch out in the evolutionary tree, so they provide key insight into ancestral traits for the entire group. The new species emphasizes that these early arthropods were already surprisingly diverse and were adapting in a comparable way to their distant modern relatives”,
says study co-author Jean-Bernard Caron, Richard M. Ivey Curator of Invertebrate Palaeontology at ROM.
Several fossils of Mosura additionally show details of internal anatomy, including elements of the nervous system, circulatory system, and digestive tract.
“Very few fossil sites in the world offer this level of insight into soft internal anatomy. We can see traces representing bundles of nerves in the eyes that would have been involved in image processing, just like in living arthropods. The details are astounding,” Caron adds.
Instead of having arteries and veins like we do, Mosura had an “open” circulatory system, with its heart pumping blood into large internal body cavities called lacunae. These lacunae are preserved as reflective patches that fill the body and extend into the swimming flaps in the fossils.
“The well-preserved lacunae of the circulatory system in Mosura help us to interpret similar, but less clear features that we’ve seen before in other fossils. Their identity has been controversial,” adds Moysiuk, who is also a Research Associate at ROM. “It turns out that preservation of these structures is widespread, confirming the ancient origin of this type of circulatory system.”
Of the 61 fossils of Mosura, all except one were collected by ROM between 1975 and 2022, mostly from the Raymond Quarry in Yoho National Park, British Columbia. Some also came from new areas around Marble Canyon in Kootenay National Park, 40 km to the southeast, which have revealed spectacular new Burgess Shale fossils, including other radiodonts: Stanleycaris, Cambroraster and Titanokorys. One previously unpublished specimen of Mosura was also studied that had been collected by Charles Walcott, the discoverer of the Burgess Shale.
“Museum collections, old and new, are a bottomless treasure trove of information about the past. If you think you’ve seen it all before, you just need to open up a museum drawer,” Moysiuk says.
The Burgess Shale fossil sites are located within Yoho and Kootenay National Parks and are managed by Parks Canada. Parks Canada is proud to work with leading scientific researchers to expand knowledge and understanding of this key period of Earth’s history and to share these sites with the world through award-winning guided hikes. The Burgess Shale was designated a UNESCO World Heritage Site in 1980 due to its outstanding universal value and is now part of the larger Canadian Rocky Mountain Parks World Heritage Site.
Many radiodont fossils can be seen on display in ROM’s Willner Madge Gallery, Dawn of Life, in Toronto, and a specimen of Mosura will be exhibited for the first time at the Manitoba Museum in Winnipeg later this year.
For 50 years, ROM has been at the forefront of Burgess Shale research, uncovering dozens of new fossil sites and species. Located in the Canadian Rocky Mountain Parks of British Columbia, the Burgess Shale fossils are exceptionally preserved and provide one of the best records of marine life during the Cambrian period anywhere. Home to the world’s largest Burgess Shale collection, ROM shares these extraordinary fossils through global research, an award-winning online resource, and its newest permanent gallery: the Willner Madge Gallery, Dawn of Life.
Moysiuk Joseph and Caron Jean-Bernard, Early evolvability in arthropod tagmosis exemplified by a new radiodont from the Burgess Shale, R. Soc. Open Sci. 2025 12242122, DOI: http://doi.org/10.1098/rsos.242122
The NASA/ESA/CSA James Webb Space Telescope has captured new details of the auroras on our Solar System’s largest planet. The dancing lights observed on Jupiter are hundreds of times brighter than those seen on Earth. With Webb’s advanced sensitivity, astronomers have studied the phenomena to better understand Jupiter’s magnetosphere.
The NASA/ESA/CSA James Webb Space Telescope has captured new details of the auroras on our Solar System’s largest planet. The dancing lights observed on Jupiter are hundreds of times brighter than those seen on Earth. These observations of Jupiter’s auroras were captured with Webb’s Near-InfraRed Camera (NIRCam) on 25 December 2023 (F335M filter). Scientists found that the emission from the trihydrogen ion, known as H3+, is far more variable than previously believed. H3+ is created by the impact of high energy electrons on molecular hydrogen. Because this emission shines brightly in the infrared, Webb’s instruments are well equipped to observe it. Credit: ESA/Webb, NASA, CSA, J. Nichols (University of Leicester), M. Zamani (ESA/Webb)
The auroras are created when high-energy particles enter a planet’s atmosphere near its magnetic poles and collide with atoms of gas. Not only are the auroras on Jupiter huge in size, they are also hundreds of times more energetic than auroras on Earth. Here, auroras are caused by solar storms — when charged particles rain down on the upper atmosphere, excite gases and cause them to glow colours of red, green and purple. Meanwhile, Jupiter has an additional source for its auroras; the strong magnetic field of the gas giant grabs charged particles from its surroundings. This includes not only the charged particles within the solar wind but also the particles thrown into space by its orbiting moon Io, known for its numerous and large volcanoes. Io’s volcanoes spew particles that, remarkably, escape the moon’s gravity and orbit Jupiter. A barrage of charged particles unleashed by the sun during solar storms also reaches the planet. Jupiter’s large and powerful magnetic field captures charged particles and accelerates them to tremendous speeds. These speedy particles slam into the planet’s atmosphere at high energies, which excites the gas and causes it to glow.
Now, Webb’s unique capabilities are providing new insights into the auroras on Jupiter. The telescope’s sensitivity allows astronomers to increase the shutter speed in order to capture fast-varying auroral features. New data was captured with Webb’s Near-InfraRed Camera (NIRCam) on Christmas Day 2023 by a team of scientists led by Jonathan Nichols from the University of Leicester in the United Kingdom.
“What a Christmas present it was – it just blew me away!” shared Nichols. “We wanted to see how quickly the auroras change, expecting it to fade in and out ponderously, perhaps over a quarter of an hour or so. Instead we observed the whole auroral region fizzing and popping with light, sometimes varying by the second.”
The NASA/ESA/CSA James Webb Space Telescope has captured new details of the auroras on our Solar System’s largest planet. The dancing lights observed on Jupiter are hundreds of times brighter than those seen on Earth. These observations of Jupiter’s auroras (shown on the left of the above image) were captured with Webb’s Near-InfraRed Camera (NIRCam) on 25 December 2023 (F335M filter). Scientists found that the emission from the trihydrogen ion, known as H3+, is far more variable than previously believed. H3+ is created by the impact of high energy electrons on molecular hydrogen. Because this emission shines brightly in the infrared, Webb’s instruments are well equipped to observe it. The image on the right shows the planet Jupiter to indicate the location of the observed auroras, which was originally published in 2023 (F164N, F212N, and F360M filters). Credit: NASA, ESA, CSA, STScI, Ricardo Hueso (UPV), Imke de Pater (UC Berkeley), Thierry Fouchet (Observatory of Paris), Leigh Fletcher (University of Leicester), Michael H. Wong (UC Berkeley), Joseph DePasquale (STScI), J. Nichols (University of Leicester), M. Zamani (ESA/Webb)
The team’s data found that the emission from the trihydrogen ion, known as H3+, is far more variable than previously believed. The observations will help develop scientists’ understanding of how Jupiter’s upper atmosphere is heated and cooled.
The team also uncovered some unexplained observations in their data.
“What made these observations even more special is that we also took pictures simultaneously in the ultraviolet with the NASA/ESA Hubble Space Telescope,” added Nichols. “Bizarrely, the brightest light observed by Webb had no real counterpart in Hubble’s pictures. This has left us scratching our heads. In order to cause the combination of brightness seen by both Webb and Hubble, we need to have an apparently impossible combination of high quantities of very low energy particles hitting the atmosphere – like a tempest of drizzle! We still don’t understand how this happens.”
The team now plans to study this discrepancy between the Hubble and Webb data and to explore the wider implications for Jupiter’s atmosphere and space environment. They also intend to follow up this research with more Webb observations, which they can compare with data from NASA’s Juno spacecraft to better explore the cause of the enigmatic bright emission. These insights may also support the European Space Agency’s Jupiter Icy Moons Explorer, Juice, which is en route to Jupiter to make detailed observations of the giant gas planet and its three large ocean-bearing moons – Ganymede, Callisto and Europa. Juice will take a look at Jupiter’s auroras with seven unique scientific instruments, including two imagers. These close-up measurements will help us understand how the planet’s magnetic field and atmosphere interact, as well as the effect that charged particles from Io and the other moons have on Jupiter’s atmosphere.
The NASA/ESA/CSA James Webb Space Telescope has captured new details of the auroras on our Solar System’s largest planet. The dancing lights observed on Jupiter are hundreds of times brighter than those seen on Earth. These observations of Jupiter’s auroras were captured with Webb’s Near-InfraRed Camera (NIRCam) on 25 December 2023 (F335M filter). Scientists found that the emission from the trihydrogen ion, known as H3+, is far more variable than previously believed. H3+ is created by the impact of high energy electrons on molecular hydrogen. Because this emission shines brightly in the infrared, Webb’s instruments are well equipped to observe it. The timestamps indicated in the lower right corner of each image indicates the time (UTC) when these observations were taken on 25 December 2023. Credit: ESA/Webb, NASA, CSA, J. Nichols(University of Leicester), M. Zamani (ESA/Webb)
These results were obtained from data using Webb’s Cycle 2 observing programme #4566 and Hubble’s observing programme #17471. The results were published today in Nature Communications.
New research from a team of cognitive scientists and evolutionary biologists finds that chimpanzees drum rhythmically, using regular spacing between drum hits. Their results, publishing in the Cell Press journal Current Biology on May 9, show that eastern and western chimpanzees—two distinct subspecies—drum with distinguishable rhythms. The researchers say these findings suggest that the building blocks of human musicality arose in a common ancestor of chimpanzees and humans.
“Based on our previous work, we expected that western chimpanzees would use more hits and drum more quickly than eastern chimpanzees,” says lead author Vesta Eleuteri (@EleuteriVesta) of the University of Vienna, Austria. “But we didn’t expect to see such clear differences in rhythm or to find that their drumming rhythms shared such clear similarities with human music.”
Earlier studies showed that chimpanzees produce low-frequency sounds by drumming on buttress roots—large, wide roots that grow above the soil. The researchers suggest that the chimps use these percussive patterns to send information over both long and short distances.
“Our previous study showed that each chimpanzee has their own unique drumming style and that drumming helps to keep others in their group updated about where they are and what they’re doing—a sort of way to check in across the rainforest,” Eleuteri says. “What we didn’t know was whether chimpanzees living in different groups have different drumming styles and whether their drumming is rhythmic, like in human music.”
To find out, Eleuteri and her team, including senior authors Catherine Hobaiter of the University of St. Andrews in the UK and Andrea Ravignani of Sapienza University in Rome, teamed up with other chimpanzee researchers to study 371 drumming bouts in 11 chimpanzee communities, including six populations and two subspecies.
Chimpanzee groups drum with distinct rhythms, according to a new study published in the journal Current Biology. In the picture, a chimpanzee drumming. Photo Credits: Current Biology, Eleuteri et al.
After analyzing the drum patterns, they found that chimpanzees drum with rhythm and that the timing of their hits is non-random and often evenly spaced. Eastern and western subspecies also exhibited different drumming patterns; western chimpanzees used evenly spaced hits while eastern chimpanzees more often alternated between hits at shorter and longer time intervals. They also found that western chimpanzees hit their “drums” more, using a faster tempo, and integrated their drumming earlier in their pant-hoot vocalizations.
“Making music is a fundamental part of what it means to be human—but we don’t know for how long we have been making music,” says Hobaiter. “Showing that chimpanzees share some of the fundamental properties of human musical rhythm in their drumming is a really exciting step in understanding when and how we evolved this skill. Our findings suggest that our ability to drum rhythmically may have existed long before we were human.”
###
This research was supported by funding from the European Union’s 8th Framework Programme, Horizon 2020, the Austrian Science Fund, the Swiss National Science Foundation, SNSF Eccellenza Professorial Fellowship, Homerton College, Newnham College, the A.H. Schultz Foundation, the Jane Goodall Institute Schweiz, MEXT, the Max Plank Society, the European Union ERC, TOHR, the Center for Music in the Brain, and the Danish National Research Foundation.
Bibliographic information:
Vesta Eleuteri, Jelle van der Werff, Wytse Wilhelm, Adrian Soldati, Catherine Crockford, Nisarg Desai, Pawel Fedurek, Maegan Fitzgerald, Kirsty E. Graham, Kathelijne Koops, Jill Pruetz, Liran Samuni, Katie Slocombe, Angela Stoeger, Michael L. Wilson, Roman M. Wittig, Klaus Zuberbühler, Henry D. Camara, Gnan Mamy, Andrea Ravignani, Catherine Hobaiter, “Chimpanzees drum rhythmically and with subspecies variation”, “Current Biology” (2025) DOI: https://doi.org/10.1016/j.cub.2025.04.019
In celebration of the NASA/ESA Hubble Space Telescope’s 35 years in Earth orbit, an assortment of compelling images have been released today that were recently taken by Hubble. This stretches from the planet Mars to dramatic images of stellar birth and death, to a magnificent neighbouring galaxy. After over three decades of perusing the restless universe, Hubble remains a household word as the most well-recognized telescope in scientific history.
Astronomers knew that placing a telescope above Earth’s blurry atmosphere would allow for them to behold the Universe like never before. Hubble’s view would be ten times sharper than conventional ground-based telescopes of the time. Its high sensitivity would uncover objects more than one-billionth the brightness of the faintest stars seen by the human eye. Unfiltered by Earth’s atmosphere, its broad wavelength coverage would stretch from ultraviolet to near-infrared light. Glorious celestial wonders would come into focus. Moreover, Hubble would be an audacious leap forward in human imagination, engineering prowess, and boundless curiosity.
Before Hubble, no generation ever had access to unimaginably vibrant views of space, stretching almost all the way back to almost the beginning of time. For most of history, the complexity and extent of the vast cosmos was left largely to human imagination. But Hubble entered the final sprint in the race to the edge of the visible Universe. In the early 1920s, the telescope’s namesake, astronomer Edwin Hubble, started this marathon with the discovery of galaxies outside of our Milky Way.
Hubble today is at the peak of its scientific return thanks to the dedication, perseverance and skills of engineers, scientists and mission operators. Astronaut shuttle crews gallantly chased and rendezvoused with Hubble on five servicing missions from 1993 to 2009. The astronauts, including ESA astronauts on two of the servicing missions, upgraded Hubble’s cameras, computers and other support systems.
By extending Hubble’s operational life the telescope has made nearly 1.7 million observations, looking at approximately 55,000 astronomical targets. Hubble discoveries have resulted in over 22,000 papers and over 1.3 million citations as of February 2025. All the data collected by Hubble is archived and currently adds up to over 400 terabytes. The demand for observing time remains very high with 6:1 oversubscriptions, making it one of the most in-demand observatories today.
Hubble’s long operational life has allowed astronomers to see astronomical changes spanning over three decades: seasonal variability on the planets in our solar system, black hole jets travelling at nearly the speed of light, stellar convulsions, asteroid collisions, expanding supernova bubbles, and much more.
A lasting legacy
Hubble’s legacy is the bridge between our past and future knowledge of a Universe that is unbelievably glorious, as well as rambunctious — with colliding galaxies, voracious black holes, and relentless stellar fireworks. Hubble, more than any other telescope, sees the Universe through the eyes of Einstein: microlensing, time-dilation, the cosmological constant, matter disappearing into a black hole, a source of gravitational waves.
Before 1990, powerful optical telescopes on Earth could see only halfway across the cosmos. Estimates for the age of the Universe disagreed by a big margin. Supermassive black holes were only suspected to be the powerhouses behind a rare zoo of energetic phenomena. Not a single planet had been seen around another star.
Among its long list of breakthroughs: Hubble’s deep fields unveiled myriad galaxies dating back to the early Universe; precisely measured the Universe’s expansion; found that supermassive black holes are common among galaxies; made the first measurement of the atmospheres of extrasolar planets; contributed to discovering dark energy, which is accelerating the Universe.
After three decades, Hubble remains a household word as the most well-recognized and celebrated scientific instrument in all of human history. Hubble’s discoveries and images have been nothing less than transformative for the public’s perception of the cosmos. Unlike any other telescope before it, Hubble has made astronomy very relevant, engaging, and accessible for people of all ages. Hubble became “the people’s telescope,” touching the minds as well as the emotions of hundreds of millions of humans around the globe.
A single Hubble snapshot can portray the Universe as awesome, mysterious, and beautiful—and at the same time chaotic, overwhelming, and foreboding. These pictures have become iconic, seminal, and timeless. They viscerally communicate the value of science: the awe and drive to seek understanding of our place in the cosmos. In commemoration NASA and ESA released images today of five astronomical targets that were selected for the celebration, ranging from planets to nebulae to galaxies.
The relentless pace of Hubble’s trailblazing discoveries kicked-started a new generation of space telescopes for the 21st century. The powerful James Webb Space Telescope may not have been built without Hubble revealing an “undiscovered country” of far-flung, seemingly countless galaxies. Hubble provided the first observational evidence that there was a lot for Webb to pursue in infrared wavelengths that reach even greater distances beyond Hubble’s gaze. Now, Hubble and Webb are often being used in complement to study everything from exoplanets to galaxy dynamics.
35th anniversary images
An assortment of compelling images have been released today that were recently taken by Hubble:
Mars: These are a combination of Hubble Space Telescope images of Mars taken from December 28th to 30th, 2024. At the midpoint of the observations, Mars was approximately 98 million kilometres from Earth. Thin water-ice clouds that are apparent in ultraviolet light give the Red Planet a frosty appearance. The icy northern polar cap was experiencing the start of Martian spring.
In celebration of the NASA/ESA Hubble Space Telescope’s 35 years in Earth orbit, an assortment of compelling images have been released today that were recently taken by Hubble:
Upper left: The planet Mars as seen in late December 2024. Thin water-ice clouds, revealed by Hubble’s unique ultraviolet capability, give the Red Planet a frosty appearance.
Upper right: Planetary nebula NGC 2899. This moth-like nebula is sculpted by the outflow of radiation and stellar winds from a dying star – a white dwarf – at the center.
Lower left: The Rosette Nebula. This is a small portion of the huge star-forming region. Dark clouds of hydrogen gas laced with dust are silhouetted across the image.
Lower right: The galaxy NGC 5335, which is a flocculent spiral galaxy with patchy streamers of star formation across its disc. A notable bar structure slices across the center of the galaxy.
Credit: NASA, ESA, STScI
This is a combination of Hubble Space Telescope images of Mars taken from December 28th to 30th, 2024. At the midpoint of the observations, Mars was approximately 98 million kilometres from Earth. Thin water-ice clouds that are apparent in ultraviolet light give the Red Planet a frosty appearance. The icy northern polar cap was experiencing the start of Martian spring.
In the left image, the bright orange Tharsis plateau is visible with its chain of dormant volcanoes. The largest volcano, Olympus Mons, pokes above the clouds at the 10 o’clock position near the northwest limb. At an elevation of 21 000 metres, it is 2.5 times the height of Mt. Everest above sea level. Valles Marineris, Mars’ roughly 4,000 kilometre-long canyon system, is a dark, linear, horizontal feature near center left.
In the right image, high-altitude evening clouds can be seen along the planet’s eastern limb. The 2,250-kilometre-wide Hellas basin, an ancient asteroid impact feature, appears far to the south. Most of the hemisphere is dominated by the classical “shark fin” feature, Syrtis Major.
Credit: NASA, ESA, STScI
This pair of NASA/ESA Hubble Space Telescope images of Mars taken on 28 December (top) and 29 December (bottom) 2024. Each image shows a different side of the planet, with the accompanying moon Phobos. Various features are identified in the images, including the polar ice caps and clouds, as well as multiple terrestrial features.
At the midpoint of the observations, Mars was approximately 98 million kilometres from Earth. Thin water-ice clouds that are apparent in ultraviolet light give the Red Planet a frosty appearance. The icy northern polar cap was experiencing the start of Martian spring.
In the top image, the bright orange Tharsis plateau is visible with its chain of dormant volcanoes. The largest volcano, Olympus Mons, pokes above the clouds at the 10 o’clock position near the northwest limb. At an elevation of over 21 000 meters, it is 2.5 times the height of Mt. Everest above sea level. Valles Marineris, Mars’ over 4,000-kilometre-long canyon system, is a dark, linear, horizontal feature near center left.
In the bottom image, high-altitude evening clouds can be seen along the planet’s eastern limb. The 2,250-kilometre-wide Hellas basin, an ancient asteroid impact feature, appears far to the south. Most of the hemisphere is dominated by the classical “shark fin” feature, Syrtis Major.
Credit: NASA, ESA, STScI
Planetary nebula NGC 2899: This object has a diagonal, bipolar, cylindrical outflow of gas. This is propelled by radiation and stellar winds from a nearly 22 000 degree Celsius white dwarf at the center. In fact, there may be two companion stars that are interacting and sculpting the nebula, which is pinched in the middle by a fragmented ring or torus – looking like a half-eaten donut. It has a forest of gaseous “pillars” that point back to the source of radiation and stellar winds. The colors are from glowing hydrogen and oxygen. The nebula lies approximately 4,500 light-years away in the southern constellation Vela.
This Hubble Space Telescope image captures the beauty of the moth-like planetary nebula NGC 2899. This object has a diagonal, bipolar, cylindrical outflow of gas. This is propelled by radiation and stellar winds from a nearly 22 000 degree Celsius white dwarf at the center. In fact, there may be two companion stars that are interacting and sculpting the nebula, which is pinched in the middle by a fragmented ring or torus – looking like a half-eaten donut. It has a forest of gaseous “pillars” that point back to the source of radiation and stellar winds. The colours are from glowing hydrogen and oxygen. The nebula lies approximately 4,500 light-years away in the southern constellation Vela.
Credit: NASA, ESA, STScI
This Hubble Space Telescope image captures the beauty of the moth-like planetary nebula NGC 2899. This object has a diagonal, bipolar, cylindrical outflow of gas. This is propelled by radiation and stellar winds from a nearly 22 000 degree Celsius white dwarf at the center. In fact, there may be two companion stars that are interacting and sculpting the nebula, which is pinched in the middle by a fragmented ring or torus – looking like a half-eaten donut. It has a forest of gaseous “pillars” that point back to the source of radiation and stellar winds. The colours are from glowing hydrogen and oxygen. The nebula lies approximately 4,500 light-years away in the southern constellation Vela.
Credit: NASA, ESA, STScI
Rosette Nebula: This is a Hubble Space Telescope photo of a small portion of the Rosette Nebula, a huge star-forming region spanning 100 light-years across and located 5,200 light-years away. Hubble zooms into a small portion of the nebula that is only 4 light-years across (the approximate distance between our Sun and the neighbouring Alpha Centauri star system.) Dark clouds of hydrogen gas laced with dust are silhouetted across the image. The clouds are being eroded and shaped by the seething radiation from the cluster of larger stars in the center of the nebula (NGC 2440). An embedded star seen at the tip of a dark cloud in the upper right portion of the image is launching jets of plasma that are crashing into the cold cloud around it. The resulting shock wave is causing a red glow. The colors come from the presence of hydrogen, oxygen, and nitrogen.
This is a Hubble Space Telescope photo of a small portion of the Rosette Nebula, a huge star-forming region spanning 100 light-years across and located 5,200 light-years away. Hubble zooms into a small portion of the nebula that is only 4 light-years across (the approximate distance between our Sun and the neighbouring Alpha Centauri star system.) Dark clouds of hydrogen gas laced with dust are silhouetted across the image. The clouds are being eroded and shaped by the seething radiation from the cluster of larger stars in the center of the nebula (NGC 2440). An embedded star seen at the tip of a dark cloud in the upper right portion of the image is launching jets of plasma that are crashing into the cold cloud around it. The resulting shock wave is causing a red glow. The colours come from the presence of hydrogen, oxygen, and nitrogen.
Credit: NASA, ESA, STScI
The Rosette Nebula is a vast star-forming region, 100 light-years across, that lies at one end of a giant molecular cloud the constellation Monoceros. The nebula is estimated to contain around 10,000 solar masses. The nebula is located about 5,000 light-years away from Earth. Intense radiation from the young stars inside a cluster in the nebula causes the gasses to glow. The background image is from the Digitized Sky Survey, while the inset is a small portion of the nebula as photographed by the Hubble Space Telescope. Dark clouds of hydrogen gas laced with dust are silhouetted across the image. The colours come from the presence of hydrogen, oxygen, and nitrogen.
Credit: NASA, ESA, STScI, DSS
This is a Hubble Space Telescope photo of a small portion of the Rosette Nebula, a huge star-forming region spanning 100 light-years across and located 5,200 light-years away. Hubble zooms into a small portion of the nebula that is only 4 light-years across (the approximate distance between our Sun and the neighbouring Alpha Centauri star system.) Dark clouds of hydrogen gas laced with dust are silhouetted across the image. The clouds are being eroded and shaped by the seething radiation from the cluster of larger stars in the center of the nebula (NGC 2440). An embedded star seen at the tip of a dark cloud in the upper right portion of the image is launching jets of plasma that are crashing into the cold cloud around it. The resulting shock wave is causing a red glow. The colours come from the presence of hydrogen, oxygen, and nitrogen.
Credit: NASA, ESA, STScI
Barred Spiral Galaxy NGC 5335: This object is categorized as a flocculent spiral galaxy with patchy streamers of star formation across its disk. There is a striking lack of well-defined spiral arms that are commonly found among galaxies, including our Milky Way. A notable bar structure slices across the center of the galaxy. The bar channels gas inwards toward the galactic center, fueling star formation. Such bars are dynamic in galaxies and may come and go over two-billion-year intervals. They appear in about 30 percent of observed galaxies, including our Milky Way.
The Hubble Space Telescope captured in exquisite detail a face-on view of a remarkable-looking galaxy. NGC 5335 is categorized as a flocculent spiral galaxy with patchy streamers of star formation across its disk. There is a striking lack of well-defined spiral arms that are commonly found among galaxies, including our Milky Way. A notable bar structure slices across the center of the galaxy. The bar channels gas inwards toward the galactic center, fueling star formation. Such bars are dynamic in galaxies and may come and go over two-billion-year intervals. They appear in about 30 percent of observed galaxies, including our Milky Way.
Credit: NASA, ESA, STScI
The Hubble Space Telescope captured in exquisite detail a face-on view of a remarkable-looking galaxy. NGC 5335 is categorized as a flocculent spiral galaxy with patchy streamers of star formation across its disk. There is a striking lack of well-defined spiral arms that are commonly found among galaxies, including our Milky Way. A notable bar structure slices across the center of the galaxy. The bar channels gas inwards toward the galactic center, fueling star formation. Such bars are dynamic in galaxies and may come and go over two-billion-year intervals. They appear in about 30 percent of observed galaxies, including our Milky Way.
Credit: NASA, ESA, STScI
Hubble’s science and discoveries in recent years
Even at the impressive age of 35, there has been no slowdown in the research and new discoveries made using Hubble — if anything, the opposite. Astronomers from Europe make intensive use of the telescope, with the share of observing time awarded to European-led programmes being consistently above the 15% guaranteed by ESA’s participation in the Hubble mission thanks to their many proposals with strong scientific merit. This has led directly to discoveries including evidence for an intermediate-mass black hole in Omega Centauri, a precursor to the earliest supermassive black holes, a bizarre explosion of extraordinarily bright light originating far from any host galaxy, hydrogen burning in white dwarf stars, and the absence of Population III stars as far back in time as Hubble can see. A particular highlight, and a demonstration of Hubble’s incredible capabilities, was the discovery in 2022 of Earendel. The most distant single star ever seen, Earendel is viewed 12.9 billion years into the past when the Universe was under a billion years old.
Benefitting from Hubble’s long operational life, the OPAL programme celebrated a decade studying the Solar System’s outer planets. Discoveries such as evidence for water vapour on Jupiter’s moons Europa and Ganymede, “spokes” in Saturn’s rings, the size of Jupiter’s Great Red Spot, and the colours of Uranus and Neptune are just some that have resulted. Smaller Solar System bodies got attention from Hubble as well — not least the asteroid Dimorphos, target of the DART asteroid redirection test. Hubble took images of Dimorphos before and after the impact alongside Webb, later producing a movie of the debris and spotting ejected boulders. A citizen science project also discovered thousands of asteroid trails in over two decades of archived Hubble snapshots.
Beyond the Solar System, Hubble proved its continued importance in the rapidly-growing field of research into exoplanets. It studied weather patterns in an exoplanet’s atmosphere, saw a new atmosphere being formed around a rocky exoplanet similar to Earth, and found a small exoplanet with water vapour in its atmosphere. Also completed in 2021 was a compilation of supernova host galaxies from 18 years of study, images that were used to measure the Hubble constant to its highest accuracy yet. This year too brought the culmination of the largest ever photomosaic of the Andromeda Galaxy, created from ten years of Hubble observations of our near neighbour.
More information
The Hubble Space Telescope has been operating for over three decades and continues to make ground-breaking discoveries that shape our fundamental understanding of the Universe. Hubble is a project of international cooperation between NASA and the European Space Agency. NASA’s Goddard Space Flight Center in Greenbelt, Maryland, manages the telescope and mission operations. Lockheed Martin Space, based in Denver, also supports mission operations at Goddard. The Space Telescope Science Institute in Baltimore, which is operated by the Association of Universities for Research in Astronomy, conducts Hubble science operations for NASA.
Hubble spies a cosmic pillar in the Eagle Nebula, also known as Messier 16
In anticipation of the upcoming 35th anniversary of the NASA/ESA Hubble Space Telescope, ESA/Hubble is continuing the celebrations with a new view of the Eagle Nebula. This vast stellar nursery displays a towering spire of cosmic gas and dust that incorporates new data processing techniques developed since an image of this region was last released two decades ago.
Does this Hubble image of a sculpted pillar of gas and dust look to you like a curling party streamer, a plume of smoke from a blown-out candle, or an unusual balloon? Regardless of what you see when you gaze at this cosmic cloud, this new portrait is a cause for celebration.
As part of ESA/Hubble’s 35th anniversary celebrations, a new image series is being shared to revisit stunning Hubble targets that were previously released. New images of NGC 346 and the Sombrero Galaxy have already been published. Now, ESA/Hubble is revisiting the Eagle Nebula (originally published in 2005 as part of Hubble’s 15th anniversary celebrations) with new image processing techniques.
Unfurling along the length of the image is a pillar of cold gas and dust that is 9.5 light-years tall. As enormous as this dusty pillar is, it’s just one small piece of the greater Eagle Nebula, which is also called Messier 16. The name Messier 16 comes from the French astronomer Charles Messier, a comet hunter who compiled a catalogue of deep-sky objects that could be mistaken for comets.
The name Eagle Nebula was inspired by the nebula’s appearance. The edge of this shining nebula is shaped by dark clouds like this one, giving it the appearance of an eagle spreading its wings.
Not too far from the region pictured here are the famous Pillars of Creation, which Hubble has photographed multiple times, with images released in 1995 and 2015.
The heart of the nebula, which is located beyond the edge of this image, is home to a cluster of young stars. These stars have excavated an immense cavity in the centre of the nebula, shaping otherworldly pillars and globules of dusty gas. This particular feature extends like a pointing finger toward the centre of the nebula and the rich young star cluster embedded there.
The Eagle Nebula is one of many nebulae in the Milky Way that are known for their sculpted, dusty clouds. Nebulae take on these fantastic shapes when exposed to powerful radiation and winds from infant stars. Regions with denser gas are more able to withstand the onslaught of radiation and stellar winds from young stars, and these dense areas remain as dusty sculptures like the starry pillar shown here.
This image was developed using data from the Hubble observing programme #10393 (PI: K. Noll).
This towering structure of billowing gas and dark, obscuring dust might only be a small portion of the Eagle Nebula, but it is no less majestic in appearance for it. 9.5 light-years tall and 7000 light-years distant from Earth, this dusty sculpture is refreshed with the use of new processing techniques. The new Hubble image is part of ESA/Hubble’s 35th anniversary celebrations. The cosmic cloud shown here is made of cold hydrogen gas, like the rest of the Eagle Nebula. In such regions of space new stars are born among the collapsing clouds. Hot, energetic and formed in great numbers, the stars unleash an onslaught of ultraviolet light and stellar winds that sculpt the gas clouds around them. This produces fantastical shapes like the narrow pillar with blossoming head that we see here. The material in the pillar is thick and opaque to light; it is highlighted at its edges by the glow of more distant gas behind it. The blue colours of the background are dominated by emission from ionised oxygen; the red colours lower down, glowing hydrogen. Orange colours indicate starlight that has managed to break through the dust: bluer wavelengths are blocked more easily by dust, leaving the redder light to pass through. The stars responsible for carving this particular structure out of the stellar raw material lie just out of view, at the Eagle Nebula’s centre. As the pressure of their intense radiation batters and compresses the gas in this tower of clouds, it’s possible that further star formation is being ignited within. While the starry pillar has withstood these forces well so far, cutting an impressive shape against the background, eventually it will be totally eroded by the multitude of new stars that form in the Eagle Nebula. Credit: ESA/Hubble & NASA, K. Noll
Hubble provides a new view of a galactic favourite, Sombrero Galaxy, or Messier 104
In anticipation of the upcoming 35th anniversary of the NASA/ESA Hubble Space Telescope, ESA/Hubble is continuing the celebrations with a new image of the Sombrero Galaxy, also known as Messier 104. An eye-catching target for Hubble and a favourite of amateur astronomers, the enigmatic Sombrero Galaxy has features of both spiral and elliptical galaxies. This image incorporates new processing techniques that highlight the unique structure of this galaxy.
As part of ESA/Hubble’s 35th anniversary celebrations, a new image series is being shared to revisit stunning Hubble targets that were previously released. First, a new image of NGC 346 was published. Now, ESA/Hubble is revisiting a fan-favourite galaxy with new image processing techniques. The new image reveals finer detail in the galaxy’s disc, as well as more background stars and galaxies.
Several Hubble images of the Sombrero Galaxy have been released over the past two decades, including this well-known Hubble image from October 2003. In November 2024, the NASA/ESA/CSA James Webb Space Telescope also gave an entirely new perspective on this striking galaxy.
Located around 30 million light-years away in the constellation Virgo, the Sombrero Galaxy is instantly recognisable. Viewed nearly edge on, the galaxy’s softly luminous bulge and sharply outlined disc resemble the rounded crown and broad brim of the Mexican hat from which the galaxy gets its name.
Though the Sombrero Galaxy is packed with stars, it’s surprisingly not a hotbed of star formation. Less than one solar mass of gas is converted into stars within the knotted, dusty disc of the galaxy each year. Even the galaxy’s central supermassive black hole, which at 9 billion solar masses is more than 2000 times more massive than the Milky Way’s central black hole, is fairly calm.
The galaxy is too faint to be spotted with unaided vision, but it is readily viewable with a modest amateur telescope. Seen from Earth, the galaxy spans a distance equivalent to roughly one third of the diameter of the full Moon. The galaxy’s size on the sky is too large to fit within Hubble’s narrow field of view, so this image is actually a mosaic of several images stitched together.
One of the things that makes this galaxy especially notable is its viewing angle, which is inclined just six degrees off of the galaxy’s equator. From this vantage point, intricate clumps and strands of dust stand out against the brilliant white galactic nucleus and bulge, creating an effect not unlike Saturn and its rings — but on an epic galactic scale.
At the same time, this extreme angle makes it difficult to discern the structure of the Sombrero Galaxy. It’s not clear whether it’s a spiral galaxy, like our own Milky Way, or an elliptical galaxy. Curiously, the galaxy’s disc seems like a fairly typical disc for a spiral galaxy, and its spheroidal bulge and halo seem fairly typical for an elliptical galaxy — but the combination of the two components resembles neither a spiral nor an elliptical galaxy.
Researchers have used Hubble to investigate the Sombrero Galaxy, measuring the amount of metals (what astronomers call elements heavier than helium) in stars in the galaxy’s expansive halo. This type of measurement can illuminate a galaxy’s history, potentially revealing whether it has merged with other galaxies in the past. In the case of the Sombrero Galaxy, extremely metal-rich stars in the halo point to a possible merger with a massive galaxy several billion years ago. An ancient galactic clash, hinted at by Hubble’s sensitive measurements, could explain the Sombrero Galaxy’s distinctive appearance.
This image was developed using data from the Hubble observing programme #9714 (PI: K. Noll)
Located around 30 million light-years away in the constellation Virgo, the Sombrero Galaxy is instantly recognisable. Viewed nearly edge on, the galaxy’s softly luminous bulge and sharply outlined disc resemble the rounded crown and broad brim of the Mexican hat from which the galaxy gets its name. Though the Sombrero Galaxy is packed with stars, it’s surprisingly not a hotbed of star formation. Less than one solar mass of gas is converted into stars within the knotted, dusty disc of the galaxy each year. Even the galaxy’s central supermassive black hole, which at 9 billion solar masses is more than 2000 times more massive than the Milky Way’s central black hole, is fairly calm. The galaxy is too faint to be spotted with unaided vision, but it is readily viewable with a modest amateur telescope. Seen from Earth, the galaxy spans a distance equivalent to roughly one third of the diameter of the full Moon. The galaxy’s size on the sky is too large to fit within Hubble’s narrow field of view, so this image is actually a mosaic of several images stitched together. Credit: ESA/Hubble & NASA, K. Noll