Ad
Ad
Ad
Tag

Hannah Übler

Browsing

Massive black hole in the early universe spotted taking a ‘nap’ after overeating, and lying dormant in its host galaxy, GN-1001830

JWST buco nero dormiente GN-1001830 Illustrazione artistica che rappresenta l'aspetto potenziale del buco nero supermassiccio scoperto dal team di ricerca durante la sua fase di intensa attività super-Eddington. Crediti: Jiarong Gu
A study in Nature finds that black holes in the early Universe go through short periods of ultra-fast growth, followed by long periods of dormancy. Picture credits: Jiarong Gu

Scientists have spotted a massive black hole in the early universe that is ‘napping’ after stuffing itself with too much food.

Like a bear gorging itself on salmon before hibernating for the winter, or a much-needed nap after Christmas dinner, this black hole has overeaten to the point that it is lying dormant in its host galaxy, GN-1001830.

An international team of astronomers, led by the University of Cambridge, used the NASA/ESA/CSA James Webb Space Telescope to detect this black hole in the early universe, just 800 million years after the Big Bang.

The black hole is huge – 400 million times the mass of our Sun – making it one of the most massive black holes discovered by Webb at this point in the universe’s development. The black hole is so enormous that it makes up roughly 40% of the total mass of its host galaxy: in comparison, most black holes in the local universe are roughly 0.1% of their host galaxy mass.

However, despite its gigantic size, this black hole is eating, or accreting, the gas it needs to grow at a very low rate – about 100 times below its theoretical maximum limit – making it essentially dormant.

Such an over-massive black hole so early in the universe, but one that isn’t growing, challenges existing models of how black holes develop. However, the researchers say that the most likely scenario is that black holes go through short periods of ultra-fast growth, followed by long periods of dormancy. Their results are reported in the journal Nature.

When black holes are ‘napping’, they are far less luminous, making them more difficult to spot, even with highly-sensitive telescopes such as Webb. Black holes cannot be directly observed, but instead they are detected by the tell-tale glow of a swirling accretion disc, which forms near the black hole’s edges. The gas in the accretion disc becomes extremely hot and starts to glow and radiate energy in the ultraviolet range.

“Even though this black hole is dormant, its enormous size made it possible for us to detect,” said lead author Ignas Juodžbalis from Cambridge’s Kavli Institute for Cosmology. “Its dormant state allowed us to learn about the mass of the host galaxy as well. The early universe managed to produce some absolute monsters, even in relatively tiny galaxies.”

According to standard models, black holes form from the collapsed remnants of dead stars and accrete matter up to a predicted limit, known as the Eddington limit, where the pressure of radiation on matter overcomes the gravitational pull of the black hole. However, the sheer size of this black hole suggests that standard models may not adequately explain how these monsters form and grow.

“It’s possible that black holes are ‘born big’, which could explain why Webb has spotted huge black holes in the early universe,” said co-author Professor Roberto Maiolino, from the Kavli Institute and Cambridge’s Cavendish Laboratory. “But another possibility is they go through periods of hyperactivity, followed by long periods of dormancy.”

Working with colleagues from Italy, the Cambridge researchers conducted a range of computer simulations to model how this dormant black hole could have grown to such a massive size so early in the universe. They found that the most likely scenario is that black holes can exceed the Eddington limit for short periods, during which they grow very rapidly, followed by long periods of inactivity: the researchers say that black holes such as this one likely eat for five to ten million years, and sleep for about 100 million years.

“It sounds counterintuitive to explain a dormant black hole with periods of hyperactivity, but these short bursts allow it to grow quickly while spending most of its time napping,” said Maiolino.

Because the periods of dormancy are much longer than the periods of ultra-fast growth, it is in these periods that astronomers are most likely to detect black holes.

“This was the first result I had as part of my PhD, and it took me a little while to appreciate just how remarkable it was,” said Juodžbalis. “It wasn’t until I started speaking with my colleagues on the theoretical side of astronomy that I was able to see the true significance of this black hole.”

Due to their low luminosities, dormant black holes are more challenging for astronomers to detect, but the researchers say this black hole is almost certainly the tip of a much larger iceberg, if black holes in the early universe spend most of their time in a dormant state.

“It’s likely that the vast majority of black holes out there are in this dormant state – I’m surprised we found this one, but I’m excited to think that there are so many more we could find,” said Maiolino.

The observations were obtained as part of the JWST Advanced Deep Extragalactic Survey (JADES). The research was supported in part by the European Research Council and the Science and Technology Facilities Council (STFC), part of UK Research and Innovation (UKRI).


 

Bibliographic Information:

“A dormant, overmassive black hole in the early Universe”, by Ignas Juodžbalis, Roberto Maiolino, William M. Baker, Sandro Tacchella, Jan Scholtz, Francesco D’Eugenio, Raffaella Schneider, Alessandro Trinca, Rosa Valiante, Christa DeCoursey, Mirko Curti, Stefano Carniani, Jacopo Chevallard, Anna de Graaff, Santiago Arribas, Jake S. Bennett, Martin A. Bourne, Andrew J. Bunker, Stephane Charlot, Brian Jiang, Sophie Koudmani, Michele Perna, Brant Robertson, Debora Sijacki, Hannah Ubler, Christina C. Williams, Chris Willott, Joris Witstok, has been published on Nature (18-Dec-2024).

Press release from the University of Cambridge

Webb detects most distant black hole merger to date in the ZS7 galaxy system

An international team of astronomers have used the NASA/ESA/CSA James Webb Space Telescope to find evidence for an ongoing merger of two galaxies and their massive black holes when the Universe was only 740 million years old. This marks the most distant detection of a black hole merger ever obtained and the first time that this phenomenon has been detected so early in the Universe.

Three panels are shown showing an increasingly small area of the PRIMER galaxy field. The first image shows a large field of galaxies on the black background of space. The second image shows a smaller region from this field, revealing the galaxies in closer detail, appearing in a variety of shapes and colours. The final image shows the ZS7 galaxy system, revealing the ionised hydrogen emission in orange and the doubly ionised oxygen emission in dark red.
This image shows the location of the galaxy system ZS7 from the JWST PRIMER programme (PI: J. Dunlop). New research using the NIRSpec instrument on the NASA/ESA/CSA James Webb Space Telescope have determined the system to be evidence of an ongoing merger of two galaxies and their massive black holes when the Universe was only 740 million years old. This marks the most distant detection of a black hole merger ever obtained and the first time that this phenomenon has been detected so early in the Universe.
The team has found evidence for very dense gas with fast motions in the vicinity of the black hole, as well as hot and highly ionised gas illuminated by the energetic radiation typically produced by black holes in their accretion episodes. Webb also allowed the team to spatially separate the two black holes and determined that one of the two black holes has a mass that is 50 million times the mass of the Sun. The mass of the other black hole is likely similar, although it is harder to measure because this second black hole is buried in dense gas.
In this Webb NIRCam image, the ionised hydrogen (Hβ) emission in the ZS7 system is identified by the orange region and the doubly ionised oxygen (OIII) emission is visible in dark red (right image).
Credit: ESA/Webb, NASA, CSA, J. Dunlop, D. Magee, P. G. Pérez-González, H. Übler, R. Maiolino, et al.

Astronomers have found supermassive black holes with masses of millions to billions times that of the Sun in most massive galaxies in the local Universe, including in our Milky Way galaxy. These black holes have likely had a major impact on the evolution of the galaxies they reside in. However, scientists still don’t fully understand how these objects grew to become so massive. The finding of gargantuan black holes already in place in the first billion years after the Big Bang indicates that such growth must have happened very rapidly, and very early. Now, the James Webb Space Telescope is shedding new light on the growth of black holes in the early Universe.

The new Webb observations have provided evidence for an ongoing merger of two galaxies and their massive black holes when the Universe was just 740 million years old. The system is known as ZS7.

Massive black holes that are actively accreting matter have distinctive spectrographic features that allow astronomers to identify them. For very distant galaxies, like those in this study, these signatures are inaccessible from the ground and can only be seen with Webb.

“We found evidence for very dense gas with fast motions in the vicinity of the black hole, as well as hot and highly ionised gas illuminated by the energetic radiation typically produced by black holes in their accretion episodes,” explained lead author Hannah Übler of the University of Cambridge in the United Kingdom. “Thanks to the unprecedented sharpness of its imaging capabilities, Webb also allowed our team to spatially separate the two black holes.”

The team found that one of the two black holes has a mass that is 50 million times the mass of the Sun.

“The mass of the other black hole is likely similar, although it is much harder to measure because this second black hole is buried in dense gas,” 

explained team member Roberto Maiolino of the University of Cambridge and University College London in the United Kingdom.

“Our findings suggest that merging is an important route through which black holes can rapidly grow, even at cosmic dawn,” explained Übler. “Together with other Webb findings of active, massive black holes in the distant Universe, our results also show that massive black holes have been shaping the evolution of galaxies from the very beginning.”

“The stellar mass of the system we studied is similar to that of our neighbor the Large Magellanic Cloud,” shared team member Pablo G. Pérez-González of the Centro de Astrobiología (CAB), CSIC/INTA, in Spain. “We can try to imagine how the evolution of merging galaxies could be affected if each galaxy had one super massive black hole as large or larger than the one we have in the Milky Way”. 

This image features the ZS7 galaxy system, showing a large field of hundreds of galaxies on the black background of space.
This image shows the environment of the galaxy system ZS7 from the JWST PRIMER programme (PI: J. Dunlop) as seen by Webb’s NIRCam instrument.
New research using the NIRSpec instrument on the NASA/ESA/CSA James Webb Space Telescope has determined the system to be evidence of an ongoing merger of two galaxies and their massive black holes when the Universe was only 740 million years old. This marks the most distant detection of a black hole merger ever obtained and the first time that this phenomenon has been detected so early in the Universe.
The team has found evidence for very dense gas with fast motions in the vicinity of the black hole, as well as hot and highly ionised gas illuminated by the energetic radiation typically produced by black holes in their accretion episodes. Webb also allowed the team to spatially separate the two black holes and determined that one of the two black holes has a mass that is 50 million times the mass of the Sun. The mass of the other black hole is likely similar, although it is harder to measure because this second black hole is buried in dense gas.
Credit: ESA/Webb, NASA, CSA, J. Dunlop, D. Magee, P. G. Pérez-González, H. Übler, R. Maiolino, et al.

The team also notes that once the two black holes merge, they will also generate gravitational waves [1]. Events like this will be detectable with the next generation of gravitational wave observatories, such as the upcoming Laser Interferometer Space Antenna (LISA) mission, which was recently approved by the European Space Agency and will be the first space-based observatory dedicated to studying gravitational waves.

“Webb’s results are telling us that lighter systems detectable by LISA should be far more frequent than previously assumed,” shared LISA Lead Project Scientist Nora Luetzgendorf of the European Space Agency in the Netherlands. “It will most likely make us adjust our models for LISA rates in this mass range. This is just the tip of the iceberg.”

This discovery was from observations made as part of the Galaxy Assembly with NIRSpec Integral Field Spectroscopy programme. The team has recently been awarded a new Large Programme in Webb’s Cycle 3 of observations, to study in detail the relationship between massive black holes and their host galaxies in the first billion years. An important component of this programme will be to systematically search for and characterise black hole mergers. This effort will determine the rate at which black hole merging occurs at early cosmic epochs and will assess the role of merging in the early growth of black holes and the rate at which gravitational waves are produced from the dawn of time.

These results have been published in the Monthly Notices of the Royal Astronomical Society.

Notes

[1] Gravitational waves are invisible ripples in the fabric of spacetime. Spacetime is a four-dimensional quantity, described by Einstein’s general theory of relativity, which fuses three-dimensional space with time. Mass warps spacetime, and gravity is actually the result of spacetime being curved by an object’s mass. Ripples through spacetime are created by the movement of any object with mass, and these are known as gravitational waves. Gravitational waves are constantly passing unnoticed through Earth and they are caused by some of the most violent and energetic events in the Universe. These include colliding black holes, collapsing stellar cores, merging neutron stars or white dwarf stars, the wobble of neutron stars that are not perfect spheres and possibly even the remnants of gravitational radiation created at the birth of the Universe.

 

Press release from ESA Webb.

Webb unlocks secrets of GN-z11, one of the most distant galaxies ever seen

Looking deep into space and time, two teams using the NASA/ESA/CSA James Webb Space Telescope have studied the exceptionally luminous galaxy GN-z11, which existed when our 13.8 billion-year-old Universe was only about 430 million years old.

A rectangular image with thousands of galaxies of various shapes and colours on the black background of space. Some are noticeably spirals, either face-on or edge-on, while others are blobby ellipticals. Many are too small to discern any structure. One prominent foreground star at top centre features Webb’s signature eight-point diffraction spikes.
This image from Webb’s NIRCam (Near-Infrared Camera) instrument shows a portion of the GOODS-North field of galaxies.
Credit: NASA, ESA, CSA, B. Robertson (UC Santa Cruz), B. Johnson (CfA), S. Tacchella (Cambridge), M. Rieke (University of Arizona), D. Eisenstein (CfA)

Delivering on its promise to transform our understanding of the early Universe, the James Webb Space Telescope is probing galaxies near the dawn of time. One of these is the exceptionally luminous galaxy GN-z11, which existed when the Universe was just a tiny fraction of its current age. Initially detected with the NASA/ESA Hubble Space Telescope, it is one of the youngest and most distant galaxies ever observed, and it is also one of the most enigmatic. Why is it so bright? Webb appears to have found the answer.

A team studying GN-z11 with Webb found the first clear evidence that the galaxy is hosting a central, supermassive black hole that is rapidly accreting matter. Their finding makes this the most distant active supermassive black hole spotted to date.

“We found extremely dense gas that is common in the vicinity of supermassive black holes accreting gas,” explained principal investigator Roberto Maiolino of the Cavendish Laboratory and the Kavli Institute of Cosmology at the University of Cambridge in the United Kingdom. “These were the first clear signatures that GN-z11 is hosting a black hole that is gobbling matter.”

Using Webb, the team also found indications of ionised chemical elements typically observed near accreting supermassive black holes. Additionally, they discovered that the galaxy is expelling a very powerful wind. Such high-velocity winds are typically driven by processes associated with vigorously accreting supermassive black holes.

“Webb’s NIRCam (Near-Infrared Camera) has revealed an extended component, tracing the host galaxy, and a central, compact source whose colours are consistent with those of an accretion disc surrounding a black hole,” said investigator Hannah Übler, also of the Cavendish Laboratory and the Kavli Institute.

Together, this evidence shows that GN-z11 hosts a two-million-solar-mass, supermassive black hole in a very active phase of consuming matter, which is why it’s so luminous.

A second team, also led by Maiolino, used Webb’s NIRSpec (Near-Infrared Spectrograph) to find a gaseous clump of helium in the halo surrounding GN-z11.

“The fact that we don’t see anything else beyond helium suggests that this clump must be fairly pristine,” said Maiolino. “This is something that was expected by theory and simulations in the vicinity of particularly massive galaxies from these epochs — that there should be pockets of pristine gas surviving in the halo, and these may collapse and form Population III star clusters.”

A graphic labelled Galaxy GN-z11, Pristine Gas Clump Near GN-z11. The graphic is divided into two sections. The top half of the graphic features a rectangular image of a field of galaxies with two pullouts, the second of them labelled Helium Two Detected. The bottom half shows a single line graph.
This two-part graphic shows evidence of a gaseous clump of helium in the halo surrounding the galaxy GN-z11. In the top portion, at the far right, a small box identifies GN-z11 in a field of galaxies. The middle box shows a zoomed-in image of the galaxy. The box at the far left displays a map of the helium gas in the halo of GN-z11, including a clump that does not appear in the infrared colours shown in the middle panel. In the lower half of the graphic, a spectrum shows the distinct ‘fingerprint’ of helium in the halo. The full spectrum shows no evidence of other elements and so suggests that the helium clump must be fairly pristine, made almost entirely of hydrogen and helium gas left over from the Big Bang, without much contamination from heavier elements produced by stars. Theory and simulations in the vicinity of particularly massive galaxies from these epochs predict that there should be pockets of pristine gas surviving in the halo, and these may collapse and form Population III star clusters.
Credit: NASA, ESA, CSA, Ralf Crawford (STScI)

Finding the so far unseen Population III stars [1] — the first generation of stars formed almost entirely from hydrogen and helium — is one of the most important goals of modern astrophysics. These stars are expected to be very massive, very luminous, and very hot. Their signature would be the presence of ionised helium and the absence of chemical elements heavier than helium.

The formation of the first stars and galaxies marks a fundamental shift in cosmic history, during which the Universe evolved from a dark and relatively simple state into the highly structured and complex environment we see today.

In future Webb observations, Maiolino, Übler, and their team will explore GN-z11 in greater depth, and they hope to strengthen the case for the Population III stars that may be forming in its halo.

The research on the pristine gas clump in GN-z11’s halo has been accepted for publication in Astronomy & Astrophysics. The results of the study of GN-z11’s black hole were published in the journal Nature on 17 January 2024. The data was obtained as part of the JWST Advanced Deep Extragalactic Survey (JADES), a joint project between the NIRCam and NIRSpec teams.

A rectangular image with thousands of galaxies of various shapes and colours on the black background of space. Some are noticeably spirals, either face-on or edge-on, while others are blobby ellipticals. Many are too small to discern any structure. One prominent foreground star at top centre features Webb’s signature eight-point diffraction spikes. At lower right, a small region is highlighted with a white box. Vertical lines extend upward like a cone to the bottom corners of a larger box at upper right, showing a zoomed-in version of the highlighted area. The pullout features a galaxy labelled GN-z11, seen as a fuzzy yellow dot. Above it is another galaxy, seen as a fuzzy red oval.
This image from Webb’s NIRCam (Near-Infrared Camera) instrument shows a portion of the GOODS-North field of galaxies. At the lower right, a pullout highlights the galaxy GN-z11, which is seen at a time just 430 million years after the Big Bang. The image reveals an extended component, tracing the GN-z11 host galaxy, and a central, compact source whose colours are consistent with those of an accretion disc surrounding a black hole.
Credit: NASA, ESA, CSA, B. Robertson (UC Santa Cruz), B. Johnson (CfA), S. Tacchella (Cambridge), M. Rieke (University of Arizona), D. Eisenstein (CfA)

Notes

[1] The name Population III arose because astronomers had already classified the stars of the Milky Way as Population I (stars like the Sun, which are rich in heavier elements) and Population II (older stars with a low heavy-element content, found in the Milky Way bulge and halo, and in globular star clusters).

A rectangular image shows thousands of galaxies of various shapes and colours on the black background of space. The pullout features a galaxy labelled GN-z11, seen as a fuzzy yellow dot. Above it is another galaxy, seen as a fuzzy red oval. To the left of the small box, a scale bar is labelled 60 arcseconds. It extends about one tenth of the way across the image. Below the image, a list of NIRCam filters show what colours were used to make the image. Filters shown in blue are F090W, F115W, and F150W. Filters shown in green are F200W, F277W, and F335M. Filters shown in red are F356W, F410M, and F444W.
This image of the GOODS-North field, captured by Webb’s Near-Infrared Camera (NIRCam), shows compass arrows, a scale bar, and a colour key for reference.
The north and east compass arrows show the orientation of the image on the sky. Note that the relationship between north and east on the sky (as seen from below) is flipped relative to direction arrows on a map of the ground (as seen from above).
The scale bar is labelled in angular distance on the sky, where one arcsecond is one 3600th of a degree. The scale bar is 60 arcseconds long.
This image shows invisible near-infrared wavelengths of light that have been translated into visible-light colours. The colour key shows which NIRCam filters were used when collecting the light. The colour of each filter name is the visible light colour used to represent the infrared light that passes through that filter.
Credit: NASA, ESA, CSA, B. Robertson (UC Santa Cruz), B. Johnson (CfA), S. Tacchella (Cambridge), M. Rieke (University of Arizona), D. Eisenstein (CfA)

Press release from ESA Webb.