Ad
Ad
Ad
Tag

Goddard Space Flight Center

Browsing

Webb’s Titan forecast: partly cloudy with occasional methane showers

Astronomers see evidence of clouds bubbling up over Titan’s northern hemisphere.

A science team has combined data from the NASA/ESA/CSA James Webb Space Telescope and the Keck II telescope to see evidence of cloud convection on Saturn’s moon Titan in the northern hemisphere for the first time. Most of Titan’s lakes and seas are located in that hemisphere, and are likely replenished by an occasional rain of methane and ethane. Webb also has detected a key carbon-containing molecule that gives insight into the chemical processes in Titan’s complex atmosphere.

A three-panel graphic showing infrared Webb images of Saturn’s moon Titan. The left image shows a mottled globe of brown and yellow with a hazy blue edge. The middle and right images show a dark orange globe with a brighter edge, particularly on the bottom
These infrared-light images of Titan were taken by the NASA/ESA/CSA James Webb Space Telescope on 11 July 2023. They show methane clouds appearing at different altitudes in Titan’s northern hemisphere.
On the left side is a representative-colour image (1.4 microns is coloured blue, 1.5 microns is green, and 2.0 microns is red: filters F140M, F150W, and F200W, respectively).
In the middle is a single-wavelength image taken by Webb at 2.12 microns. This wavelength is predominantly emitted from Titan’s lower troposphere.
The rightmost image shows emission at 1.64 microns, which favours higher altitudes, in Titan’s upper troposphere and stratosphere (an atmospheric layer above the troposphere).
Credit: NASA, ESA, CSA, STScI, Keck Observatory

Saturn’s moon Titan is an intriguing world cloaked in a yellowish, smoggy haze. Similar to Earth, the atmosphere is mostly nitrogen and has weather, including clouds and rain. Unlike Earth, whose weather is driven by evaporating and condensing water, frigid Titan has a methane (CH4) cycle. It evaporates from the surface and rises into the atmosphere, where it condenses to form methane clouds. Occasionally it falls as a chilly, oily rain onto a solid surface where water ice is hard as rocks.

“Titan is the only other place in our Solar System that has weather like Earth, in the sense that it has clouds and rainfall onto a surface,” explained lead author Conor Nixon of NASA’s Goddard Space Flight Center in Greenbelt, Maryland.

The team observed Titan in November 2022 and July 2023 using both Webb and one of the twin ground-based W.M. Keck telescopes. Those observations not only showed clouds in the mid and high northern latitudes on Titan — the hemisphere where it is currently summer — but also showed those clouds apparently rising to higher altitudes over time. While previous studies have observed cloud convection at southern latitudes, this is the first time evidence for such convection has been seen in the north. This is significant because most of Titan’s lakes and seas are located in its northern hemisphere and evaporation from lakes is a major potential methane source.

On Earth the lowest layer of the atmosphere, or troposphere, extends up to an altitude of about 12 kilometers. However, on Titan, whose lower gravity allows the atmospheric layers to expand, the troposphere extends up to about 45 kilometers. Webb and Keck used different infrared filters to probe to different depths in Titan’s atmosphere, allowing astronomers to estimate the altitudes of the clouds. The science team observed clouds that appeared to move to higher altitudes over a period of days, although they were not able to directly see any precipitation occurring.

“Webb’s observations were taken at the end of Titan’s northern summer, which is a season that we were unable to observe with the Cassini-Huygens mission,” said Thomas Cornet of the European Space Agency, a co-author of the study. “Together with ground-based observations, Webb is giving us precious new insights into Titan’s atmosphere, that we hope to be able to investigate much closer-up in the future with a possible ESA mission to visit the Saturn system.”

Titan’s chemistry

Titan is an object of high astrobiological interest due to its complex organic (carbon-containing) chemistry, despite its frigid temperature of about -180 degrees Celsius. Organic molecules form the basis of all life on Earth, and studying them on a world like Titan may help scientists understand the processes that led to the origin of life on Earth.

The basic ingredient that drives much of Titan’s chemistry is methane. Methane in Titan’s atmosphere gets split apart by sunlight or energetic electrons from Saturn’s magnetosphere, and then recombines with other molecules to make substances like ethane (C2H6) along with more complex carbon-bearing molecules.

Webb’s data provided a key missing piece for our understanding of the chemical processes: a definitive detection of the methyl radical CH3. This molecule (called “radical” because it has a “free” electron that is not in a chemical bond) forms when methane is broken apart. Detecting this substance means that scientists can see chemistry in action on Titan for the first time, rather than just the starting ingredients and the end products.

“For the first time we can see the chemical cake while it’s rising in the oven, instead of just the starting ingredients of flour and sugar, and then the final, iced cake,” said co-author Stefanie Milam of the Goddard Space Flight Center.

The future of Titan’s atmosphere

This hydrocarbon chemistry has long-term implications for the future of Titan. When methane is broken apart in the upper atmosphere, some of it recombines to make other molecules that eventually end up on Titan’s surface in one chemical form or another, while some hydrogen escapes from the atmosphere. As a result, methane will be depleted over time, unless there is some source to replenish it.

A similar process occurred on Mars, where water molecules were broken up and the resulting hydrogen lost to space. The result was the dry, desert planet we see today.

“On Titan, methane is a consumable. It’s possible that it is being constantly resupplied and fizzing out of the crust and interior over billions of years. If not, eventually it will all be gone and Titan will become a mostly airless world of dust and dunes,” said Nixon.

This data was taken as part of Heidi Hammel’s Guaranteed Time Observations program to study the Solar System. The results were published in the journal Nature Astronomy.

A six-panel graphic with two rows and three columns, showing infrared images of Saturn’s moon Titan. The top row is labeled “Webb, 11 July 2023” and the bottom row is labeled “Keck, 14 July 2023.” The leftmost images are labeled “atmosphere and surface.” They show a mottled globe of brown and yellow with a hazy blue edge. At the top, a white spot that is somewhat faint in the Webb image and brighter in the Keck image has an arrow pointing to it. The middle column is labeled “troposphere” and shows a dark orange globe with a brighter edge. The only features are bright spots near the top and bottom. The top spot is fainter in the Webb image and brighter in the Keck image, and has an arrow pointing to it. The rightmost images are labeled “stratosphere” and also show a dark orange globe with a brighter edge. The top image from Webb is otherwise featureless. The bottom image from Keck, taken three days later, has bright spots near the top and bottom. The top spot has an arrow pointing to it.
These images of Titan were taken by the NASA/ESA/CSA James Webb Space Telescope on 11July 2023 (top row) and the ground-based W.M. Keck Observatories on 14 July 2023 (bottom row). They show methane clouds (denoted by the white arrows) appearing at different altitudes in Titan’s northern hemisphere.
On the left side are representative-colour images from both telescopes. In the Webb image light at 1.4 microns is coloured blue, 1.5 microns is green, and 2.0 microns is red (filters F140M, F150W, and F200W, respectively). In the Keck image light at 2.13 microns is coloured blue, 2.12 microns is green, and 2.06 microns is red (H2 1-0, Kp, and He1b, respectively).
In the middle column are single-wavelength images taken by Webb and Keck at 2.12 microns. This wavelength is sensitive to emission from Titan’s lower troposphere. The rightmost images show emission at 1.64 microns (Webb) and 2.17 microns (Keck), which favour higher altitudes, in Titan’s upper troposphere and stratosphere (an atmospheric layer above the troposphere). It demonstrates that the clouds are seen at higher altitudes on July 14 than earlier on July 11, indicative of upward motion.
Credit: NASA, ESA, CSA, STScI, Keck Observatory

Bibliographic information:

Nixon, C.A., Bézard, B., Cornet, T. et al., The atmosphere of Titan in late northern summer from JWST and Keck observations, Nat Astron (2025), DOI: https://doi.org/10.1038/s41550-025-02537-3

Press release from ESA Webb.

Webb discovers dusty cat’s tail in Beta Pictoris System

Beta Pictoris, a young planetary system located just 63 light-years away, continues to intrigue scientists even after decades of in-depth study. It possesses the first dust disc imaged around another star — a disc of debris produced by collisions between asteroids, comets, and planetesimals. Observations from the NASA/ESA Hubble Space Telescope revealed a second debris disc in this system [1], inclined with respect to the first. Now, a team of astronomers using the NASA/ESA/CSA James Webb Space Telescope to image the Beta Pictoris (Beta Pic) system has discovered a new, previously unseen structure.

A wide, thin horizontal orange line appears at the centre, extending almost to the edges, a debris disc seen edge-on. A thin blue-green disc is inclined about five degrees counterclockwise relative to the main orange disc. Cloudy, translucent grey material is most prominent near the orange main debris disc. Some of the grey material forms a curved feature in the upper right, resembling a cat’s tail. At the centre is a black circle with a bar. The central star, represented as a small white star icon, is blocked by an instrument known as a coronagraph. The background of space is black.
This image from Webb’s MIRI (Mid-Infrared Instrument) shows the star system Beta Pictoris. An edge-on disc of dusty debris generated by collisions between planetesimals (orange) dominates the view. A hotter, secondary disc (cyan) is inclined by about 5 degrees relative to the primary disc. The curved feature at upper right, which the science team nicknamed the “cat’s tail,” has never been seen before. A coronagraph (black circle and bar) has been used to block the light of the central star, whose location is marked with a white star shape. In this image light at 15.5 microns is coloured cyan and 23 microns is orange (filters F1550C and F2300C, respectively).
Credit: NASA, ESA, CSA, STScI, C. Stark and K. Lawson (NASA GSFC), J. Kammerer (ESO), and M. Perrin (STScI)

The team, led by Isabel Rebollido of the Astrobiology Center in Spain, and now an ESA Research Fellow, used Webb’s NIRCam (Near-Infrared Camera) and MIRI (Mid-Infrared Instrument) to investigate the composition of Beta Pic’s previously detected main and secondary debris discs. The results exceeded their expectations, revealing a sharply inclined branch of dust, shaped like a cat’s tail, that extends from the southwest portion of the secondary debris disc.

Beta Pictoris is the debris disc that has it all: It has a really bright, close star that we can study very well,” said Rebollido. “While there have been previous observations from the ground in this wavelength range, they did not have the sensitivity and the spatial resolution that we now have with Webb, so they didn’t detect this feature.

A wide, thin horizontal orange line appears at the centre, extending almost to the edges, a debris disc seen edge-on. A thin blue-green disc is inclined about five degrees counterclockwise relative to the main orange disc. Cloudy, translucent grey material is most prominent near the orange main debris disc. Some of the grey material forms a curved feature in the upper right, resembling a cat’s tail. At the centre is a black circle with a bar. The central star, represented as a small white star icon, is blocked by an instrument known as a coronagraph. The background of space is black.
This image from Webb’s MIRI (Mid-Infrared Instrument) shows the star system Beta Pictoris. An edge-on disc of dusty debris generated by collisions between planetesimals (orange) dominates the view. A hotter, secondary disc (cyan) is inclined by about 5 degrees relative to the primary disc. The curved feature at upper right, which the science team nicknamed the “cat’s tail,” has never been seen before. A coronagraph (black circle and bar) has been used to block the light of the central star, whose location is marked with a white star shape. In this image light at 15.5 microns is coloured cyan and 23 microns is orange (filters F1550C and F2300C, respectively).
Credit:
NASA, ESA, CSA, STScI, C. Stark and K. Lawson (NASA GSFC), J. Kammerer (ESO), and M. Perrin (STScI)

A Star’s Portrait Improved with Webb

Even with Webb, peering at Beta Pic in the right wavelength range — in this case, the mid-infrared — was crucial to detect the cat’s tail, as it only appeared in the MIRI data. Webb’s mid-infrared data also revealed differences in temperature between Beta Pic’s two discs, which likely is due to differences in composition.

“We didn’t expect Webb to reveal that there are two different types of material around Beta Pic, but MIRI clearly showed us that the material of the secondary disc and cat’s tail is hotter than the main disc,” said Christopher Stark, a co-author of the study at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “The dust that forms that disc and tail must be very dark, so we don’t easily see it at visible or near-infrared wavelengths — but in the mid-infrared, it’s glowing.”

To explain the hotter temperature, the team deduced that the dust may be highly porous “organic refractory material,” similar to the matter found on the surfaces of comets and asteroids in our solar system. For example, a preliminary analysis of material sampled from asteroid Bennu by NASA’s OSIRIS-Rex mission found it to be very dark and carbon-rich, much like what MIRI detected at Beta Pic.

The Tail’s Puzzling Beginning Warrants Future Research

However, a major lingering question remains: What could explain the shape of the cat’s tail, a uniquely curved feature unlike what is seen in discs around other stars?

Rebollido and the team modelled various scenarios in an attempt to emulate the cat’s tail and unravel its origins. Though further research and testing is required, the team presents a strong hypothesis that the cat’s tail is the result of a dust production event that occurred a mere one hundred years ago.

“Something happens — like a collision — and a lot of dust is produced,” shared Marshall Perrin, a co-author of the study at the Space Telescope Science Institute in Baltimore, Maryland. “At first, the dust goes in the same orbital direction as its source, but then it also starts to spread out. The light from the star pushes the smallest, fluffiest dust particles away from the star faster, while the bigger grains do not move as much, creating a long tendril of dust.”

“The cat’s tail feature is highly unusual, and reproducing the curvature with a dynamical model was difficult,” explained Stark. “Our model requires dust that can be pushed out of the system extremely rapidly, which again suggests it’s made of organic refractory material.”

The team’s preferred model explains the sharp angle of the tail away from the disc as a simple optical illusion. Our perspective combined with the curved shape of the tail creates the observed angle of the tail, while in fact, the arc of material is only departing from the disc at a five-degree incline. Taking into consideration the tail’s brightness, the team estimates the amount of dust within the cat’s tail to be equivalent to a large main belt asteroid spread out across 16 billion kilometres.

A recent dust production event within Beta Pic’s debris discs could also explain an asymmetry previously spotted by the Atacama Large Millimeter/submillimeter Array in 2014: a clump of carbon monoxide (CO) located near the cat’s tail. Since the star’s radiation should break down CO within roughly one hundred years, this still-present concentration of gas could be lingering evidence of the same event.

“Our research suggests that Beta Pic may be even more active and chaotic than we had previously thought,” said Stark. “Webb continues to surprise us, even when looking at the most well-studied objects. We have a completely new window into these planetary systems.”

These results were presented in a press conference at the 243rd meeting of the American Astronomical Society in New Orleans, Louisiana.

The observations were taken as part of Guaranteed Time Observation program 1411.

Notes

[1] Learn more about these 2006 Hubble observations that revealed a second debris disc in the Beta Pic system here.

A wide, thin horizontal orange line appears at the centre, extending almost to the edges, a debris disc seen edge-on. A thin blue-green disc is inclined about five degrees counterclockwise relative to the main orange disc. Cloudy, translucent grey material is most prominent near the orange main debris disc. Some of the grey material forms a curved feature in the upper right, resembling a cat’s tail. At the centre is a black circle with a bar. The central star, represented as a small white star icon, is blocked by an instrument known as a coronagraph. The background of space is black.
This image from Webb’s MIRI (Mid-Infrared Instrument) shows the star system Beta Pictoris. An edge-on disc of dusty debris generated by collisions between planetesimals (orange) dominates the view. A hotter, secondary disc (cyan) is inclined by about 5 degrees relative to the primary disc. The curved feature at upper right, which the science team nicknamed the “cat’s tail,” has never been seen before. A coronagraph (black circle and bar) has been used to block the light of the central star, whose location is marked with a white star shape. In this image light at 15.5 microns is coloured cyan and 23 microns is orange (filters F1550C and F2300C, respectively).
Credit: NASA, ESA, CSA, STScI, C. Stark and K. Lawson (NASA GSFC), J. Kammerer (ESO), and M. Perrin (STScI)

 

Press release from ESA Webb.

NASA Selects 2 Missions to Study ‘Lost Habitable’ World of Venus

NASA has selected two new missions to Venus, Earth’s nearest planetary neighbor. Part of NASA’s Discovery Program, the missions aim to understand how Venus became an inferno-like world when it has so many other characteristics similar to ours – and may have been the first habitable world in the solar system, complete with an ocean and Earth-like climate.

These investigations are the final selections from four mission concepts NASA picked in February 2020 as part of the agency’s Discovery 2019 competition. Following a competitive, peer-review process, the two missions were chosen based on their potential scientific value and the feasibility of their development plans. The project teams will now work to finalize their requirements, designs, and development plans.

NASA is awarding approximately $500 million per mission for development. Each is expected to launch in the 2028-2030 timeframe.

Venus 2 missions NASA
NASA Selects 2 Missions to Study ‘Lost Habitable’ World of Venus. Venus hides a wealth of information that could help us better understand Earth and exoplanets. NASA’s JPL is designing mission concepts to survive the planet’s extreme temperatures and atmospheric pressure. This image is a composite of data from NASA’s Magellan spacecraft and Pioneer Venus Orbiter. Credits: NASA/JPL-Caltech

The selected missions are:

 

DAVINCI+ (Deep Atmosphere Venus Investigation of Noble gases, Chemistry, and Imaging)

DAVINCI+ will measure the composition of Venus’ atmosphere to understand how it formed and evolved, as well as determine whether the planet ever had an ocean. The mission consists of a descent sphere that will plunge through the planet’s thick atmosphere, making precise measurements of noble gases and other elements to understand why Venus’ atmosphere is a runaway hothouse compared the Earth’s.

In addition, DAVINCI+ will return the first high resolution pictures of the unique geological features on Venus known as “tesserae,” which may be comparable to Earth’s continents, suggesting that Venus has plate tectonics. This would be the first U.S.-led mission to Venus’ atmosphere since 1978, and the results from DAVINCI+ could reshape our understanding of terrestrial planet formation in our solar system and beyond. James Garvin of Goddard Space Flight Center in Greenbelt, Maryland, is the principal investigator. Goddard provides project management.

 

VERITAS (Venus Emissivity, Radio Science, InSAR, Topography, and Spectroscopy)

VERITAS will map Venus’ surface to determine the planet’s geologic history and understand why it developed so differently than Earth. Orbiting Venus with a synthetic aperture radar, VERITAS will chart surface elevations over nearly the entire planet to create 3D reconstructions of topography and confirm whether processes such as plate tectonics and volcanism are still active on Venus.

VERITAS also will map infrared emissions from Venus’ surface to map its rock type, which is largely unknown, and determine whether active volcanoes are releasing water vapor into the atmosphere. Suzanne Smrekar of NASA’s Jet Propulsion Laboratory in Southern California, is the principal investigator. JPL provides project management. The German Aerospace Center will provide the infrared mapper with the Italian Space Agency and France’s Centre National d’Études Spatiales contributing to the radar and other parts of the mission.

“We’re revving up our planetary science program with intense exploration of a world that NASA hasn’t visited in over 30 years,” said Thomas Zurbuchen, NASA’s associate administrator for science. “Using cutting-edge technologies that NASA has developed and refined over many years of missions and technology programs, we’re ushering in a new decade of Venus to understand how an Earth-like planet can become a hothouse. Our goals are profound. It is not just understanding the evolution of planets and habitability in our own solar system, but extending beyond these boundaries to exoplanets, an exciting and emerging area of research for NASA.”

Zurbuchen added that he expects powerful synergies across NASA’s science programs, including the James Webb Space Telescope. He anticipates data from these missions will be used by the broadest possible cross section of the scientific community.

“It is astounding how little we know about Venus, but the combined results of these missions will tell us about the planet from the clouds in its sky through the volcanoes on its surface all the way down to its very core,” said Tom Wagner, NASA’s Discovery Program scientist. “It will be as if we have rediscovered the planet.”

 

In addition to the two missions, NASA selected a pair of technology demonstrations to fly along with them. VERITAS will host the Deep Space Atomic Clock-2, built by JPL and funded by NASA’s Space Technology Mission Directorate. The ultra-precise clock signal generated with this technology will ultimately help enable autonomous spacecraft maneuvers and enhance radio science observations.

DAVINCI+ will host the Compact Ultraviolet to Visible Imaging Spectrometer (CUVIS) built by Goddard. CUVIS will make high resolution measurements of ultraviolet light using a new instrument based on freeform optics. These observations will be used to determine the nature of the unknown ultraviolet absorber in Venus’ atmosphere that absorbs up to half the incoming solar energy.

Established in 1992, NASA’s Discovery Program has supported the development and implementation of over 20 missions and instruments. These selections are part of the ninth Discovery Program competition.

The concepts were chosen from proposals submitted in 2019 under NASA Announcement of Opportunity NNH19ZDA010O. The selected investigations will be managed by the Planetary Missions Program Office at NASA’s Marshall Space Flight Center in Huntsville, Alabama, as part of the Discovery Program. The Discovery Program conducts space science investigations in the Planetary Science Division of NASA’s Science Mission Directorate. The goals of the program are to provide frequent opportunities for principal investigator-led investigations in planetary sciences that can be accomplished under a not-to-exceed cost cap.

 

For more information about NASA’s planetary science, visit: https://www.nasa.gov/solarsystem

Press release from NASA on the 2 new missions to Venus.

NASA’s MAVEN Observes Martian Night Sky Pulsing in Ultraviolet Light

Vast areas of the Martian night sky pulse in ultraviolet light, according to images from NASA’s MAVEN spacecraft. The results are being used to illuminate complex circulation patterns in the Martian atmosphere.

Vast areas of the Martian night sky pulse in ultraviolet light, according to images from NASA’s MAVEN spacecraft. The results are being used to illuminate complex circulation patterns in the Martian atmosphere.

The MAVEN team was surprised to find that the atmosphere pulsed exactly three times per night, and only during Mars’ spring and fall. The new data also revealed unexpected waves and spirals over the winter poles, while also confirming the Mars Express spacecraft results that this nightglow was brightest over the winter polar regions.

Martian night ultraviolet nightglow
This is an image of the ultraviolet “nightglow” in the Martian atmosphere. Green and white false colors represent the intensity of ultraviolet light, with white being the brightest. The nightglow was measured at about 70 kilometers (approximately 40 miles) altitude by the Imaging UltraViolet Spectrograph instrument on NASA’s MAVEN spacecraft. A simulated view of the Mars globe is added digitally for context. The image shows an intense brightening in Mars’ nightside atmosphere. The brightenings occur regularly after sunset on Martian evenings during fall and winter seasons, and fade by midnight. The brightening is caused by increased downwards winds which enhance the chemical reaction creating nitric oxide which causes the glow.
Credits: NASA/MAVEN/Goddard Space Flight Center/CU/LASP

“MAVEN’s images offer our first global insights into atmospheric motions in Mars’ middle atmosphere, a critical region where air currents carry gases between the lowest and highest layers,” said Nick Schneider of the University of Colorado’s Laboratory for Atmospheric and Space Physics (LASP), Boulder, Colorado. The brightenings occur where vertical winds carry gases down to regions of higher density, speeding up the chemical reactions that create nitric oxide and power the ultraviolet glow. Schneider is instrument lead for the MAVEN Imaging Ultraviolet Spectrograph (IUVS) instrument that made these observations, and lead author of a paper on this research appearing August 6 in the Journal of Geophysical Research, Space Physics. Ultraviolet light is invisible to the human eye but detectable by specialized instruments.

The diagram explains the cause of Mars’ glowing nightside atmosphere. On Mars’ dayside, molecules are torn apart by energetic solar photons. Global circulation patterns carry the atomic fragments to the nightside, where downward winds increase the reaction rate for the atoms to reform molecules. The downwards winds occur near the poles at some seasons and in the equatorial regions at others. The new molecules hold extra energy which they emit as ultraviolet light.
Credits: NASA/MAVEN/Goddard Space Flight Center/CU/LASP

“The ultraviolet glow comes mostly from an altitude of about 70 kilometers (approximately 40 miles), with the brightest spot about a thousand kilometers (approximately 600 miles) across, and is as bright in the ultraviolet as Earth’s northern lights,” said Zac Milby, also of LASP. “Unfortunately, the composition of Mars’ atmosphere means that these bright spots emit no light at visible wavelengths that would allow them to be seen by future Mars astronauts. Too bad: the bright patches would intensify overhead every night after sunset, and drift across the sky at 300 kilometers per hour (about 180 miles per hour).”

The pulsations reveal the importance of planet-encircling waves in the Mars atmosphere. The number of waves and their speed indicates that Mars’ middle atmosphere is influenced by the daily pattern of solar heating and disturbances from the topography of Mars’ huge volcanic mountains. These pulsating spots are the clearest evidence that the middle atmosphere waves match those known to dominate the layers above and below.

“MAVEN’s main discoveries of atmosphere loss and climate change show the importance of these vast circulation patterns that transport atmospheric gases around the globe and from the surface to the edge of space.” said Sonal Jain, also of LASP.

Next, the team plans to look at nightglow “sideways”, instead of down from above, using data taken by IUVS looking just above the edge of the planet. This new perspective will be used to understand the vertical winds and seasonal changes even more accurately.

The Martian nightglow was first observed by the SPICAM instrument on the European Space Agency’s Mars Express spacecraft. However, IUVS is a next-generation instrument better able to repeatedly map out the nightside glow, finding patterns and periodic behaviors. Many planets including Earth have nightglow, but MAVEN is the first mission to collect so many images of another planet’s nightglow.

###

The research was funded by the MAVEN mission. MAVEN’s principal investigator is based at the University of Colorado’s Laboratory for Atmospheric and Space Physics, Boulder, and NASA Goddard manages the MAVEN project. NASA is exploring our Solar System and beyond, uncovering worlds, stars, and cosmic mysteries near and far with our powerful fleet of space and ground-based missions.

 

 

 

Press release from NASA, Goddard Space Flight Center.

Hubble Sees Summertime on Saturn

Saturn is truly the lord of the rings in this latest snapshot from NASA’s Hubble Space Telescope, taken on July 4, 2020, when the opulent giant world was 839 million miles from Earth. This new Saturn image was taken during summer in the planet’s northern hemisphere.

Saturn summertime Hubble summer
NASA’s Hubble Space Telescope captured this image of Saturn on July 4, 2020. Two of Saturn’s icy moons are clearly visible in this exposure: Mimas at right, and Enceladus at bottom. This image is taken as part of the Outer Planets Atmospheres Legacy (OPAL) project. OPAL is helping scientists understand the atmospheric dynamics and evolution of our solar system’s gas giant planets. In Saturn’s case, astronomers continue tracking shifting weather patterns and storms.
Credits: NASA, ESA, A. Simon (Goddard Space Flight Center), M.H. Wong (University of California, Berkeley), and the OPAL Team

 

Hubble found a number of small atmospheric storms. These are transient features that appear to come and go with each yearly Hubble observation. The banding in the northern hemisphere remains pronounced as seen in Hubble’s 2019 observations, with several bands slightly changing color from year to year. The ringed planet’s atmosphere is mostly hydrogen and helium with traces of ammonia, methane, water vapor, and hydrocarbons that give it a yellowish-brown color.

Hubble photographed a slight reddish haze over the northern hemisphere in this color composite. This may be due to heating from increased sunlight, which could either change the atmospheric circulation or perhaps remove ices from aerosols in the atmosphere. Another theory is that the increased sunlight in the summer months is changing the amounts of photochemical haze produced. “It’s amazing that even over a few years, we’re seeing seasonal changes on Saturn,” said lead investigator Amy Simon of NASA’s Goddard Space Flight Center in Greenbelt, Maryland. Conversely, the just-now-visible south pole has a blue hue, reflecting changes in Saturn’s winter hemisphere.

Hubble’s sharp view resolves the finely etched concentric ring structure. The rings are mostly made of pieces of ice, with sizes ranging from tiny grains to giant boulders. Just how and when the rings formed remains one of our solar system’s biggest mysteries. Conventional wisdom is that they are as old as the planet, over 4 billion years. But because the rings are so bright – like freshly fallen snow – a competing theory is that they may have formed during the age of the dinosaurs. Many astronomers agree that there is no satisfactory theory that explains how rings could have formed within just the past few hundred million years. “However, NASA’s Cassini spacecraft measurements of tiny grains raining into Saturn’s atmosphere suggest the rings can only last for 300 million more years, which is one of the arguments for a young age of the ring system,” said team member Michael Wong of the University of California, Berkeley.

Two of Saturn’s icy moons are clearly visible in this exposure: Mimas at right, and Enceladus at bottom.

This image is taken as part of the Outer Planets Atmospheres Legacy (OPAL) project. OPAL is helping scientists understand the atmospheric dynamics and evolution of our solar system’s gas giant planets. In Saturn’s case, astronomers continue tracking shifting weather patterns and storms.

The Hubble Space Telescope is a project of international cooperation between NASA and ESA (European Space Agency). NASA’s Goddard Space Flight Center in Greenbelt, Maryland, manages the telescope. The Space Telescope Science Institute (STScI) in Baltimore conducts Hubble science operations. STScI is operated for NASA by the Association of Universities for Research in Astronomy in Washington, D.C.

 

 

Press release from NASA, on Hubble capturing summertime data from Saturn.