Ad
Ad
Ad
Tag

MPIA

Browsing

Hubble finds strong evidence for intermediate-mass black hole in Omega Centauri

An international team of astronomers has used more than 500 images from the NASA/ESA Hubble Space Telescope spanning two decades to detect seven fast-moving stars in the innermost region of Omega Centauri, the largest and brightest globular cluster in the sky. These stars provide compelling new evidence for the presence of an intermediate-mass black hole.

Intermediate-mass black holes (IMBHs) are a long-sought ‘missing link’ in black hole evolution. Only a few other IMBH candidates have been found to date. Most known black holes are either extremely massive, like the supermassive black holes that lie at the cores of large galaxies, or relatively lightweight, with a mass less than 100 times that of the Sun. Black holes are one of the most extreme environments humans are aware of, and so they are a testing ground for the laws of physics and our understanding of how the Universe works. If IMBHs exist, how common are they? Does a supermassive black hole grow from an IMBH? How do IMBHs themselves form? Are dense star clusters their favoured home?

Omega Centauri is visible from Earth with the naked eye and is one of the favourite celestial objects for stargazers in the southern hemisphere. Although the cluster is 17 700 light-years away, lying just above the plane of the Milky Way, it appears almost as large as the full Moon when seen from a dark rural area. The exact classification of Omega Centauri has evolved through time, as our ability to study it has improved. It was first listed in Ptolemy’s catalogue nearly two thousand years ago as a single star. Edmond Halley reported it as a nebula in 1677, and in the 1830s the English astronomer John Herschel was the first to recognise it as a globular cluster.

Globular clusters typically consist of up to one million old stars tightly bound together by gravity and are found both in the outskirts and central regions of many galaxies, including our own. Omega Centauri has several characteristics that distinguish it from other globular clusters: it rotates faster than a run-of-the-mill globular cluster, and its shape is highly flattened. Moreover, Omega Centauri is about 10 times as massive as other big globular clusters, almost as massive as a small galaxy.

A globular cluster, appearing as a highly dense and numerous collection of shining stars. Some appear a bit larger and brighter than others, with the majority of stars appearing blue and orange. They are scattered mostly uniformly, but in the centre they crowd together more and more densely, and merge into a stronger glow at the cluster’s core.
An international team of astronomers has used more than 500 images from the NASA/ESA Hubble Space Telescope spanning two decades to detect seven fast-moving stars in the innermost region of Omega Centauri, the largest and brightest globular cluster in the sky. These stars provide compelling new evidence for the presence of an intermediate-mass black hole; Omega Centauri is visible from Earth with the naked eye and is one of the favourite celestial objects for stargazers in the southern hemisphere. Although the cluster is 17 700 light-years away, lying just above the plane of the Milky Way, it appears almost as large as the full Moon when seen from a dark rural area. The exact classification of Omega Centauri has evolved through time, as our ability to study it has improved. It was first listed in Ptolemy’s catalogue nearly two thousand years ago as a single star. Edmond Halley reported it as a nebula in 1677, and in the 1830s the English astronomer John Herschel was the first to recognise it as a globular cluster. Omega Centauri consists of roughly 10 million stars that are gravitationally bound.
Credit: ESA/Hubble & NASA, M. Häberle (MPIA)

Omega Centauri consists of roughly 10 million stars that are gravitationally bound. An international team has now created an enormous catalogue of the motions of these stars, measuring the velocities for 1.4 million stars by studying over 500 Hubble images of the cluster. Most of these observations were intended to calibrate Hubble’s instruments rather than for scientific use, but they turned out to be an ideal database for the team’s research efforts. The extensive catalogue, which is the largest catalogue of motions for any star cluster to date, will be made openly available (more information is available here).

“We discovered seven stars that should not be there,” explained Maximilian Häberle of the Max Planck Institute for Astronomy in Germany, who led this investigation. “They are moving so fast that they should escape the cluster and never come back. The most likely explanation is that a very massive object is gravitationally pulling on these stars and keeping them close to the centre. The only object that can be so massive is a black hole, with a mass at least 8200 times that of our Sun.”

This image presents three panels. The first image shows the global cluster Omega Centauri, appearing as a highly dense and numerous collection of shining stars. The second image shows the details of the central region of this cluster, with a closer view of the individual stars. The third image shows the location of the IMBH candidate in the cluster.
An international team of astronomers has used more than 500 images from the NASA/ESA Hubble Space Telescope spanning two decades to detect seven fast-moving stars in the innermost region of Omega Centauri, the largest and brightest globular cluster in the sky. These stars provide compelling new evidence for the presence of an intermediate-mass black hole (IMBH): this image shows the location of the IMBH in Omega Centauri. If confirmed, at its distance of 17 700 light-years the candidate black hole resides closer to Earth than the 4.3 million solar mass black hole in the centre of the Milky Way, which is 26 000 light-years away. Besides the Galactic centre, it would also be the only known case of a number of stars closely bound to a massive black hole.
Credit: ESA/Hubble & NASA, M. Häberle (MPIA)

Several studies have suggested the presence of an IMBH in Omega Centauri [1]. However, other studies proposed that the mass could be contributed by a central cluster of stellar-mass black holes, and had suggested the lack of fast-moving stars above the necessary escape velocity made an IMBH less likely in comparison.

“This discovery is the most direct evidence so far of an IMBH in Omega Centauri,” added team lead Nadine Neumayer, also of the Max Planck Institute for Astronomy, who initiated the study with Anil Seth of the University of Utah in the United States. “This is exciting because there are only very few other black holes known with a similar mass. The black hole in Omega Centauri may be the best example of an IMBH in our cosmic neighbourhood.”

If confirmed, at its distance of 17 700 light-years the candidate black hole resides closer to Earth than the 4.3 million solar mass black hole in the centre of the Milky Way, which is 26 000 light-years away. Besides the Galactic centre, it would also be the only known case of a number of stars closely bound to a massive black hole.

The science team now hopes to characterise the black hole. While it is believed to measure at least 8200 solar masses, its exact mass and its precise position are not fully known. The team also intends to study the orbits of the fast-moving stars, which requires additional measurements of the respective line-of-sight velocities. The team has been granted time with the NASA/ESA/CSA James Webb Space Telescope to do just that, and also has other pending proposals to use other observatories.

Omega Centauri was also a recent feature of a new data release from ESA’s Gaia mission, which contained over 500 000 stars.

“Even after 30 years, the Hubble Space Telescope with its imaging instruments is still one of the best tools for high-precision astrometry in crowded stellar fields, regions where Hubble can provide added sensitivity from ESA’s Gaia mission observations,” shared team member Mattia Libralato of the National Institute for Astrophysics in Italy (INAF), and previously of AURA for the European Space Agency during the time of this study. “Our results showcase Hubble’s high resolution and sensitivity that are giving us exciting new scientific insights and will give a new boost to the topic of IMBHs in globular clusters.”

The results have been published online today in the journal Nature.

The central region of a globular cluster is shown, appearing as a highly dense and numerous collection of shining stars. Some stars show blue and orange glowing features around them.
An international team of astronomers has used more than 500 images from the NASA/ESA Hubble Space Telescope spanning two decades to detect seven fast-moving stars in the innermost region of Omega Centauri, the largest and brightest globular cluster in the sky. These stars provide compelling new evidence for the presence of an intermediate-mass black hole; Omega Centauri is visible from Earth with the naked eye and is one of the favourite celestial objects for stargazers in the southern hemisphere. Although the cluster is 17 700 light-years away, lying just above the plane of the Milky Way, it appears almost as large as the full Moon when seen from a dark rural area. The exact classification of Omega Centauri has evolved through time, as our ability to study it has improved. It was first listed in Ptolemy’s catalogue nearly two thousand years ago as a single star. Edmond Halley reported it as a nebula in 1677, and in the 1830s the English astronomer John Herschel was the first to recognise it as a globular cluster. Omega Centauri consists of roughly 10 million stars that are gravitationally bound.
This image shows the central region of the Omega Centauri globular cluster, where the IMBH candidate was found.
Credit: ESA/Hubble & NASA, M. Häberle (MPIA)

Notes

[1] In 2008, the Hubble Space Telescope and the Gemini Observatory found that the explanation behind Omega Centauri’s peculiarities may be a black hole hidden in its centre.

 

 

Press release from ESA Hubble.

Webb detects water vapour in the inner disk of the system PDS 70, a rocky planet-forming zone

New measurements by the NASA/ESA/CSA James Webb Space Telescope’s Mid-InfraRed Instrument (MIRI) have detected water vapour in the inner disc of the system PDS 70, located 370 light-years away. This is the first detection of water in the terrestrial region of a disc already known to host two or more protoplanets.

PDS 70
This artist concept portrays the star PDS 70 and its inner protoplanetary disc. New measurements from the NASA/ESA/CSA James Webb Space Telescope’s Mid-InfraRed Instrument (MIRI) have indicated the presence of water vapour in the inner disc of the system PDS 70, located 370 light-years away. This is the first detection of water in the terrestrial region of a disc already known to host two or more protoplanets, one of which is shown at upper right.
Credit: NASA, ESA, CSA, J. Olmsted (STScI)

Water is essential for life as we know it. However, scientists debate how it reached the Earth and whether the same processes could seed rocky exoplanets orbiting distant stars. New insights may come from the system PDS 70, which hosts an inner disc and an outer disc that are separated by a gap of eight billion kilometres, within which are two known gas-giant planets. MIRI has detected water vapour in the system’s inner disc at distances of less than 160 million kilometres from the star — the region where rocky, terrestrial planets may be forming (the Earth orbits 150 million kilometres from our Sun).

“We’ve seen water in other discs, but not so close in and in a system where planets are currently assembling. We couldn’t make this type of measurement before Webb,” said lead author Giulia Perotti of the Max Planck Institute for Astronomy (MPIA) in Heidelberg, Germany.

This discovery is extremely exciting, as it probes the region where rocky planets similar to Earth typically form,”

added MPIA director Thomas Henning, a co-author of the paper. Henning is co-principal investigator of Webb’s MIRI (Mid-InfraRed Instrument), which made the detection, and the principal investigator of the MINDS (MIRI Mid-Infrared Disk Survey) programme that took the data.

A wet environment for forming planets

PDS 70 is a K-type star, cooler than our Sun, and is estimated to be 5.4 million years old. This is relatively old amongst stars with planet-forming discs, which made the discovery of water vapour surprising.

Over time, the gas and dust content of planet-forming discs declines. Either the central star’s radiation and winds remove such material, or the dust grows into larger objects that eventually form planets. As previous studies failed to detect water in the central regions of similarly aged discs, astronomers suspected it might not survive the harsh stellar radiation, leading to a dry environment for the formation of any rocky planets.

Astronomers haven’t yet detected any planets forming within the inner disc of PDS 70. However, they do see the raw materials for building rocky worlds, in the form of silicates. The detection of water vapour implies that if rocky planets are forming there, they will have water available to them from the beginning.

We find a relatively large amount of small dust grains. Combined with our detection of water vapour, the inner disc is a very exciting place,” said co-author Rens Waters of Radboud University in the Netherlands.

What is the origin of the water?

The discovery raises the question of where the water came from. The MINDS team considered two different scenarios to explain their finding.

One possibility is that water molecules are forming in place, where we detect them, as hydrogen and oxygen atoms combine. A second possibility is that ice-coated dust particles are being transported from the cool outer disc to the hot inner disc, where the water ice sublimates and turns into vapour. Such a transport system would be surprising, since the dust would have to cross the large gap carved out by the two giant planets.

Another question raised by the discovery is how water could survive so close to the star, where the star’s ultraviolet light should break apart any water molecules. Most likely, surrounding material, such as dust and other water molecules, serves as a protective shield. As a result, the water detected near PDS 70 could survive destruction.

Ultimately, the team will use two of Webb’s other instruments, the Near-InfraRed Camera (NIRCam) and the Near-InfraRed Spectrograph (NIRSpec) to study the PDS 70 system in an effort to glean an even greater understanding.

These observations were made as part of Guaranteed Time Observation program 1282. This finding has been published in the journal Nature.

Water in protoplanetary disc of PDS 70 (MIRI emission spectrum)
New measurements from the NASA/ESA/CSA James Webb Space Telescope’s Mid-InfraRed Instrument (MIRI) have indicated the presence of water vapour in the inner disc of the system PDS 70, located 370 light-years away. This is the first detection of water in the terrestrial region of a disc already known to host two or more protoplanets.
This spectrum of the protoplanetary disk of PDS 70, obtained with Webb’s MIRI instrument, displays a number of emission lines from water vapour.
Credit: NASA, ESA, CSA, J. Olmsted (STScI)

Press release from ESA Webb.