New fossils show how “bizarre” armoured dinosaur, Spicomellus afer, had 1 metre spikes sticking out from its neck
Research fossils show that the famous tail weapons of ankylosaurs evolved much earlier than previously thought
The world’s most unusual dinosaur is even stranger than first realised…
Today, research published in Nature reports that Spicomellus afer had a tail weapon more than 30 million years before any other ankylosaur, as well as a unique bony collar ringed with metre-long spikes sticking out from either side of its neck.
Spicomellus is the world’s oldest ankylosaur, having lived more than 165 million years ago in the Middle Jurassic near what is now the Moroccan town of Boulemane. It was the first ankylosaur to be found on the African continent.
The province Fes Meknes, within which the Boulemane Province has been located since 2015. Picture by Rherrad, CC BY-SA 4.0
New remains of Spicomellus found by a team of palaeontologists have helped to build upon the original description of the unusual animal. The initial description of the species was published in 2021 and was based on one rib bone. The team now know that the animal had bony spikes fused onto and projecting from all of its ribs, a feature not seen in any other vertebrate species living or extinct. It had long spikes, measuring 87 centimetres, which authors believe would have been even longer during the animal’s life, that emerged from a bony collar that sat around its neck.
Prof Susannah Maidment of Natural History Museum, London, and the University of Birmingham, who co-led the team of researchers said, “To find such elaborate armour in an early ankylosaur changes our understanding of how these dinosaurs evolved. It shows just how significant Africa’s dinosaurs are, and how important it is to improve our understanding of them.”
“Spicomellus had a diversity of plates and spikes extending from all over its body, including metre-long neck spikes, huge upwards-projecting spikes over the hips, and a whole range of long, blade-like spikes, pieces of armour made up of two long spikes, and plates down the shoulder. We’ve never seen anything like this in any animal before”
“It’s particularly strange as this is the oldest known ankylosaur, so we might expect that a later species might have inherited similar features, but they haven’t.”
Project co-lead, Professor Richard Butler of the University of Birmingham, said, “Seeing and studying the Spicomellus fossils for the first time was spine-tingling. We just couldn’t believe how weird it was and how unlike any other dinosaur, or indeed any other animal we know of alive or extinct. It turns much of what we thought we knew about ankylosaurs and their evolution on its head and demonstrates just how much there still is to learn about dinosaurs”.
Authors postulate that this array of spikes would have been used for attracting mates and showing off to rivals. Interestingly, similar display armour has not yet been found in any other ankylosaur, with later species possessing armour that probably functioned more for defence.
One explanation for this is that as larger predatory dinosaurs evolved in the Cretaceous, as well as bigger carnivorous mammals, crocodiles and snakes, the rising risk of predation could have driven ankylosaur armour to become simpler and more defensive.
One feature of early ankylosaurs that may have survived, however, is their tail weaponry. While the end of Spicomellus’ tail hasn’t been found, the bones that do survive suggest that it had a club or a similar tail weapon.
Some of the tail vertebrae are fused together to form a structure known as a handle, which has only been found in ankylosaurs with a tail club. However, all these animals lived millions of years later in the Cretaceous.
Authors of the study believe that the combination of a tail weapon and an armoured shield that protected the hips suggest that many of the ankylosaurs’ key adaptations already existed by the time of Spicomellus.
The discovery reinforces the importance of the fossil record in solving evolutionary puzzles and deepening our understanding of the geographic distribution of dinosaurs. It also helps to spark public imagination in dinosaurs as we learn more about the baffling characteristics of species like Spicomellus.
Professor Driss Ouarhache, lead of the Moroccan team from the Université Sidi Mohamed Ben Abdellah who co-developed the research, says, “This study is helping to drive forward Moroccan science. We’ve never seen dinosaurs like this before, and there’s still a lot more this region has to offer.”
The Spicomellus afer remains that form the basis of this study were cleaned and prepared at the Department of Geology of the Dhar El Mahraz Faculty of Sciences in Fez, Morocco, using scientific equipment provided by the University of Birmingham’s Research England International Strategy and Partnership Fund. The fossils are now catalogued and stored on this site.
The paper ‘Extreme armour in the world’s oldest ankylosaur’ is available now in Nature.
This research is part of the Natural History Museum’s Evolution of Life Research Theme that seeks to reveal the causes and consequences of evolutionary and environmental change, which is central to understanding life on Earth. It is also a contribution from the Earth Heritage Network at the University of Birmingham, which seeks to develop new ways to use palaeontological resources for the benefit of society.
Webb captures evidence of a lightweight planet around TWA 7
Astronomers using the NASA/ESA/CSA James Webb Space Telescope have captured compelling evidence of a planet with a mass similar to Saturn orbiting the young nearby star TWA 7. If confirmed, this would represent Webb’s first direct image discovery of a planet, and the lightest planet ever seen with this technique.
The international team, led by Dr. Anne-Marie Lagrange, CNRS researcher at the Observatoire de Paris-PSL and Université Grenoble Alpes in France, detected a faint infrared source in the disc of debris surrounding TWA 7 using JWST’s Mid-Infrared Instrument (MIRI) and its coronagraph. The source is located about 1.5 arcseconds from the star on the sky which, at the distance of TWA7, is roughly fifty times the distance of the Earth to the Sun. This matches the expected position of a planet that would explain key features seen in the debris disc.
Using the coronagraph on Webb’s Mid-Infrared Instrument (MIRI) on 21 June 2024, the team carefully suppressed the bright glare of the host star to reveal faint nearby objects. This technique, called high-contrast imaging, enables astronomers to directly detect planets that would otherwise be lost in the overwhelming light from their host star. After subtracting residual starlight using advanced image processing, a faint infrared source was revealed near TWA 7, distinguishable from background galaxies or Solar System objects. The source is located in a gap in one of three dust rings that were discovered around TWA 7 by previous ground-based observations. Its brightness, colour, distance from the star, and position within the ring are consistent with theoretical predictions for a young, cold, Saturn-mass planet sculpting the surrounding debris disc.
“Our observations reveal a strong candidate for a planet shaping the structure of the TWA 7 debris disc, and its position is exactly where we expected to find a planet of this mass,”said Dr. Lagrange.
“This observatory enables us to capture images of planets with masses similar to those in the solar system, which represents an exciting step forward in our understanding of planetary systems, including our own,”
added co-author Mathilde Malin of Johns Hopkins University and the Space Telescope Science Institute in Baltimore.
Initial analysis suggests that the object — referred to as TWA 7b — could be a young, cold planet with a mass around 0.3 times that of Jupiter (~100 Earth masses) and a temperature near 320 Kelvin (roughly 47 degrees Celsius). Its location aligns with a gap in the disc, hinting at a dynamic interaction between the planet and its surroundings.
Debris discs filled with dust and rocky material are found around both young and older stars, although they are more easily detected around younger stars as they are brighter. They often feature visible rings or gaps, thought to be created by planets that have formed around the star, but such a planet has yet to be detected within a debris disc. Once verified, this discovery would mark the first time a planet has been directly associated with sculpting a debris disc and could offer the first observational hint of a trojan disc — a collection of dust trapped in the planet’s orbit.
TWA 7, also known as CE Antliae, is a young (~6.4 million years old) M-type star located about 111 light-years away in the TW Hydrae association. Its nearly face-on disc made it an ideal target for Webb’s high-sensitivity mid-infrared observations.
The findings highlight Webb’s ability to explore previously unseen, low-mass planets around nearby stars. Ongoing and future observations will aim to better constrain the properties of the candidate, verify its planetary status, and deepen our understanding of planet formation and disc evolution in young systems.This preliminary result showcases the exciting new frontier that JWST is opening for exoplanet discovery and characterisation.
These observations were taken as part of the Webb observing programme #3662. The results have been published today in Nature.
Astronomers using the NASA/ESA/CSA James Webb Space Telescope have captured compelling evidence of a planet with a mass similar to Saturn orbiting the young nearby star TWA 7. If confirmed, this would represent Webb’s first direct image discovery of a planet, and the lightest planet ever seen with this technique. Using the coronagraph on Webb’s Mid-Infrared Instrument (MIRI) on 21 June 2024, the team carefully suppressed the bright glare of the host star to reveal faint nearby objects. This technique, called high-contrast imaging, enables astronomers to directly detect planets that would otherwise be lost in the overwhelming light from their host star. After subtracting residual starlight using advanced image processing, a faint infrared source was revealed near TWA 7, distinguishable from background galaxies or Solar System objects. The source is located in a gap in one of three dust rings that were discovered around TWA 7 by previous ground-based observations. Its brightness, colour, distance from the star, and position within the ring are consistent with theoretical predictions for a young, cold, Saturn-mass planet sculpting the surrounding debris disc. Initial analysis suggests that the object — referred to as TWA 7b — could be a young, cold planet with a mass around 0.3 times that of Jupiter (~100 Earth masses) and a temperature near 320 Kelvin (roughly 47 degrees Celsius). In this image from MIRI, light from the star TWA 7 has been subtracted. The location of the star is marked with a circle and a star symbol at the centre of the image. This leaves light from the debris disc around the star, as well as other infrared sources, visible. The bright spot to the upper right of the star is the source identified as TWA 7b, within the debris disc. The more distant orange spot visible in the left of the image is an unrelated background star. Only a single MIRI band was used in this image (seen here in orange). The blue colour visible in the image results from an additional band taken by the SPHERE instrument of ESO’s Very Large Telescope (VLT), which showcases the location of the disc surrounding the host star and the exoplanet creating a gap within the disc that is revealed by MIRI. Credit: ESA/Webb, NASA, CSA, A.M. Lagrange, M. Zamani (ESA/Webb)
Webb discovers the incredibly distant galaxy JADES-GS-z13-1 in mysteriously clearing fog of early Universe
Using the unique infrared sensitivity of the NASA/ESA/CSA James Webb Space Telescope, researchers can examine ancient galaxies to probe secrets of the early universe. Now, an international team of astronomers has identified bright hydrogen emission from a galaxy in an unexpectedly early time in the Universe’s history. The surprise finding is challenging researchers to explain how this light could have pierced the thick fog of neutral hydrogen that filled space at that time.
The incredibly distant galaxy GS-z13-1, observed just 330 million years after the Big Bang, was initially discovered with deep imaging from the NASA/ESA/CSA James Webb Space Telescope. Now, an international team of astronomers has definitively identified powerful hydrogen emission from this galaxy at an unexpectedly early period in the Universe’s history, a probable sign that we are seeing some of the first hot stars from the dawn of the Universe. This image shows the galaxy GS-z13-1 (the red dot at centre), imaged with Webb’s Near-Infrared Camera (NIRCam) as part of the JWST Advanced Deep Extragalactic Survey (JADES) programme. These data from NIRCam allowed researchers to identify GS-z13-1 as an incredibly distant galaxy, and to put an estimate on its redshift value. Webb’s unique infrared sensitivity is necessary to observe galaxies at this extreme distance, whose light has been redshifted into infrared wavelengths during its long journey across the cosmos. To confirm the galaxy’s redshift, the team turned to Webb’s Near-Infrared Spectrograph (NIRSpec) instrument. With new observations permitting advanced spectroscopy of the galaxy’s emitted light, the team not only confirmed GS-z13-1’s redshift of 13.0, they also revealed the strong presence of a type of ultraviolet radiation called Lyman-α emission. This is a telltale sign of the presence of newly forming stars, or a possible active galactic nucleus in the galaxy, but at a much earlier time than astronomers had thought possible. The result holds great implications for our understanding of the Universe. Credit: ESA/Webb, NASA, STScI, CSA, JADES Collaboration, Brant Robertson (UC Santa Cruz), Ben Johnson (CfA), Sandro Tacchella (Cambridge), Phill Cargile (CfA), J. Witstok, P. Jakobsen, A. Pagan (STScI), M. Zamani (ESA/Webb)
A key science goal of the NASA/ESA/CSA James Webb Space Telescope has been to see further than ever before into the distant past of our Universe, when the first galaxies were forming after the Big Bang. This search has already yielded record-breaking galaxies, in observing programmes such as the JWST Advanced Deep Extragalactic Survey (JADES). Webb’s extraordinary sensitivity to infrared light also opens entirely new avenues of research into when and how such galaxies formed, and their effects on the Universe at the time known as cosmic dawn. Researchers studying one of those very early galaxies have now made a discovery in the spectrum of its light, that challenges our established understanding of the Universe’s early history.
Webb discovered the incredibly distant galaxy JADES-GS-z13-1, observed to be at just 330 million years after the Big Bang, in images taken by Webb’s NIRCam (Near-Infrared Camera) as part of the JADES programme. Researchers used the galaxy’s brightness in different infrared filters to estimate its redshift, which measures a galaxy’s distance from Earth based on how its light has been stretched out during its journey through expanding space.
The incredibly distant galaxy GS-z13-1, observed just 330 million years after the Big Bang, was initially discovered with deep imaging from the NASA/ESA/CSA James Webb Space Telescope. Now, an international team of astronomers has definitively identified powerful hydrogen emission from this galaxy at an unexpectedly early period in the Universe’s history, a probable sign that we are seeing some of the first hot stars from the dawn of the Universe. Data from NIRCam allowed researchers to identify GS-z13-1 as an incredibly distant galaxy, and to put an estimate on its redshift value. Webb’s unique infrared sensitivity is necessary to observe galaxies at this extreme distance, whose light has been redshifted into infrared wavelengths during its long journey across the cosmos. To confirm the galaxy’s redshift, the team turned to Webb’s Near-Infrared Spectrograph (NIRSpec) instrument. This graphic shows the light from galaxy GS-z13-1, dispersed by NIRSpec into its component near-infrared wavelengths. This graphic indicates very bright Lyman-α emission from the galaxy, which has been redshifted to an infrared wavelength. Not only does this emission in GS-z13-1’s spectrum confirm the galaxy’s extreme redshift, it is a telltale sign of the presence of newly forming stars, or a possible active galactic nucleus in the galaxy. Appearing at a much earlier time than astronomers had thought possible, the discovery of this Lyman-α emission holds great implications for our understanding of the Universe. Credit: ESA/Webb, NASA, CSA, STScI, J. Olmsted (STScI), S. Carniani (Scuola Normale Superiore), P. Jakobsen
The NIRCam imaging yielded an initial redshift estimate of 12.9. Seeking to confirm its extreme redshift, an international team led by Joris Witstok of the University of Cambridge in the United Kingdom as well as the Cosmic Dawn Center and the University of Copenhagen in Denmark, then observed the galaxy using Webb’s Near-Infrared Spectrograph (NIRSpec) instrument.
The incredibly distant galaxy GS-z13-1, observed just 330 million years after the Big Bang, was initially discovered with deep imaging from the NASA/ESA/CSA James Webb Space Telescope. Now, an international team of astronomers has definitively identified powerful hydrogen emission from this galaxy at an unexpectedly early period in the Universe’s history, a probable sign that we are seeing some of the first hot stars from the dawn of the Universe. This image shows the location of the galaxy GS-z13-1 in the GOODS-S field, as well as the galaxy itself, imaged with Webb’s Near-Infrared Camera (NIRCam) as part of the JWST Advanced Deep Extragalactic Survey (JADES) programme. These data from NIRCam allowed researchers to identify GS-z13-1 as an incredibly distant galaxy, and to put an estimate on its redshift value. Webb’s unique infrared sensitivity is necessary to observe galaxies at this extreme distance, whose light has been redshifted into infrared wavelengths during its long journey across the cosmos. To confirm the galaxy’s redshift, the team turned to Webb’s Near-Infrared Spectrograph (NIRSpec) instrument. With new observations permitting advanced spectroscopy of the galaxy’s emitted light, the team not only confirmed GS-z13-1’s redshift of 13.0, they also revealed the strong presence of a type of ultraviolet radiation called Lyman-α emission. This is a telltale sign of the presence of newly forming stars, or a possible active galactic nucleus in the galaxy, but at a much earlier time than astronomers had thought possible. The result holds great implications for our understanding of the Universe. Credit: ESA/Webb, NASA, STScI, CSA, JADES Collaboration, Brant Robertson (UC Santa Cruz), Ben Johnson (CfA), Sandro Tacchella (Cambridge), Phill Cargile (CfA), J. Witstok, P. Jakobsen, A. Pagan (STScI), M. Zamani (ESA/Webb)
In the resulting spectrum, the redshift was confirmed to be 13.0. This equates to a galaxy seen just 330 million years after the Big Bang, a small fraction of the Universe’s present age of 13.8 billion years old. But an unexpected feature stood out as well: one specific, distinctly bright wavelength of light, identified as the Lyman-α emission radiated by hydrogen atoms.[1] This emission was far stronger than astronomers thought possible at this early stage in the Universe’s development.
“The early Universe was bathed in a thick fog of neutral hydrogen,” explained Roberto Maiolino, a team member from the University of Cambridge and University College London. “Most of this haze was lifted in a process called reionisation, which was completed about one billion years after the Big Bang. GS-z13-1 is seen when the Universe was only 330 million years old, yet it shows a surprisingly clear, telltale signature of Lyman-α emission that can only be seen once the surrounding fog has fully lifted. This result was totally unexpected by theories of early galaxy formation and has caught astronomers by surprise.”
Before and during the epoch of reionisation [2], the immense amounts of neutral hydrogen fog surrounding galaxies blocked any energetic ultraviolet light they emitted, much like the filtering effect of coloured glass. Until enough stars had formed and were able to ionise the hydrogen gas, no such light — including Lyman-α emission — could escape from these fledgling galaxies to reach Earth. The confirmation of Lyman-α radiation from this galaxy, therefore, has great implications for our understanding of the early Universe. Team member Kevin Hainline of the University of Arizona in the United States, says
“We really shouldn’t have found a galaxy like this, given our understanding of the way the Universe has evolved. We could think of the early Universe as shrouded with a thick fog that would make it exceedingly difficult to find even powerful lighthouses peeking through, yet here we see the beam of light from this galaxy piercing the veil. This fascinating emission line has huge ramifications for how and when the Universe reionised.”
The source of the Lyman-α radiation from this galaxy is not yet known, but it is may include the first light from the earliest generation of stars to form in the Universe. Witstok elaborates:
“The large bubble of ionised hydrogen surrounding this galaxy might have been created by a peculiar population of stars — much more massive, hotter and more luminous than stars formed at later epochs, and possibly representative of the first generation of stars”.
A powerful active galactic nucleus (AGN) [3], driven by one of the first supermassive black holes, is another possibility identified by the team.
The new results could not have been obtained without the incredible near-infrared sensitivity of Webb, necessary not only to find such distant galaxies but also to examine their spectra in fine detail. Former NIRSpec Project Scientist, Peter Jakobsen of the Cosmic Dawn Center and the University of Copenhagen in Denmark, recalls:
“Following in the footsteps of the Hubble Space Telescope, it was clear Webb would be capable of finding ever more distant galaxies. As demonstrated by the case of GS-z13-1, however, it was always going to be a surprise what it might reveal about the nature of the nascent stars and black holes that are formed at the brink of cosmic time.”
The team plans further follow-up observations of GS-z13-1, aiming to obtain more information about the nature of this galaxy and origin of its strong Lyman-α radiation. Whatever the galaxy is concealing, it is certain to illuminate a new frontier in cosmology.
This new research has been published today in Nature. The data for this result were captured as part of JADES under JWST programmes #1180 (PI: D. J. Eisenstein), #1210, #1286 and #1287 (PI: N. Luetzgendorf), and the JADES Origin Field programme #3215 (PIs: Eisenstein and R. Maiolino).
The incredibly distant galaxy JADES-GS-z13-1, observed just 330 million years after the Big Bang, was initially discovered with deep imaging from the NASA/ESA/CSA James Webb Space Telescope. Now, an international team of astronomers has definitively identified powerful hydrogen emission from this galaxy at an unexpectedly early period in the Universe’s history, a probable sign that we are seeing some of the first hot stars from the dawn of the Universe. This image shows the location of the galaxy GS-z13-1 in the GOODS-S field, as well as the galaxy itself, imaged with Webb’s Near-Infrared Camera (NIRCam) as part of the JWST Advanced Deep Extragalactic Survey (JADES) programme. These data from NIRCam allowed researchers to identify GS-z13-1 as an incredibly distant galaxy, and to put an estimate on its redshift value. Webb’s unique infrared sensitivity is necessary to observe galaxies at this extreme distance, whose light has been redshifted into infrared wavelengths during its long journey across the cosmos. To confirm the galaxy’s redshift, the team turned to Webb’s Near-Infrared Spectrograph (NIRSpec) instrument. With new observations permitting advanced spectroscopy of the galaxy’s emitted light, the team not only confirmed GS-z13-1’s redshift of 13.0, they also revealed the strong presence of a type of ultraviolet radiation called Lyman-α emission. This is a telltale sign of the presence of newly forming stars, or a possible active galactic nucleus in the galaxy, but at a much earlier time than astronomers had thought possible. The result holds great implications for our understanding of the Universe. Credit: ESA/Webb, NASA & CSA, JADES Collaboration, J. Witstok, P. Jakobsen, A. Pagan (STScI), M. Zamani (ESA/Webb)
Notes
[1] The name comes from the fact that a hydrogen atom emits a characteristic wavelength of light, known as “Lyman-alpha” radiation, that is produced when its electron drops from the second-lowest to the lowest orbit around the nucleus (energy level).
[2] The epoch of reionisation was a very early stage in the Universe’s history that took place after recombination (the first stage following the Big Bang). During recombination, the Universe cooled enough that electrons and protons began to combine to form neutral hydrogen atoms. Reionisation began when denser clouds of gas started to form, creating stars and eventually entire galaxies. They produced large amounts of ultraviolet photons, which gradually reionised the hydrogen gas. As neutral hydrogen gas is opaque to energetic ultraviolet light, we can only see galaxies during this epoch at longer wavelengths until they create a “bubble” of ionised gas around them, so that their ultraviolet light can escape through it and reach us.
[3] An active galactic nucleus is a region of extremely strong radiation at the centre of a galaxy. It is fuelled by an accretion disc, made of material orbiting and falling into a central supermassive black hole. The material crashes together as it spins around the black hole, heating to such extreme temperatures that it radiates highly energetic ultraviolet light and even X-rays, rivalling the brightness of the whole galaxy surrounding it.
Massive black hole in the early universe spotted taking a ‘nap’ after overeating, and lying dormant in its host galaxy, GN-1001830
A study in Nature finds that black holes in the early Universe go through short periods of ultra-fast growth, followed by long periods of dormancy. Picture credits: Jiarong Gu
Scientists have spotted a massive black hole in the early universe that is ‘napping’ after stuffing itself with too much food.
Like a bear gorging itself on salmon before hibernating for the winter, or a much-needed nap after Christmas dinner, this black hole has overeaten to the point that it is lying dormant in its host galaxy, GN-1001830.
An international team of astronomers, led by the University of Cambridge, used the NASA/ESA/CSA James Webb Space Telescope to detect this black hole in the early universe, just 800 million years after the Big Bang.
The black hole is huge – 400 million times the mass of our Sun – making it one of the most massive black holes discovered by Webb at this point in the universe’s development. The black hole is so enormous that it makes up roughly 40% of the total mass of its host galaxy: in comparison, most black holes in the local universe are roughly 0.1% of their host galaxy mass.
However, despite its gigantic size, this black hole is eating, or accreting, the gas it needs to grow at a very low rate – about 100 times below its theoretical maximum limit – making it essentially dormant.
Such an over-massive black hole so early in the universe, but one that isn’t growing, challenges existing models of how black holes develop. However, the researchers say that the most likely scenario is that black holes go through short periods of ultra-fast growth, followed by long periods of dormancy. Their results are reported in the journal Nature.
When black holes are ‘napping’, they are far less luminous, making them more difficult to spot, even with highly-sensitive telescopes such as Webb. Black holes cannot be directly observed, but instead they are detected by the tell-tale glow of a swirling accretion disc, which forms near the black hole’s edges. The gas in the accretion disc becomes extremely hot and starts to glow and radiate energy in the ultraviolet range.
“Even though this black hole is dormant, its enormous size made it possible for us to detect,” said lead author Ignas Juodžbalis from Cambridge’s Kavli Institute for Cosmology. “Its dormant state allowed us to learn about the mass of the host galaxy as well. The early universe managed to produce some absolute monsters, even in relatively tiny galaxies.”
According to standard models, black holes form from the collapsed remnants of dead stars and accrete matter up to a predicted limit, known as the Eddington limit, where the pressure of radiation on matter overcomes the gravitational pull of the black hole. However, the sheer size of this black hole suggests that standard models may not adequately explain how these monsters form and grow.
“It’s possible that black holes are ‘born big’, which could explain why Webb has spotted huge black holes in the early universe,” said co-author Professor Roberto Maiolino, from the Kavli Institute and Cambridge’s Cavendish Laboratory. “But another possibility is they go through periods of hyperactivity, followed by long periods of dormancy.”
Working with colleagues from Italy, the Cambridge researchers conducted a range of computer simulations to model how this dormant black hole could have grown to such a massive size so early in the universe. They found that the most likely scenario is that black holes can exceed the Eddington limit for short periods, during which they grow very rapidly, followed by long periods of inactivity: the researchers say that black holes such as this one likely eat for five to ten million years, and sleep for about 100 million years.
“It sounds counterintuitive to explain a dormant black hole with periods of hyperactivity, but these short bursts allow it to grow quickly while spending most of its time napping,” said Maiolino.
Because the periods of dormancy are much longer than the periods of ultra-fast growth, it is in these periods that astronomers are most likely to detect black holes.
“This was the first result I had as part of my PhD, and it took me a little while to appreciate just how remarkable it was,” said Juodžbalis. “It wasn’t until I started speaking with my colleagues on the theoretical side of astronomy that I was able to see the true significance of this black hole.”
Due to their low luminosities, dormant black holes are more challenging for astronomers to detect, but the researchers say this black hole is almost certainly the tip of a much larger iceberg, if black holes in the early universe spend most of their time in a dormant state.
“It’s likely that the vast majority of black holes out there are in this dormant state – I’m surprised we found this one, but I’m excited to think that there are so many more we could find,” said Maiolino.
The observations were obtained as part of the JWST Advanced Deep Extragalactic Survey (JADES). The research was supported in part by the European Research Council and the Science and Technology Facilities Council (STFC), part of UK Research and Innovation (UKRI).
Bibliographic Information:
“A dormant, overmassive black hole in the early Universe”, by Ignas Juodžbalis, Roberto Maiolino, William M. Baker, Sandro Tacchella, Jan Scholtz, Francesco D’Eugenio, Raffaella Schneider, Alessandro Trinca, Rosa Valiante, Christa DeCoursey, Mirko Curti, Stefano Carniani, Jacopo Chevallard, Anna de Graaff, Santiago Arribas, Jake S. Bennett, Martin A. Bourne, Andrew J. Bunker, Stephane Charlot, Brian Jiang, Sophie Koudmani, Michele Perna, Brant Robertson, Debora Sijacki, Hannah Ubler, Christina C. Williams, Chris Willott, Joris Witstok, has been published on Nature (18-Dec-2024).
Firefly Sparkle Found: first actively forming galaxy as lightweight as young Milky Way
For the first time, the NASA/ESA/CSA James Webb Space Telescope has detected and ‘weighed’ a galaxy that not only existed around 600 million years after the Big Bang, but also has a mass that is similar to what our Milky Way galaxy’s mass might have been at the same stage of development. Other galaxies Webb has detected at this period in the history of the Universe are significantly more massive. Nicknamed the Firefly Sparkle, this galaxy is gleaming with star clusters — 10 in all — each of which researchers examined in great detail.
“I didn’t think it would be possible to resolve a galaxy that existed so early in the Universe into so many distinct components, let alone find that its mass is similar to our own galaxy’s when it was in the process of forming,” said Lamiya Mowla, co-lead author of the paper and an assistant professor at Wellesley College in Massachusetts. “There is so much going on inside this tiny galaxy, including so many different phases of star formation.”
Thousands of glimmering galaxies are bound together by their own gravity, making up a massive cluster formally classified as MACS J1423. The largest bright white oval is a supergiant elliptical galaxy that is the dominant member of this galaxy cluster. The galaxy cluster acts like a lens, magnifying and distorting the light from objects that lie well behind it, an effect known as gravitational lensing that has big research benefits. Astronomers can study lensed galaxies in detail, like the Firefly Sparkle galaxy. This 2023 image is from the James Webb Space Telescope’s NIRCam (Near-InfraRed Camera). Researchers used Webb to survey the same field that the Hubble Space Telescope imaged in 2010. Thanks to its specialisation in high-resolution near-infrared imagery, Webb was able to show researchers many more galaxies in far more detail. Credit: NASA, ESA, CSA, STScI, C. Willott (NRC-Canada), L. Mowla (Wellesley College), K. Iyer (Columbia)
Webb was able to image the galaxy in sufficient detail for two reasons. One is a benefit of the cosmos: a massive foreground galaxy cluster radically enhanced the distant galaxy’s appearance through a natural effect known as gravitational lensing. And when combined with the telescope’s specialisation in high-resolution imaging of infrared light, Webb delivered unprecedented new data about the galaxy’s contents.
“Without the benefit of this gravitational lens, we would not be able to resolve this galaxy,” said Kartheik Iyer, co-lead author and NASA Hubble Fellow at Columbia University in New York. “We knew to expect it based on current physics, but it’s surprising that we actually saw it.”
Mowla, who spotted the galaxy in Webb’s image, was drawn to its gleaming star clusters, because objects that sparkle typically indicate they are extremely clumpy and complicated. Since the galaxy looks like a ‘sparkle’ or swarm of fireflies on a warm summer night, they named it the Firefly Sparkle galaxy.
Reconstructing the galaxy’s appearance
The research team modelled what the galaxy might have looked like if its image weren’t stretched by gravitational lensing and discovered that it resembled an elongated raindrop. Suspended within it are two star clusters toward the top and eight toward the bottom.
“Our reconstruction shows that clumps of actively forming stars are surrounded by diffuse light from other unresolved stars,” said Iyer. “This galaxy is literally in the process of assembling.”
Webb’s data show the Firefly Sparkle galaxy is on the smaller side, falling into the category of a low-mass galaxy. Billions of years will pass before it builds its full heft and a distinct shape. “Most of the other galaxies Webb has shown us aren’t magnified or stretched, and we are not able to see their ‘building blocks’ separately. With Firefly Sparkle, we are witnessing a galaxy being assembled brick by brick,” Mowla said.
Stretched out and shining, ready for close analysis
Since the image of the galaxy is warped into a long arc, the researchers easily picked out 10 distinct star clusters, which are emitting the bulk of the galaxy’s light. They are represented here in shades of pink, purple, and blue. Those colours in Webb’s images and its supporting spectra confirmed that star formation didn’t happen all at once in this galaxy, but was staggered in time.
“This galaxy has a diverse population of star clusters, and it is remarkable that we can see them separately at such an early age of the Universe,” said Chris Willott of the National Research Council Canada, a co-author and the observation programme’s principal investigator. “Each clump of stars is undergoing a different phase of formation or evolution.”
The galaxy’s projected shape shows that its stars haven’t settled into a central bulge or a thin, flattened disc, another piece of evidence that the galaxy is still forming.
For the first time, astronomers have identified a still-forming galaxy that weighs about the same as our Milky Way if we could wind back the clock to see our galaxy as it developed. The newly identified galaxy, the Firefly Sparkle, is in the process of assembling and forming stars, and existed about 600 million years after the Big Bang. The image of the galaxy is stretched and warped by a natural effect known as gravitational lensing, which allowed researchers to glean far more information about its contents. (In some areas of Webb’s image, the galaxy is magnified over 40 times.) While it took shape, the galaxy gleamed with star clusters in a range of infrared colours, which are scientifically meaningful. They indicate that the stars formed at different periods, not all at once. Since the galaxy image is stretched into a long line in Webb’s observations, researchers were able to identify 10 distinct star clusters and study them individually, along with the cocoon of diffuse light from the additional, unresolved stars surrounding them. That’s not always possible for distant galaxies that aren’t lensed. Instead, in many cases researchers can only draw conclusions that apply to an entire galaxy. “Most of the other galaxies Webb has shown us aren’t magnified or stretched and we are not able to see the ‘building blocks’ separately. With Firefly Sparkle, we are witnessing a galaxy being assembled brick by brick,” explains astronomer Lamiya Mowla. There are two companion galaxies ‘hovering’ close by, which may ultimately affect how this galaxy forms and builds mass over billions of years. Firefly Sparkle is only about 6500 light-years away from its first companion, and 42 000 light-years from its second companion. Let’s compare these figures to objects that are closer to home: the Sun is about 26 000 light-years from the centre of our Milky Way galaxy, and the Milky Way is about 100 000 light-years across. Not only are Firefly Sparkle’s companions very close, the researchers also suspect that they are orbiting one another. Credit: NASA, ESA, CSA, STScI, C. Willott (NRC-Canada), L. Mowla (Wellesley College), K. Iyer (Columbia)
‘Glowing’ companions
Researchers can’t predict how this disorganised galaxy will build up and take shape over billions of years, but there are two galaxies that the team confirmed are ‘hanging out’ within a tight perimeter and may influence how it builds mass over billions of years.
Firefly Sparkle is only 6500 light-years away from its first companion, and its second companion is separated by 42 000 light-years. For context, the fully formed Milky Way is about 100 000 light-years across — all three would fit inside it. Not only are its companions very close, the researchers also think that they are orbiting one another.
Each time one galaxy passes another, gas condenses and cools, allowing new stars to form in clumps, adding to the galaxies’ masses.
“It has long been predicted that galaxies in the early Universe form through successive interactions and mergers with other tinier galaxies,” said Yoshihisa Asada, a co-author and doctoral student at Kyoto University in Japan. “We might be witnessing this process in action.”
“This is just the first of many such galaxies JWST will discover, as we are only starting to use these cosmic microscopes”, added team member Maruša Bradač of the University of Ljubljana in Slovenia. “Just like microscopes let us see pollen grains from plants, the incredible resolution of Webb and the magnifying power of gravitational lensing let us see the small pieces inside galaxies. Our team is now analysing all early galaxies, and the results are all pointing in the same direction: we have yet to learn much more about how those early galaxies formed.”
The team’s research relied on data from Webb’s CAnadian NIRISS Unbiased Cluster Survey, which include near-infrared images from NIRCam (Near-InfraRed Camera) and spectra from the microshutter array aboard NIRSpec (Near-Infrared Spectrograph). The CANUCS data intentionally covered a field that NASA’s Hubble Space Telescope imaged as part of its Cluster Lensing And Supernova survey with Hubble programme.
This work was published on 12 December 2024 in the journal Nature.
Thousands of glimmering galaxies are bound together by their own gravity, making up a massive cluster formally classified as MACS J1423. The largest bright white oval is a supergiant elliptical galaxy that is the dominant member of this galaxy cluster. The galaxy cluster acts like a lens, magnifying and distorting the light from objects that lie well behind it, an effect known as gravitational lensing that has big research benefits. Astronomers can study lensed galaxies in detail, like the Firefly Sparkle galaxy. This 2023 image is from the James Webb Space Telescope’s NIRCam (Near-Infrared Camera). Researchers used Webb to survey the same field the Hubble Space Telescope imaged in 2010. Thanks to its specialisation in high-resolution near-infrared imagery, Webb was able to show researchers many more galaxies in far more detail. The north and east compass arrows show the orientation of the image on the sky. The scale bar is labelled in arcseconds, which is a measure of angular distance on the sky. One arcsecond is equal to an angular measurement of 1/3600 of one degree. There are 60 arcminutes in a degree and 60 arcseconds in an arcminute. (The full Moon has an angular diameter of about 30 arcminutes.) The actual size of an object that covers one arcsecond on the sky depends on its distance from the telescope. This image shows invisible near-infrared wavelengths of light that have been translated into visible-light colours. The colour key shows which NIRCam filters were used when collecting the light. The colour of each filter name is the visible light colour used to represent the infrared light that passes through that filter. NIRCam filters from left to right: F115W and F150W are blue; F200W and F277W are green; F356W and F444W are red. Credit: NASA, ESA, CSA, STScI, C. Willott (NRC-Canada), L. Mowla (Wellesley College), K. Iyer (Columbia)
Hubble finds strong evidence for intermediate-mass black hole in Omega Centauri
An international team of astronomers has used more than 500 images from the NASA/ESA Hubble Space Telescope spanning two decades to detect seven fast-moving stars in the innermost region of Omega Centauri, the largest and brightest globular cluster in the sky. These stars provide compelling new evidence for the presence of an intermediate-mass black hole.
Intermediate-mass black holes (IMBHs) are a long-sought ‘missing link’ in black hole evolution. Only a few other IMBH candidates have been found to date. Most known black holes are either extremely massive, like the supermassive black holes that lie at the cores of large galaxies, or relatively lightweight, with a mass less than 100 times that of the Sun. Black holes are one of the most extreme environments humans are aware of, and so they are a testing ground for the laws of physics and our understanding of how the Universe works. If IMBHs exist, how common are they? Does a supermassive black hole grow from an IMBH? How do IMBHs themselves form? Are dense star clusters their favoured home?
Omega Centauri is visible from Earth with the naked eye and is one of the favourite celestial objects for stargazers in the southern hemisphere. Although the cluster is 17 700 light-years away, lying just above the plane of the Milky Way, it appears almost as large as the full Moon when seen from a dark rural area. The exact classification of Omega Centauri has evolved through time, as our ability to study it has improved. It was first listed in Ptolemy’s catalogue nearly two thousand years ago as a single star. Edmond Halley reported it as a nebula in 1677, and in the 1830s the English astronomer John Herschel was the first to recognise it as a globular cluster.
Globular clusters typically consist of up to one million old stars tightly bound together by gravity and are found both in the outskirts and central regions of many galaxies, including our own. Omega Centauri has several characteristics that distinguish it from other globular clusters: it rotates faster than a run-of-the-mill globular cluster, and its shape is highly flattened. Moreover, Omega Centauri is about 10 times as massive as other big globular clusters, almost as massive as a small galaxy.
An international team of astronomers has used more than 500 images from the NASA/ESA Hubble Space Telescope spanning two decades to detect seven fast-moving stars in the innermost region of Omega Centauri, the largest and brightest globular cluster in the sky. These stars provide compelling new evidence for the presence of an intermediate-mass black hole; Omega Centauri is visible from Earth with the naked eye and is one of the favourite celestial objects for stargazers in the southern hemisphere. Although the cluster is 17 700 light-years away, lying just above the plane of the Milky Way, it appears almost as large as the full Moon when seen from a dark rural area. The exact classification of Omega Centauri has evolved through time, as our ability to study it has improved. It was first listed in Ptolemy’s catalogue nearly two thousand years ago as a single star. Edmond Halley reported it as a nebula in 1677, and in the 1830s the English astronomer John Herschel was the first to recognise it as a globular cluster. Omega Centauri consists of roughly 10 million stars that are gravitationally bound. Credit: ESA/Hubble & NASA, M. Häberle (MPIA)
Omega Centauri consists of roughly 10 million stars that are gravitationally bound. An international team has now created an enormous catalogue of the motions of these stars, measuring the velocities for 1.4 million stars by studying over 500 Hubble images of the cluster. Most of these observations were intended to calibrate Hubble’s instruments rather than for scientific use, but they turned out to be an ideal database for the team’s research efforts. The extensive catalogue, which is the largest catalogue of motions for any star cluster to date, will be made openly available (more information is available here).
“We discovered seven stars that should not be there,” explained Maximilian Häberle of the Max Planck Institute for Astronomy in Germany, who led this investigation. “They are moving so fast that they should escape the cluster and never come back. The most likely explanation is that a very massive object is gravitationally pulling on these stars and keeping them close to the centre. The only object that can be so massive is a black hole, with a mass at least 8200 times that of our Sun.”
An international team of astronomers has used more than 500 images from the NASA/ESA Hubble Space Telescope spanning two decades to detect seven fast-moving stars in the innermost region of Omega Centauri, the largest and brightest globular cluster in the sky. These stars provide compelling new evidence for the presence of an intermediate-mass black hole (IMBH): this image shows the location of the IMBH in Omega Centauri. If confirmed, at its distance of 17 700 light-years the candidate black hole resides closer to Earth than the 4.3 million solar mass black hole in the centre of the Milky Way, which is 26 000 light-years away. Besides the Galactic centre, it would also be the only known case of a number of stars closely bound to a massive black hole. Credit: ESA/Hubble & NASA, M. Häberle (MPIA)
Several studies have suggested the presence of an IMBH in Omega Centauri [1]. However, other studies proposed that the mass could be contributed by a central cluster of stellar-mass black holes, and had suggested the lack of fast-moving stars above the necessary escape velocity made an IMBH less likely in comparison.
“This discovery is the most direct evidence so far of an IMBH in Omega Centauri,” added team lead Nadine Neumayer, also of the Max Planck Institute for Astronomy, who initiated the study with Anil Seth of the University of Utah in the United States. “This is exciting because there are only very few other black holes known with a similar mass. The black hole in Omega Centauri may be the best example of an IMBH in our cosmic neighbourhood.”
If confirmed, at its distance of 17 700 light-years the candidate black hole resides closer to Earth than the 4.3 million solar mass black hole in the centre of the Milky Way, which is 26 000 light-years away. Besides the Galactic centre, it would also be the only known case of a number of stars closely bound to a massive black hole.
The science team now hopes to characterise the black hole. While it is believed to measure at least 8200 solar masses, its exact mass and its precise position are not fully known. The team also intends to study the orbits of the fast-moving stars, which requires additional measurements of the respective line-of-sight velocities. The team has been granted time with the NASA/ESA/CSA James Webb Space Telescope to do just that, and also has other pending proposals to use other observatories.
Omega Centauri was also a recent feature of a new data release from ESA’s Gaia mission, which contained over 500 000 stars.
“Even after 30 years, the Hubble Space Telescope with its imaging instruments is still one of the best tools for high-precision astrometry in crowded stellar fields, regions where Hubble can provide added sensitivity from ESA’s Gaia mission observations,” shared team member Mattia Libralato of the National Institute for Astrophysics in Italy (INAF), and previously of AURA for the European Space Agency during the time of this study. “Our results showcase Hubble’s high resolution and sensitivity that are giving us exciting new scientific insights and will give a new boost to the topic of IMBHs in globular clusters.”
The results have been published online today in the journal Nature.
An international team of astronomers has used more than 500 images from the NASA/ESA Hubble Space Telescope spanning two decades to detect seven fast-moving stars in the innermost region of Omega Centauri, the largest and brightest globular cluster in the sky. These stars provide compelling new evidence for the presence of an intermediate-mass black hole; Omega Centauri is visible from Earth with the naked eye and is one of the favourite celestial objects for stargazers in the southern hemisphere. Although the cluster is 17 700 light-years away, lying just above the plane of the Milky Way, it appears almost as large as the full Moon when seen from a dark rural area. The exact classification of Omega Centauri has evolved through time, as our ability to study it has improved. It was first listed in Ptolemy’s catalogue nearly two thousand years ago as a single star. Edmond Halley reported it as a nebula in 1677, and in the 1830s the English astronomer John Herschel was the first to recognise it as a globular cluster. Omega Centauri consists of roughly 10 million stars that are gravitationally bound. This image shows the central region of the Omega Centauri globular cluster, where the IMBH candidate was found. Credit: ESA/Hubble & NASA, M. Häberle (MPIA)
Notes
[1] In 2008, the Hubble Space Telescope and the Gemini Observatory found that the explanation behind Omega Centauri’s peculiarities may be a black hole hidden in its centre.
Webb hints at possible atmosphere surrounding 55 Cancri e, a rocky exoplanet
Researchers using the NASA/ESA/CSA James Webb Space Telescope may have detected atmospheric gases surrounding 55 Cancri e, a hot rocky exoplanet 41 light-years from Earth. This is the best evidence to date for the existence of a rocky planet atmosphere outside our Solar System.
Renyu Hu from NASA’s Jet Propulsion Laboratory (JPL) in Pasadena, California, USA, is the lead author of a paper published today in Nature.
“Webb is pushing the frontiers of exoplanet characterisation to rocky planets,” Hu said. “It is truly enabling a new type of science.”
Super-hot super-Earth 55 Cancri e
55 Cancri e is one of five known planets orbiting a Sun-like star in the constellation Cancer. With a diameter nearly twice that of Earth and a density slightly greater, the planet is classified as a super-Earth: larger than Earth, smaller than Neptune, and likely similar in composition to the rocky planets in our Solar System.
To describe 55 Cancri e as rocky, however, could give the wrong impression. The planet orbits so close to its star (about 2.25 million kilometres, or one twenty-fifth of the distance between Mercury and the Sun) that its surface is likely to be molten – a bubbling ocean of magma. In such a tight orbit, the planet is also likely to be tidally locked, with a dayside that faces the star at all times and a nightside in perpetual darkness.
In spite of numerous observations since it was discovered to transit in 2011, the question of whether or not 55 Cancri e has an atmosphere – or even could have one, given its high temperature and the continuous onslaught of stellar radiation and wind from its star – has gone unanswered.
“I’ve worked on this planet for more than a decade,” said Diana Dragomir, an exoplanet researcher at the University of New Mexico in the USA and a co-author of the study. “It’s been really frustrating that none of the observations we’ve been getting have robustly solved these mysteries. I am thrilled that we are finally getting some answers!”
Unlike gas-giant atmospheres, which are relatively easy to spot (the first was detected by the NASA/ESA Hubble Space Telescope more than two decades ago), thinner and denser atmospheres surrounding rocky planets have remained elusive.
Previous studies of 55 Cancri e using data from NASA’s now-retired Spitzer Space Telescope suggested the presence of a substantial atmosphere rich in volatiles (molecules that occur in gas form on Earth) like oxygen, nitrogen, and carbon dioxide. But researchers could not rule out another possibility: that the planet is bare, save for a tenuous shroud of vaporised rock, rich in elements like silicon, iron, aluminium, and calcium.
“The planet is so hot that some of the molten rock should evaporate,” explained Hu.
This artist’s concept shows what the exoplanet 55 Cancri e could look like. Also called Janssen, 55 Cancri e is a so-called super-Earth, a rocky planet significantly larger than Earth but smaller than Neptune, which orbits its star at a distance of only 2.25 million kilometres (0.015 astronomical units), completing one full orbit in less than 18 hours. In comparison, Mercury is 25 times farther from the Sun than 55 Cancri e is from its star. The system, which also includes four large gas-giant planets, is located about 41 light-years from Earth, in the constellation Cancer. Observations from Webb’s NIRCam and MIRI suggest that the planet may be surrounded by an atmosphere rich in carbon dioxide (CO2) or carbon monoxide (CO). Because it is so close to its star, the planet is extremely hot and is thought to be covered in molten rock. Researchers think that the gases that make up the atmosphere could have bubbled out of the magma. The star, 55 Cancri, is a K-type star nearly the same size and mass as the Sun, but slightly cooler and dimmer. It is just bright enough to see with the naked eye in a very dark sky. The star and planet are so close to each other that the star would appear 70 times wider in the planet’s sky than the Sun appears in our sky. In addition, because the planet is likely to be tidally locked, from any given point the star would appear fixed in the sky. This artist’s concept is based on new data gathered by NIRCam and MIRI as well as previous observations from other ground- and space-based telescopes, including NASA’s Hubble and the now-retired Spitzer space telescopes. Webb has not captured any images of the planet. Credit: NASA, ESA, CSA, R. Crawford (STScI)
Measuring subtle variations in infrared colours
To distinguish between the two possibilities, the team used Webb’s NIRCam (Near-Infrared Camera) and MIRI (Mid-Infrared Instrument) to measure 4- to 12-micron infrared light coming from the planet.
Although Webb cannot capture a direct image of 55 Cancri e, it can measure subtle changes in the light from the whole system as the planet orbits the star.
By subtracting the brightness during the secondary eclipse, when the planet is behind the star (starlight only), from the brightness when the planet is right beside the star (light from the star and planet combined), the team was able to calculate the amount of various wavelengths of infrared light coming from the dayside of the planet.
This method, known as secondary eclipse spectroscopy, is similar to that used by other research teams to search for atmospheres on other rocky exoplanets, like TRAPPIST-1 b.
This lightcurve shows the change in brightness of the 55 Cancri system as the rocky planet 55 Cancri e, the closest of the five known planets in the system, moves behind the star. This phenomenon is known as a secondary eclipse. When the planet is beside the star, the mid-infrared light emitted by both the star and the dayside of the planet reaches the telescope, and the system appears brighter. When the planet is behind the star, the light emitted by the planet is blocked and only the starlight reaches the telescope, causing the apparent brightness to decrease. Astronomers can subtract the brightness of the star from the combined brightness of the star and planet to calculate how much infrared light is coming from the dayside of the planet. This is then used to calculate the dayside temperature and infer whether or not the planet has an atmosphere. The graph shows data collected using the low-resolution spectroscopy mode on Webb’s Mid-Infrared Instrument (MIRI) in March 2023. Each of the purple data points shows the brightness of light ranging in wavelength from 7.5 to 11.8 microns, averaged over intervals of about five minutes. The grey line is the best fit, or model lightcurve that matches the data most closely. The decrease in brightness during the secondary eclipse is just 110 parts per million, or about 0.011 percent. The temperature of the planet calculated from this observation is about 1800 kelvins (around 1500 degrees Celsius), which is significantly lower than would be expected if the planet has no atmosphere or only a thin rock-vapour atmosphere. This relatively low temperature indicates that heat is being distributed from the dayside to the nightside of the planet, possibly by a volatile-rich atmosphere. Credit: NASA, ESA, CSA, J. Olmsted (STScI), A. Bello-Arufe (JPL)
55 Cancri e is cooler than expected
The first indication that 55 Cancri e could have a substantial atmosphere came from temperature measurements based on its thermal emission, the heat energy given off in the form of infrared light. If the planet is covered in dark molten rock with a thin veil of vaporised rock, or has no atmosphere at all, the dayside should be around 2200 degrees Celsius.
“Instead, the MIRI data showed a relatively low temperature of about 1540 degrees Celsius,” said Hu. “This is a very strong indication that energy is being distributed from the dayside to the nightside, most likely by a volatile-rich atmosphere.”
While currents of lava can carry some heat around to the nightside, they cannot move it efficiently enough to explain the cooling effect.
When the team looked at the NIRCam data, they saw patterns consistent with a volatile-rich atmosphere.
“We see evidence of a dip in the spectrum between 4 and 5 microns — less of this light is reaching the telescope,” explained co-author Aaron Bello-Arufe, also from JPL. “This suggests the presence of an atmosphere containing carbon monoxide or carbon dioxide, both of which absorb these wavelengths of light.”
A planet with no atmosphere or only vaporised rock in an atmosphere would not have this specific spectral feature.
“This is exciting news,” said co-author Yamila Miguel from Leiden Observatory and the Netherlands Institute for Space Research (SRON), both in the Netherlands. “We’ve spent the last ten years modelling different scenarios, trying to imagine what this world might look like. Finally getting some confirmation of our work is priceless!”
Bubbling magma ocean
The team thinks that the gases blanketing 55 Cancri e would be bubbling out from the interior, rather than being present since the planet’s formation.
“The primary atmosphere would be long gone because of the high temperature and intense radiation from the star,” said Bello-Arufe. “This would be a secondary atmosphere that is continuously replenished by the magma ocean. Magma is not only crystals and liquid rock, there’s a lot of dissolved gas in it, too.”
In all likelihood, any atmosphere surrounding the planet would be more complex and quite variable as a result of interactions with the magma ocean. In addition to carbon monoxide or carbon dioxide, there could be gases like nitrogen, water vapour, sulphur dioxide, some vaporised rock, and even short-lived clouds made of tiny droplets of lava condensed from the air.
While 55 Cancri e is far too hot to be habitable, researchers think it could provide a unique window for studying interactions between the atmospheres, surfaces and interiors of rocky planets, and perhaps provide insights into the early Earth, Venus and Mars, which are thought to have been covered in magma oceans in the past.
“Ultimately, we want to understand what conditions make it possible for a rocky planet to sustain a gas-rich atmosphere, a key ingredient for a habitable planet,” said Hu.
This research was conducted as part of Webb’s General Observers (GO) Program 1952. Analysis of additional secondary eclipse observations of 55 Cancri e are currently in progress. In the future, the team hopes to capture a full phase curve with Webb in order to map temperature differences from one side of the planet to the other, to get a better sense of the planet’s weather, climate and more detailed atmospheric conditions.
A thermal emission spectrum captured by Webb’s NIRCam (Near-Infrared Camera) in November 2022, and MIRI (Mid-Infrared Instrument) in March 2023, shows the brightness (y-axis) of different wavelengths of infrared light (x-axis) emitted by the super-Earth exoplanet 55 Cancri e. The spectrum shows that the planet may be surrounded by an atmosphere rich in carbon dioxide or carbon monoxide and other volatiles, not just vaporised rock. The graph compares data collected by NIRCam (orange dots) and MIRI (purple dots) to two different models. Model A, in red, shows what the emission spectrum of 55 Cancri e should look like if it has an atmosphere made of vaporised rock. Model B, in blue, shows what the emission spectrum should look like if the planet has a volatile-rich atmosphere outgassed from a magma ocean that has a volatile content similar to Earth’s mantle. Both MIRI and NIRCam data are consistent with the volatile-rich model. The amount of mid-infrared light emitted by the planet (MIRI) shows that its dayside temperature is significantly lower than it would be if it did not have an atmosphere to distribute heat from the dayside to the nightside. The dip in the spectrum between 4 and 5 microns (NIRCam data) can be explained by absorption of those wavelengths by carbon monoxide or carbon dioxide molecules in the atmosphere. The spectrum was made by measuring the brightness of 4- to 5-micron light with Webb’s NIRCam GRISM spectrometer, and 5- to 12-micron light with the MIRI low-resolution spectrometer, before, during and after the planet moved behind its star (the secondary eclipse ). The amount of each wavelength emitted by the planet (y-axis) was calculated by subtracting the brightness of the star alone (during the secondary eclipse) from the brightness of the star and planet combined (before and after the eclipse). Each observation lasted about eight hours. Note that the NIRCam data have been shifted vertically to align with Model B. Although the differences in brightness between each wavelength in the NIRCam band were derived from the observation (the data suggest a valley between 4 and 5 microns), the absolute brightness (the vertical position of that valley) could not be measured precisely because of noise in the data. Credit: NASA, ESA, CSA, J. Olmsted (STScI), R. Hu (JPL), A. Bello-Arufe (JPL), M. Zhang (University of Chicago), M. Zilinskas (SRON Netherlands Institute for Space Research)
Webb unlocks secrets of GN-z11, one of the most distant galaxies ever seen
Looking deep into space and time, two teams using the NASA/ESA/CSA James Webb Space Telescope have studied the exceptionally luminous galaxy GN-z11, which existed when our 13.8 billion-year-old Universe was only about 430 million years old.
This image from Webb’s NIRCam (Near-Infrared Camera) instrument shows a portion of the GOODS-North field of galaxies. Credit: NASA, ESA, CSA, B. Robertson (UC Santa Cruz), B. Johnson (CfA), S. Tacchella (Cambridge), M. Rieke (University of Arizona), D. Eisenstein (CfA)
Delivering on its promise to transform our understanding of the early Universe, the James Webb Space Telescope is probing galaxies near the dawn of time. One of these is the exceptionally luminous galaxy GN-z11, which existed when the Universe was just a tiny fraction of its current age. Initially detected with the NASA/ESA Hubble Space Telescope, it is one of the youngest and most distant galaxies ever observed, and it is also one of the most enigmatic. Why is it so bright? Webb appears to have found the answer.
A team studying GN-z11 with Webb found the first clear evidence that the galaxy is hosting a central, supermassive black hole that is rapidly accreting matter. Their finding makes this the most distant active supermassive black hole spotted to date.
“We found extremely dense gas that is common in the vicinity of supermassive black holes accreting gas,” explained principal investigator Roberto Maiolino of the Cavendish Laboratory and the Kavli Institute of Cosmology at the University of Cambridge in the United Kingdom. “These were the first clear signatures that GN-z11 is hosting a black hole that is gobbling matter.”
Using Webb, the team also found indications of ionised chemical elements typically observed near accreting supermassive black holes. Additionally, they discovered that the galaxy is expelling a very powerful wind. Such high-velocity winds are typically driven by processes associated with vigorously accreting supermassive black holes.
“Webb’s NIRCam (Near-Infrared Camera) has revealed an extended component, tracing the host galaxy, and a central, compact source whose colours are consistent with those of an accretion disc surrounding a black hole,” said investigator Hannah Übler, also of the Cavendish Laboratory and the Kavli Institute.
Together, this evidence shows that GN-z11 hosts a two-million-solar-mass, supermassive black hole in a very active phase of consuming matter, which is why it’s so luminous.
A second team, also led by Maiolino, used Webb’s NIRSpec (Near-Infrared Spectrograph) to find a gaseous clump of helium in the halo surrounding GN-z11.
“The fact that we don’t see anything else beyond helium suggests that this clump must be fairly pristine,” said Maiolino. “This is something that was expected by theory and simulations in the vicinity of particularly massive galaxies from these epochs — that there should be pockets of pristine gas surviving in the halo, and these may collapse and form Population III star clusters.”
This two-part graphic shows evidence of a gaseous clump of helium in the halo surrounding the galaxy GN-z11. In the top portion, at the far right, a small box identifies GN-z11 in a field of galaxies. The middle box shows a zoomed-in image of the galaxy. The box at the far left displays a map of the helium gas in the halo of GN-z11, including a clump that does not appear in the infrared colours shown in the middle panel. In the lower half of the graphic, a spectrum shows the distinct ‘fingerprint’ of helium in the halo. The full spectrum shows no evidence of other elements and so suggests that the helium clump must be fairly pristine, made almost entirely of hydrogen and helium gas left over from the Big Bang, without much contamination from heavier elements produced by stars. Theory and simulations in the vicinity of particularly massive galaxies from these epochs predict that there should be pockets of pristine gas surviving in the halo, and these may collapse and form Population III star clusters. Credit: NASA, ESA, CSA, Ralf Crawford (STScI)
Finding the so far unseen Population III stars [1] — the first generation of stars formed almost entirely from hydrogen and helium — is one of the most important goals of modern astrophysics. These stars are expected to be very massive, very luminous, and very hot. Their signature would be the presence of ionised helium and the absence of chemical elements heavier than helium.
The formation of the first stars and galaxies marks a fundamental shift in cosmic history, during which the Universe evolved from a dark and relatively simple state into the highly structured and complex environment we see today.
In future Webb observations, Maiolino, Übler, and their team will explore GN-z11 in greater depth, and they hope to strengthen the case for the Population III stars that may be forming in its halo.
The research on the pristine gas clump in GN-z11’s halo has been accepted for publication in Astronomy & Astrophysics. The results of the study of GN-z11’s black hole were published in the journal Nature on 17 January 2024. The data was obtained as part of the JWST Advanced Deep Extragalactic Survey (JADES), a joint project between the NIRCam and NIRSpec teams.
This image from Webb’s NIRCam (Near-Infrared Camera) instrument shows a portion of the GOODS-North field of galaxies. At the lower right, a pullout highlights the galaxy GN-z11, which is seen at a time just 430 million years after the Big Bang. The image reveals an extended component, tracing the GN-z11 host galaxy, and a central, compact source whose colours are consistent with those of an accretion disc surrounding a black hole. Credit: NASA, ESA, CSA, B. Robertson (UC Santa Cruz), B. Johnson (CfA), S. Tacchella (Cambridge), M. Rieke (University of Arizona), D. Eisenstein (CfA)
Notes
[1] The name Population III arose because astronomers had already classified the stars of the Milky Way as Population I (stars like the Sun, which are rich in heavier elements) and Population II (older stars with a low heavy-element content, found in the Milky Way bulge and halo, and in globular star clusters).
This image of the GOODS-North field, captured by Webb’s Near-Infrared Camera (NIRCam), shows compass arrows, a scale bar, and a colour key for reference. The north and east compass arrows show the orientation of the image on the sky. Note that the relationship between north and east on the sky (as seen from below) is flipped relative to direction arrows on a map of the ground (as seen from above). The scale bar is labelled in angular distance on the sky, where one arcsecond is one 3600th of a degree. The scale bar is 60 arcseconds long. This image shows invisible near-infrared wavelengths of light that have been translated into visible-light colours. The colour key shows which NIRCam filters were used when collecting the light. The colour of each filter name is the visible light colour used to represent the infrared light that passes through that filter. Credit: NASA, ESA, CSA, B. Robertson (UC Santa Cruz), B. Johnson (CfA), S. Tacchella (Cambridge), M. Rieke (University of Arizona), D. Eisenstein (CfA)
Using the unprecedented capabilities of the NASA/ESA/CSA James Webb Space Telescope, an international team of scientists have obtained the first spectroscopic observations of the faintest galaxies during the first billion years of the Universe. These findings help answer a longstanding question for astronomers: what sources caused the reionisation of the Universe? These news results have effectively demonstrated that small dwarf galaxies are the likely producers of prodigious amounts of energetic radiation.
Researching the evolution of the early Universe is an important aspect of modern astronomy. Much remains to be understood about the time in the Universe’s early history known as the era of reionisation [1]. It was a period of darkness without any stars or galaxies, filled with a dense fog of hydrogen gas, until the first stars ionised the gas around them and light began to travel through. Astronomers have spent decades trying to identify the sources that emitted radiation powerful enough to gradually clear away this hydrogen fog that blanketed the early Universe.
The Ultradeep NIRSpec and NIRCam ObserVations before the Epoch of Reionization (UNCOVER) programme (#2561) consists of both imaging and spectroscopic observations of the lensing cluster Abell 2744. An international team of astronomers used gravitational lensing by this target, also known as Pandora’s Cluster, to investigate the sources of the Universe’s period of reionisation. Gravitational lensing [2] magnifies and distorts the appearance of distant galaxies, so they look very different from those in the foreground. The galaxy cluster ‘lens’ is so massive that it warps the fabric of space itself, so much so that light from distant galaxies that passes through the warped space also takes on a warped appearance. The magnification effect allowed the team to study very distant sources of light beyond Abell 2744, revealing eight extremely faint galaxies that would otherwise be undetectable, even to Webb.
The team found that these faint galaxies are immense producers of ionising radiation, at levels that are four times larger than what was previously assumed. This means that most of the photons that reionised the Universe likely came from these dwarf galaxies.
“This discovery unveils the crucial role played by ultra-faint galaxies in the early Universe’s evolution,” said team member Iryna Chemerynska of the Institut d’Astrophysique de Paris in France. “They produce ionising photons that transform neutral hydrogen into ionised plasma during cosmic reionisation. It highlights the importance of understanding low-mass galaxies in shaping the Universe’s history.”
“These cosmic powerhouses collectively emit more than enough energy to get the job done,” added team leader Hakim Atek, Institut d’Astrophysique de Paris, CNRS, Sorbonne Université, France, and lead author of the paper describing this result. “Despite their tiny size, these low-mass galaxies are prolific producers of energetic radiation, and their abundance during this period is so substantial that their collective influence can transform the entire state of the Universe.”
To arrive at this conclusion, the team first combined ultra-deep Webb imaging data with ancillary imaging of Abell 2744 from the NASA/ESA Hubble Space Telescope in order to select extremely faint galaxy candidates in the epoch of reionisation. This was followed by spectroscopy with Webb’s Near-InfraRed Spectrograph (NIRSpec). The instrument’s Multi-Shutter Assembly was used to obtain multi-object spectroscopy of these faint galaxies. This is the first time scientists have robustly measured the number density of these faint galaxies, and they have successfully confirmed that they are the most abundant population during the epoch of reionisation. This also marks the first time that the ionising power of these galaxies has been measured, enabling the astronomers to determine that they are producing sufficient energetic radiation to ionise the early Universe.
“The incredible sensitivity of NIRSpec combined with the gravitational amplification provided by Abell 2744 enabled us to identify and study these galaxies from the first billion years of the Universe in detail, despite their being over 100 times fainter than our own Milky Way,” continued Atek.
In an upcoming Webb observing programme, termed GLIMPSE, scientists will obtain the deepest observations ever on the sky. By targeting another galaxy cluster, named Abell S1063, even fainter galaxies during the epoch of reionisation will be identified in order to verify whether this population is representative of the large-scale distribution of galaxies. As these new results are based on observations obtained in one field, the team notes that the ionising properties of faint galaxies can appear differently if they reside in over-dense regions. Additional observations in an independent field will therefore provide further insights to help verify these conclusions. The GLIMPSE observations will also help astronomers probe the period known as Cosmic Dawn, when the Universe was only a few million years old, to develop our understanding of the emergence of the first galaxies.
These results have been published today in the journal Nature.
Webb finds dwarf galaxies reionised the Universe. Astronomers estimate 50 000 sources of near-infrared light are represented in this image from the NASA/ESA/CSA James Webb Space Telescope. Their light has travelled through various distances to reach the telescope’s detectors, representing the vastness of space in a single image. A foreground star in our own galaxy, to the right of the image centre, displays Webb’s distinctive diffraction spikes. Bright white sources surrounded by a hazy glow are the galaxies of Pandora’s Cluster, a conglomeration of already-massive clusters of galaxies coming together to form a mega cluster. The concentration of mass is so great that the fabric of spacetime is warped by gravity, creating a natural, super-magnifying glass called a ‘gravitational lens’ that astronomers can use to see very distant sources of light beyond the cluster that would otherwise be undetectable, even to Webb. These lensed sources appear red in the image, and often as elongated arcs distorted by the gravitational lens. Many of these are galaxies from the early Universe, with their contents magnified and stretched out for astronomers to study. Credit: NASA, ESA, CSA, I. Labbe (Swinburne University of Technology), R. Bezanson (University of Pittsburgh), A. Pagan (STScI)
Notes
[1] Theory predicts that the first stars were 30 to 300 times as massive as our Sun and millions of times as bright, burning for only a few million years before exploding as supernovae. The energetic ultraviolet light from these first stars was capable of splitting hydrogen atoms back into electrons and protons (or ionising them). This era, from the end of the dark ages to when the Universe was around a billion years old, is known as the epoch of reionisation. This is the period when most of the neutral hydrogen was reionised by the increasing radiation from the first massive stars. Reionisation is an important phenomenon in our Universe’s history as it presents one of the few means by which we can (indirectly) study these earliest stars and galaxies.
[2] Gravitational lensing occurs when a massive celestial body — such as a galaxy cluster — causes a sufficient curvature of spacetime for the path of light around it to be visibly bent, as if by a lens. The body causing the light to curve is accordingly called a gravitational lens. According to Einstein’s general theory of relativity, time and space are fused together in a quantity known as spacetime. Within this theory, massive objects cause spacetime to curve, and gravity is simply the curvature of spacetime. As light travels through spacetime, the theory predicts that the path taken by the light will also be curved by an object’s mass. Gravitational lensing is a dramatic and observable example of Einstein’s theory in action. Extremely massive celestial bodies such as galaxy clusters cause spacetime to be significantly curved. In other words, they act as gravitational lenses. When light from a more distant light source passes by a gravitational lens, the path of the light is curved, and a distorted image of the distant object results.
Webb snaps supersonic outflow of young star from HH 211
This new image from the NASA/ESA/CSA James Webb Space Telescope features Herbig-Haro 211 (HH 211), a bipolar jet travelling through interstellar space at supersonic speeds. At roughly 1,000 light-years away from Earth in the constellation Perseus, the object is one of the youngest and nearest protostellar outflows, making it an ideal target for Webb.
Featured in this image from the NASA/ESA/CSA James Webb Space Telescope is Herbig-Haro 211 (HH 211), a bipolar jet travelling through interstellar space at supersonic speeds. At roughly 1,000 light-years away from Earth in the constellation Perseus, the object is one of the youngest and nearest protostellar outflows, making it an ideal target for Webb. Herbig-Haro objects are luminous regions surrounding newborn stars, and are formed when stellar winds or jets of gas spewing from these newborn stars form shockwaves colliding with nearby gas and dust at high speeds. This spectacular image of HH 211 reveals an outflow from a Class 0 protostar, an infantile analogue of our Sun when it was no more than a few tens of thousands of years old and with a mass only 8% of the present-day Sun (it will eventually grow into a star like the Sun). Infrared imaging is powerful in studying newborn stars and their outflows, because such stars are invariably still embedded within the gas from the molecular cloud in which they formed. The infrared emission of the star’s outflows penetrates the obscuring gas and dust, making a Herbig-Haro object like HH 211 ideal for observation with Webb’s sensitive infrared instruments. Molecules excited by the turbulent conditions, including molecular hydrogen, carbon monoxide and silicon monoxide, emit infrared light that Webb can collect to map out the structure of the outflows. The image showcases a series of bow shocks to the southeast (lower-left) and northwest (upper-right) as well as the narrow bipolar jet that powers them in unprecedented detail — roughly 5 to 10 times higher spatial resolution than any previous images of HH 211. The inner jet is seen to “wiggle” with mirror symmetry on either side of the central protostar. This is in agreement with observations on smaller scales and suggests that the protostar may in fact be an unresolved binary star. Credit: ESA/Webb, NASA, CSA, T. Ray (Dublin Institute for Advanced Studies)
Herbig-Haro objects are luminous regions surrounding newborn stars, and are formed when stellar winds or jets of gas spewing from these newborn stars form shockwaves colliding with nearby gas and dust at high speeds. This spectacular image of HH 211 reveals an outflow from a Class 0 protostar, an infantile analogue of our Sun when it was no more than a few tens of thousands of years old and with a mass only 8% of the present-day Sun (it will eventually grow into a star like the Sun).
Infrared imaging is powerful in studying newborn stars and their outflows, because such stars are invariably still embedded within the gas from the molecular cloud in which they formed. The infrared emission of the star’s outflows penetrates the obscuring gas and dust, making a Herbig-Haro object like HH 211 ideal for observation with Webb’s sensitive infrared instruments. Molecules excited by the turbulent conditions, including molecular hydrogen, carbon monoxide and silicon monoxide, emit infrared light that Webb can collect to map out the structure of the outflows.
The image showcases a series of bow shocks to the southeast (lower-left) and northwest (upper-right) as well as the narrow bipolar jet that powers them. Webb reveals this scene in unprecedented detail — roughly 5 to 10 times higher spatial resolution than any previous images of HH 211. The inner jet is seen to “wiggle” with mirror symmetry on either side of the central protostar. This is in agreement with observations on smaller scales and suggests that the protostar may in fact be an unresolved binary star.
Earlier observations of HH 211 with ground-based telescopes revealed giant bow shocks moving away from us (northwest) and moving towards us (southeast) and cavity-like structures in shocked hydrogen and carbon monoxide respectively, as well as a knotty and wiggling bipolar jet in silicon monoxide. Researchers have used these new observations to determine that the object’s outflow is relatively slow in comparison to more evolved protostars with similar types of outflows.
The team measured the velocities of the innermost outflow structures to be roughly 80 to 100 kilometres per second. However, the difference in velocity between these sections of the outflow and the leading material that they’re colliding with — the velocity of the shockwave — is much smaller. The researchers concluded that outflows from the youngest stars, like that in the center of HH 211, are mostly made up of molecules, because the comparatively low shock wave velocities are not energetic enough to break the molecules apart into simpler atoms and ions.
This image was captured as part of the Webb Cycle One programme #1257.
Bibliographic information:
Ray, T.P., McCaughrean, M.J., Caratti o Garatti, A. et al. Outflows from the Youngest Stars are Mostly Molecular, Nature (2023). https://doi.org/10.1038/s41586-023-06551-1
Featured in this image from the NASA/ESA/CSA James Webb Space Telescope is Herbig-Haro 211 (HH 211), a bipolar jet travelling through interstellar space at supersonic speeds. At roughly 1,000 light-years away from Earth in the constellation Perseus, the object is one of the youngest and nearest protostellar outflows, making it an ideal target for Webb. Herbig-Haro objects are luminous regions surrounding newborn stars, and are formed when stellar winds or jets of gas spewing from these newborn stars form shockwaves colliding with nearby gas and dust at high speeds. This spectacular image of HH 211 reveals an outflow from a Class 0 protostar, an infantile analogue of our Sun when it was no more than a few tens of thousands of years old and with a mass only 8% of the present-day Sun (it will eventually grow into a star like the Sun). Infrared imaging is powerful in studying newborn stars and their outflows, because such stars are invariably still embedded within the gas from the molecular cloud in which they formed. The infrared emission of the star’s outflows penetrates the obscuring gas and dust, making a Herbig-Haro object like HH 211 ideal for observation with Webb’s sensitive infrared instruments. Molecules excited by the turbulent conditions, including molecular hydrogen, carbon monoxide and silicon monoxide, emit infrared light that Webb can collect to map out the structure of the outflows. The image showcases a series of bow shocks to the southeast (lower-left) and northwest (upper-right) as well as the narrow bipolar jet that powers them in unprecedented detail — roughly 5 to 10 times higher spatial resolution than any previous images of HH 211. The inner jet is seen to “wiggle” with mirror symmetry on either side of the central protostar. This is in agreement with observations on smaller scales and suggests that the protostar may in fact be an unresolved binary star. Credit: ESA/Webb, NASA, CSA, T. Ray (Dublin Institute for Advanced Studies)