Ad
Ad
Ad
Tag

Pierre-Olivier Lagage

Browsing

Webb finds new evidence for planet, a gas giant orbiting Alpha Centauri A, our closest solar twin

Astronomers using the NASA/ESA/CSA James Webb Space Telescope have found strong evidence of a giant planet orbiting a star in the stellar system closest to our own Sun. At just 4 light-years away from Earth, the Alpha Centauri triple star system has long been a compelling target in the search for worlds beyond our solar system.

Illustration of a large spherical object that looks like a gas giant planet. The object appears to have bands of tan, orange, and dark red horizontal lines forming patterns similar to those in the atmosphere of Jupiter. The background is filled with thousands of distant stars that form a Milky Way-like band running from left to right. The host star, Alpha Centauri A, appears as a glowing white circle to the upper left of the planet. Further off in the distance above and to the right of the planet is a smaller glowing circle, nearby Alpha Centauri B. The words “Artist’s Concept” are in the lower left corner.
This artist’s concept shows what the gas giant orbiting Alpha Centauri A could look like. Observations of the triple star system Alpha Centauri using the NASA/ESA/CSA James Webb Space Telescope indicate the potential gas giant, about the mass of Saturn, orbiting the star by about two times the distance between the Sun and Earth.
In this concept, Alpha Centauri A is depicted at the upper left of the planet, while the other Sun-like star in the system, Alpha Centauri B, is at the upper right. Our Sun is shown as a small dot of light between those two stars.
Credit: NASA, ESA, CSA, STScI, R. Hurt (Caltech/IPAC)

Visible only from Earth’s Southern hemisphere, it’s made up of the binary Alpha Centauri A and Alpha Centauri B, both Sun-like stars, and the faint red dwarf star Proxima Centauri. Alpha Centauri A is the third brightest star in the night sky. While there are three confirmed planets orbiting Proxima Centauri, the presence of other worlds surrounding Alpha Centauri A and Alpha Centauri B has proved challenging to confirm.

Now, Webb’s observations from its Mid-Infrared Instrument (MIRI) are providing the strongest evidence to date of a gas giant orbiting Alpha Centauri A. The results have been accepted in a series of two papers in The Astrophysical Journal Letters.

Three panels, each showing a different view of the binary star system Alpha Centauri. The panel on the left is a Digitized Sky Survey image showing a single bright blue point source at the center of a black image with small stars scattered throughout. The very center of this bright source is outlined with a vertical box, tilted slightly to the left, with two diagonal lines leading to the second panel. The second panel is a Hubble Space Telescope image that shows two white stars with 4 diffraction spikes each against a black background. The top star is labeled Alpha Cen B and the bottom Alpha Cen A. Alpha Cen A is outlined with a white square with two diagonal lines leading to the third panel at the furthest right, which shows a James Webb Space Telescope image of the star. An orange star icon and central black circle outlined in white marks the location of Alpha Cen A. A large white circle outlines a blurry red-toned field that surrounds the location of the star. A bright orange blob at 9 o’clock in relation to the star is labeled “S1” and circled
This image shows the Alpha Centauri star system from several different ground- and space-based observatories: the Digitized Sky Survey (DSS), the NASA/ESA Hubble Space Telescope, and the NASA/ESA/CSA James Webb Space Telescope. Alpha Centauri A is the third brightest star in the night sky, and the closest Sun-like star to Earth.
The ground-based image from DSS shows the triple system as a single source of light, while Hubble resolves the two Sun-like stars in the system, Alpha Centauri A and Alpha Centauri B.
The image from Webb’s MIRI (Mid-Infrared Instrument), which uses a coronagraphic mask to block the bright glare from Alpha Centauri A, reveals a potential planet orbiting the star.
Credit: NASA, ESA, CSA, STScI, DSS, A. Sanghi (Caltech), C. Beichman (JPL), D. Mawet (Caltech), J. DePasquale (STScI)

If confirmed, the planet would be the closest to Earth that orbits in the habitable zone of a Sun-like star. However, because the planet candidate is a gas giant, scientists say it would not support life as we know it.

“With this system being so close to us, any exoplanets found would offer our best opportunity to collect data on planetary systems other than our own. Yet, these are incredibly challenging observations to make, even with the world’s most powerful space telescope, because these stars are so bright, close, and move across the sky quickly,” said Charles Beichman, NASA’s Jet Propulsion Laboratory and the NASA Exoplanet Science Institute at Caltech’s IPAC astronomy center, co-first author on the new papers. “Webb was designed and optimized to find the most distant galaxies in the universe. The operations team at the Space Telescope Science Institute had to come up with a custom observing sequence just for this target, and their extra effort paid off spectacularly.”

Several rounds of meticulously planned observations by Webb, careful analysis by the research team, and extensive computer modeling helped determine that the source seen in Webb’s image is likely to be a planet, and not a background object (like a galaxy), foreground object (a passing asteroid), or other detector or image artifact.

The first observations of the system took place in August 2024, using the coronagraphic mask aboard MIRI to block Alpha Centauri A’s light. While extra brightness from the nearby companion star Alpha Centauri B complicated the analysis, the team was able to subtract out the light from both stars to reveal an object over 10,000 times fainter than Alpha Centauri A, separated from the star by about two times the distance between the Sun and Earth.

While the initial detection was exciting, the research team needed more data to come to a firm conclusion. However, additional observations of the system in February 2025 and April 2025 (using Director’s Discretionary Time) did not reveal any objects like the one identified in August 2024.

“We are faced with the case of a disappearing planet! To investigate this mystery, we used computer models to simulate millions of potential orbits, incorporating the knowledge gained when we saw the planet, as well as when we did not,” said PhD student Aniket Sanghi of the California Institute of Technology in Pasadena, California. Sanghi is a co-first author on the two papers covering the team’s research.

In these simulations, the team took into account both the 2019 sighting of a potential exoplanet candidate by the European Southern Observatory’s Very Large Telescope, the new data from Webb, and considered orbits that would be gravitationally stable in the presence of Alpha Centauri B, meaning the planet wouldn’t get flung out of the system.

Three panels, each showing a different view of the binary star system Alpha Centauri from the Webb. The left panel shows a rectangular image tilted at a 45 degree angle outlined in white on a grey background. The image is a blown-out bright source at the center, with 8, double columned reddish white diffraction spikes. The center of this bright source is outlined with a vertical box, tilted slightly to the left, with two diagonal lines leading to the second panel. This shows a view of both Alpha Centauri A at the bottom and Alpha Centauri B at the top, both with orange star icons over each star. The star icons are surrounded by mottled red and white blotches. The bottom star is outlined with a white square with two diagonal lines leading to the third panel. Within a large white circle there is a blurry red-toned field with an orange star icon and central black circle outlined in white marking the location of Alpha Cen A. A bright orange blob at 9 o’clock in relation to the star is labeled “S1” and circled.
This 3-panel image captures the NASA/ESA/CSA James Webb Space Telescope’s observational search for a planet around the nearest Sun-like star, Alpha Centauri A. The initial image shows the bright glare of Alpha Centauri A and Alpha Centauri B, then the middle panel shows the system with a coronagraphic mask placed over Alpha Centauri A to block its bright glare. However, the way the light bends around the edges of the coronagraph creates ripples of light in the surrounding space. The telescope’s optics (its mirrors and support structures) cause some light to interfere with itself, producing circular and spoke-like patterns. These complex light patterns, along with light from the nearby Alpha Centauri B, make it incredibly difficult to spot faint planets. In the panel at the right, astronomers have subtracted the known patterns (using reference images and algorithms) to clean up the image and reveal faint sources like the candidate planet.
Credit: NASA, ESA, CSA, STScI, A. Sanghi (Caltech), C. Beichman (JPL), D. Mawet (Caltech), J. DePasquale (STScI)

Researchers say a non-detection in the second and third round of observations with Webb isn’t surprising.

“We found that in half of the possible orbits simulated, the planet moved too close to the star and wouldn’t have been visible to Webb in both February and April 2025,” said Sanghi.

Based on the brightness of the planet in the mid-infrared observations and the orbit simulations, researchers say it could be a gas giant approximately the mass of Saturn orbiting Alpha Centauri A in an elliptical path varying between 1 to 2 times the distance between Sun and Earth.

“These are some of the most demanding observations we’ve done so far with MIRI’s coronagraph,” said Pierre-Olivier Lagage, of CEA, France, who is a co-author on the papers and was the French lead for the development of MIRI. “When we were developing the instrument we were eager to see what we might find around Alpha Centauri, and I’m looking forward to what it will reveal to us next!”

“If confirmed, the potential planet seen in the Webb image of Alpha Centauri A would mark a new milestone for exoplanet imaging efforts,” Sanghi says. “Of all the directly imaged planets, this would be the closest to its star seen so far. It’s also the most similar in temperature and age to the giant planets in our solar system, and nearest to our home, Earth,” he says. “Its very existence in a system of two closely separated stars would challenge our understanding of how planets form, survive, and evolve in chaotic environments.”

If confirmed by additional observations, the team’s results could transform the future of exoplanet science.

“This would become a touchstone object for exoplanet science, with multiple opportunities for detailed characterization by Webb and other observatories,” said Beichman.

 

Press release from ESA Webb.

Webb measures the temperature of the rocky exoplanet TRAPPIST-1 b

An international team of researchers has used the NASA/ESA/CSA James Webb Space Telescope to measure the temperature of the rocky exoplanet TRAPPIST-1 b. The measurement is based on the planet’s thermal emission: heat energy given off in the form of infrared light detected by Webb’s Mid-Infrared Instrument (MIRI). The result indicates that the planet’s dayside has a temperature of about 500 kelvins (roughly 230°C), and suggests that it has no significant atmosphere. This is the first detection of any form of light emitted by an exoplanet as small and as cool as the rocky planets in our own solar system. The result marks an important step in determining whether planets orbiting small active stars like TRAPPIST-1 can sustain atmospheres needed to support life. It also bodes well for Webb’s ability to characterise temperate, Earth-sized exoplanets using MIRI.

These observations really take advantage of Webb’s mid-infrared capability,” said Thomas Greene, an astrophysicist at NASA’s Ames Research Center and lead author on the study published today in the journal Nature. “No previous telescopes have had the sensitivity to measure such dim mid-infrared light.”

Rocky exoplanet TRAPPIST-1 b (illustration)
Illustration showing what the hot rocky exoplanet TRAPPIST-1 b could look like. TRAPPIST-1 b, the innermost of seven known planets in the TRAPPIST-1 system, orbits its star at a distance of 0.011 AU, completing one circuit in just 1.51 Earth-days. TRAPPIST-1 b is slightly larger than Earth, but has around the same density, which indicates that it must have a rocky composition. Webb’s measurement of mid-infrared light given off by TRAPPIST-1 b suggests that the planet does not have any substantial atmosphere. The star, TRAPPIST-1, is an ultracool red dwarf (M dwarf) with a temperature of only 2566 K and a mass just 0.09 times the mass of the Sun.
This illustration is based on new data gathered by Webb’s Mid-Infrared Instrument (MIRI) as well as previous observations from other ground- and space-based telescopes. Webb has not captured any images of the planet.
MIRI was developed as a partnership between Europe and the USA: the main partners are ESA, a consortium of nationally funded European institutes, the Jet Propulsion Laboratory (JPL) and the University of Arizona. The instrument was nationally funded by the European Consortium under the auspices of the European Space Agency.
Credit:
NASA, ESA, CSA, J. Olmsted (STScI), T. P. Greene (NASA Ames), T. Bell (BAERI), E. Ducrot (CEA), P. Lagage (CEA)

Rocky planets orbiting ultra cool red dwarfs

In early 2017, astronomers reported the discovery of seven rocky planets orbiting an ultracool red dwarf star (or M dwarf) 40 light-years from Earth. What is remarkable about the planets is their similarity in size and mass to the inner, rocky planets of our own solar system. Although they all orbit much closer to their star than any of our planets orbit the Sun – all could fit comfortably within the orbit of Mercury – they receive comparable amounts of energy from their tiny star.

TRAPPIST-1 b, the innermost planet, has an orbital distance about one hundredth that of Earth’s and receives about four times the amount of energy that Earth gets from the Sun. Although it is not within the system’s habitable zone, observations of the planet can provide important information about its sibling planets, as well as those of other M-dwarf systems.

There are ten times as many of these stars in the Milky Way as there are stars like the Sun, and they are twice as likely to have rocky planets as stars like the Sun,” explained Greene. “But they are also very active – they are very bright when they’re young and they give off flares and X-rays that can wipe out an atmosphere.

Co-author Elsa Ducrot from CEA in France, who was on the team that conducted the initial studies of the TRAPPIST-1 system, added,

It’s easier to characterise terrestrial planets around smaller, cooler stars. If we want to understand habitability around M stars, the TRAPPIST-1 system is a great laboratory. These are the best targets we have for looking at the atmospheres of rocky planets.”

Webb measures the temperature of the rocky exoplanet TRAPPIST-1 b. Light curve showing the change in brightness of the TRAPPIST-1 system as the innermost planet, TRAPPIST-1 b, moves behind the star. This phenomenon is known as a secondary eclipse.
Astronomers used Webb’s Mid-Infrared Instrument (MIRI) to measure the brightness of mid-infrared light. When the planet is beside the star, the light emitted by both the star and the dayside of the planet reach the telescope, and the system appears brighter. When the planet is behind the star, the light emitted by the planet is blocked and only the starlight reaches the telescope, causing the apparent brightness to decrease.
Astronomers can subtract the brightness of the star from the combined brightness of the star and planet to calculate how much infrared light is coming from the planet’s dayside. This is then used to calculate the dayside temperature.
The graph shows combined data from five separate observations made using MIRI’s F1500W filter, which only allows light with wavelengths ranging from 13.5-16.6 microns to pass through to the detectors. The blue squares are individual brightness measurements. The red circles show measurements that are “binned,” or averaged to make it easier to see the change over time. The decrease in brightness during the secondary eclipse is less than 0.1%. MIRI was able to detect changes as small as 0.027% (or 1 part in 3700).
This is the first thermal emission observation of TRAPPIST-1 b, or any planet as small as Earth and as cool as the rocky planets in the Solar System.
The observations are being repeated using a 12.8-micron filter in order to confirm the results and narrow down the interpretations.
MIRI was developed as a partnership between Europe and the USA: the main partners are ESA, a consortium of nationally funded European institutes, the Jet Propulsion Laboratory (JPL) and the University of Arizona. The instrument was nationally funded by the European Consortium under the auspices of the European Space Agency.
Credit:
NASA, ESA, CSA, J. Olmsted (STScI), T. P. Greene (NASA Ames), T. Bell (BAERI), E. Ducrot (CEA), P. Lagage (CEA)

Detecting an atmosphere (or not)

Previous observations of TRAPPIST-1 b with the NASA/ESA Hubble Space Telescope, as well as NASA’s Spitzer Space Telescope, found no evidence for a puffy atmosphere, but were not able to rule out a dense one.

One way to reduce the uncertainty is to measure the planet’s temperature. “This planet is tidally locked, with one side facing the star at all times and the other in permanent darkness,” said Pierre-Olivier Lagage from CEA, a co-author on the paper. “If it has an atmosphere to circulate and redistribute the heat, the dayside will be cooler than if there is no atmosphere.

The team used a technique called secondary eclipse photometry, in which MIRI measured the change in brightness from the system as the planet moved behind the star. Although TRAPPIST-1 b is not hot enough to give off its own visible light, it does have an infrared glow. By subtracting the brightness of the star on its own (during the secondary eclipse) from the brightness of the star and planet combined, they were able to successfully calculate how much infrared light is being given off by the planet.

Webb measures the temperature of the rocky exoplanet TRAPPIST-1 b. Comparison of the dayside temperature of TRAPPIST-1 b as measured using Webb’s Mid-Infrared Instrument (MIRI) to computer models showing what the temperature would be under various conditions. The models take into account the known properties of the system, including the planet’s size and density, the temperature of the star, and the planet’s orbital distance. The temperature of the dayside of Mercury is also shown for reference.
The dayside brightness of TRAPPIST-1 b at 15 microns corresponds to a temperature of about 500 K (roughly 230°C). This is consistent with the temperature assuming the planet is tidally locked (one side facing the star at all times), with a dark-coloured surface, no atmosphere, and no redistribution of heat from the dayside to the nightside.
If the heat energy from the star were distributed evenly around the planet (for example, by a circulating carbon dioxide-free atmosphere), the temperature at 15 microns would be 400 K (125°C). If the atmosphere had a substantial amount of carbon dioxide, it would emit even less 15-micron light and would appear to be even cooler.
Although TRAPPIST-1 b is hot by Earth standards, it is cooler than the dayside of Mercury, which consists of bare rock and no significant atmosphere. Mercury receives about 1.6 times more energy from the Sun than TRAPPIST-1 b does from its star.
MIRI was developed as a partnership between Europe and the USA: the main partners are ESA, a consortium of nationally funded European institutes, the Jet Propulsion Laboratory (JPL) and the University of Arizona. The instrument was nationally funded by the European Consortium under the auspices of the European Space Agency.
Credit:
NASA, ESA, CSA, J. Olmsted (STScI), T. P. Greene (NASA Ames), T. Bell (BAERI), E. Ducrot (CEA), P. Lagage (CEA)

Measuring minuscule changes in brightness

Webb’s detection of a secondary eclipse is itself a major milestone. With the star more than 1,000 times brighter than the planet, the change in brightness is less than 0.1%.

There was also some fear that we’d miss the eclipse. The planets all tug on each other, so the orbits are not perfect,” said Taylor Bell, the post-doctoral researcher at the Bay Area Environmental Research Institute who analysed the data. “But it was just amazing: The time of the eclipse that we saw in the data matched the predicted time within a couple of minutes.”

Analysis of data from five separate secondary eclipse observations indicates that TRAPPIST-1 b has a dayside temperature of about 500 kelvins, or roughly 230°C. The team thinks the most likely interpretation is that the planet does not have an atmosphere.

“We compared the results to computer models showing what the temperature should be in different scenarios,” explained Ducrot. “The results are almost perfectly consistent with a blackbody made of bare rock and no atmosphere to circulate the heat. We also didn’t see any signs of light being absorbed by carbon dioxide, which would be apparent in these measurements.”

This research was conducted as part of Guaranteed Time Observation (GTO) program 1177, which is one of eight approved GTO and General Observer (GO) programs designed to help fully characterise the TRAPPIST-1 system. Additional secondary eclipse observations of TRAPPIST-1 b are currently in progress, and now that they know how good the data can be, the team hopes to eventually capture a full phase curve showing the change in brightness over the entire orbit. This will allow them to see how the temperature changes from the day to the nightside and confirm if the planet has an atmosphere or not.

There was one target that I dreamed of having,” said Lagage, who worked on the development of the MIRI instrument for more than two decades. “And it was this one. This is the first time we can detect the emission from a rocky, temperate planet. It’s a really important step in the story of discovering exoplanets.

 

Press release from ESA Webb.