Ad
Ad
Ad
Tag

European Union

Browsing

The cFMD – curatedFoodMetagenomicData database – What’s in the microbiome of the foods we eat?
Microbes are part of the food we eat and can influence our own microbiome, but we know very little about the microbes in our foods. Now, researchers have developed a database of the “food microbiome” by sequencing the metagenomes of 2,533 different foods. They identified 10,899 food-associated microbes, half of which were previously unknown species, and showed that food-associated microbes account for around 3% of the adult and 56% of the infant gut microbiome on average. The study published August 29 in the journal Cell, and the database is available as an open access resource.

“This is the largest survey of microbes in food,” says co-senior author and computational microbiologist Nicola Segata (@nsegata) of the University of Trento and the European Institute of Oncology in Milan. “We can now start to use this reference to better understand how the quality, conservation, safety, and other characteristics of food are linked with the microbes they contain.”

Traditionally, microbes in food have been studied by culturing them one-by-one in the lab, but this process is slow and time consuming, and not all microbes can be easily cultured. To characterize the food microbiome more comprehensively and efficiently, the researchers leveraged metagenomics, a molecular tool that enabled them to simultaneously sequence all the genetic material within each food sample. Metagenomics is often used to characterize the human microbiome or analyze environmental samples but hasn’t previously been used to investigate food at a large scale.

“Food microbiologists have been studying foods and testing for food safety for well over a hundred years now, but we’ve underutilized modern DNA sequencing technologies,” says co-senior author and microbiologist Paul Cotter (@pauldcotter) of Teagasc, APC Microbiome Ireland and VistaMilk Ireland. “This is the starting point for a new wave of studies in the field where we make full use of the molecular technology available.”

Altogether, the team analyzed 2,533 food-associated metagenomes from 50 countries, including 1,950 newly sequenced metagenomes. These metagenomes came from a variety of food types, of which 65% were dairy sources, 17% were fermented beverages, and 5% were fermented meats.

These metagenomes comprised genetic material from 10,899 food-associated microbes categorized into 1,036 bacterial and 108 fungal species. Similar foods tended to harbor similar types of microbes—for example, the microbial communities in different fermented beverages were more similar to each other than to the microbes in fermented meat—but there was more variation between dairy products, likely due to the larger number of dairy products surveyed.

Though the researchers didn’t identify many overtly pathogenic bacteria in the food samples, they did identify some microbes that might be less desirable due to their impact on food flavor or preservation. Knowing which microbes “belong” in different types of food could help producers—both industrial and small-scale—to produce more consistent and desirable products. It could also help food regulators define which microbes should and should not be in certain types of food and to authenticate the identity and origins of “local” foods.

“One thing that was striking is that some microbes are present and performing similar functions in even quite different foods, and at the same time, we showed that foods in each local facility or farm have unique characteristics,” says Segata. “This is important because it could further improve the idea of the specificity and the quality of local foods, and we could even use metagenomics to authenticate foods coming from a given facility or location.”

Understanding the food microbiome could also have implications for human health as some of the microbes we eat could become stable members of our own microbiomes. To examine overlaps between food-associated microbes and the human microbiome, the team compared their new database with 19,833 previously sequenced human metagenomes. They showed that food-associated microbial species compose around 3% of the gut microbiome of adults and more than 50% of the gut microbiomes of newborns.

“This suggests that some of our gut microbes may be acquired directly from food, or that historically, human populations got these microbes from food and then those microbes adapted to become part of the human microbiome,” says Segata. “It might seem like only a small percentage, but that 3% can be extremely relevant for their function within our body. With this database, we can start surveying at a large scale how the microbial properties of food could impact our health.”

The study was one of the main outputs from the MASTER EU consortium, an EU-funded initiative spanning 29 partners across 14 countries that aims to characterize the presence and function of microbes throughout the entire food chain.

“In the future, we want to explore the diversity of these food microbiomes with respect to different foods, cultures, lifestyles, and populations,” says Cotter.

###

This research was supported by Horizon 2020 of Horizon Europe, the Italian Ministry of Foreign Affairs and International Cooperation, the European Research Council, the National Cancer Institute of the National Institutes of Health, the Spanish Ministry of Science and Innovation, the Science Foundation Ireland, and the Irish Department of Agriculture, Food and the Marine.

 

Bibliographic information:

Carlino et al., “Unexplored microbial diversity from 2,500 food metagenomes and links with the human microbiome”, Cell, DOI: 10.1016/j.cell.2024.07.039

The cFMD - curatedFoodMetagenomicData database

Press release from Cell Press.

The QUDICE consortium has been launched to develop Quantum Communications in space for the future EuroQCI

QUDICE

The European project QUDICE has been launched to develop components and subsystems for ultra-secure space-based quantum communication.

This last decade has witnessed an astonishing increase in the number of devices and systems connected to the global networks, sending information from one side of the world to the other. Huge volumes of sensitive information are being sent through the Internet, and many are unaware of how easily data can be hacked and used for malicious intentions. Therefore, one of the major concerns nowadays is security.

We are in urgent need to protect the sensitive information being transmitted in the most secure way possible, not only protecting ground based in-fibre, but also free-space communications.

One of the most advanced cryptography techniques is the so-called Quantum Key Distribution (QKD), a promising solution to protect digital communications, guaranteeing security based on the laws of quantum mechanics rather than on the computation capability of a hacker. In order to extend this ultra-secure system at European regional level, the most promising way is to include satellite system networks into the technological solutions under study.

Launched in January of 2023, QUDICE is a European project that focuses on developing components and subsystems for space-based QKD. The successful completion of this project will signify a game changer in space-based communications since it will permit a European network of satellites with quantum key distribution as the main service, enabling ultra-secure communications extended across the entire European region.

QUDICE, which stands for Quantum Devices and Subsystems for Communications in Space, gathers eleven partners (academic institutions, research organizations, and technology companies) from six European countries, experts in quantum technologies, in particular within the field of quantum communications.

The consortium has gained considerable experience from its precursor project Quango”, explains Giuseppe Vallone, Professor at the Dep. of Information Engineering of the University of Padova and Coordinator of the project. “In Quango we had the opportunity to develop pioneering quantum technological components and systems in the lab with a technology readiness level of 4 (TRL4), in which we were able to make individual components work together as a System. Now in QUDICE we will bring the devices from breadboard demonstrations in a lab (TRL4) to a space qualified engineering model (TRL6)”.

QUDICE is already in full motion with the objective of getting the first prototypes by the end of 2024 and testing them in 2025. In particular, QUDICE will develop two sources for QKD, one for discrete- and the other for continuous-variable, a Quantum Random Number Generator, a satellite Pointing, Acquisition and Tracking system, and Entangled Photon Source, a 5G system for QKD post-processing support and 5G QKD-secured connectivity service, and simulations to assess the performance of the developed quantum satellite communications components.

The project will be a key player in enabling the realization of a European network of satellites with QKD as its main security protocol approach.

Today, there is an ongoing worldwide race between competing regions of the globe towards leadership in quantum technologies. In this race, the European Commission is eager to drive and integrate quantum technologies into the arena of telecom and network communications in search of enabling an additional layer of security to our communications. It is working with all 27 EU Member States, and the European Space Agency (ESA), to design, develop and deploy ultra-secure communications both through terrestrial segments relying on fiber communications networks linking strategic sites at national and cross-border level, and space segments based on satellites.

As Vallone highlights enthusiastically,

the European Commission has launched the long-term initiative European Quantum Communications Infrastructure – EuroQCI that seeks to secure quantum communication infrastructure spanning the whole EU, including its overseas territories. As part of this ambitious plan, QUDICE will be an essential technological key component and will play an importantly decisive role in the future deployment of this massive infrastructure.”

QUDICE Consortium

The European consortium includes the following entities:

  • Universities: University of Padova, Sorbonne University, University of Malta

  • Research Institutions: ICFO, Fraunhofer IOF

  • Companies: Stellar Project, Sateliot, ThinkQuantum, QUSIDE, Thales Alenia Space, and Argotec.

LINKS

Link to the QUDICE website

Link to the European Commission project profile

Press release from the University of Padova for the QUDICE consortium.

Traffic density, wind and air stratification influence concentrations of air pollutant NO2

Leipzig researchers use a calculation method to remove weather influences from air pollution data

traffic air pollutant nitrogen dioxide COVID-19
Traffic density, wind and air stratification influence the pollution with the air pollutant nitrogen dioxide, according to the conclusion of a TROPOS study commissioned by the LfULG. Credits: Burkhard Lehmann, LfULG

Leipzig/Dresden. In connection with the effects of the COVID-19 pandemic, satellite measurements made headlines showing how much the air pollutant nitrogen dioxide (NO2) had decreased in China and northern Italy.  In Germany, traffic density is the most important factor. However, weather also has an influence on NO2 concentrations, according to a study by the Leibniz Institute for Tropospheric Research (TROPOS), which evaluated the influence of weather conditions on nitrogen dioxide concentrations in Saxony 2015 to 2018 on behalf of the Saxon State Office for Environment, Agriculture and Geology (LfULG). It was shown that wind speed and the height of the lowest air layer are the most important factors that determine how much pollutants can accumulate locally.

In order to determine the influence of various weather factors on air quality, the team used a statistical method that allows meteorological fluctuations to be mathematically removed from long-term measurements. The air quality fluctuates, in some cases very strongly, due to different emissions and the influence of the weather. Until now, however, it has been difficult to estimate, what share legal measures such as low emission zones or diesel driving bans have and what share the weather influences have in the actual air quality? With the method used, this will be easier in the future.

Nitrogen dioxide (NO2) is an irritant gas which attacks the mucous membrane of the respiratory tract, causes inflammatory reactions as an oxidant and increases the effect of other air pollutants. As a precursor substance, it can also contribute to the formation of particulate matter. Limit values have been set in the EU to protect the population: For nitrogen dioxide, an annual average value of 40 micrograms per cubic metre of air applies (μg/m³). To protect the health of the population, measures must be taken if these limit values are not complied with. In 2018/2019, for example, various measures were taken in Germany, ranging from a reduction in the number of lanes (e.g. in Leipzig) to driving bans for older diesel vehicles (e.g. in Stuttgart).

To evaluate the effectiveness of such measures, it would be helpful to determine the exact influence of weather conditions. The Saxon State Office for Environment, Agriculture and Geology (LfULG) therefore commissioned TROPOS to carry out a study on the influence of weather factors on NO2 concentrations and provided its measurement data from the Saxon air quality measurement network and meteorological data for this purpose. The researchers were thus able to evaluate data from 29 stations in Saxony over a period of four years, which represent a cross-section of air pollution – from stations at traffic centres to urban and rural background stations and stations on the ridge of the Erzgebirge mountains. They also calculated the height of the lowest layer in the atmosphere and incorporated data from traffic counting stations in Leipzig and Dresden into the study. A method from the field of machine learning was used for the statistical modelling, the application of which in the field of air quality was first published by British researchers in 2009.

In this way, the study was able to demonstrate that the traffic density at all traffic stations is most significantly responsible for nitrogen oxide concentrations. However, two weather parameters also have a significant influence on nitrogen dioxide concentrations: wind speed and the height of the so-called mixing layer. The latter is a meteorological parameter that indicates the height to which the lowest layer of air, where the emissions mix, extends. “It was also shown that high humidity can also reduce the concentration of nitrogen dioxide, which could be due to the fact that the pollutants deposit more strongly on moist surfaces. However, the exact causes are still unclear,” says Dominik van Pinxteren.

The statistical analysis has also enabled the researchers to remove the influence of the weather from the time series of pollutant concentrations: Adjusted for the weather, the concentration of nitrogen oxides (NOx) decreased by a total of 10 micrograms per cubic meter between 2015 and 2018 on average over all traffic stations in Saxony. In urban and rural areas and on the ridge of the Erzgebirge, however, NOx concentrations tend to remain at the same level. Even though there have been some improvements in air quality in recent years, there are good scientific arguments for further reducing air pollution.

In a way, this also applies to premature conclusions from the corona crisis: in order to find out how strong the influence of the initial restrictions on air quality actually was, the influence of the weather would have to be statistically removed in a longer series of measurements. To this end, investigations for the Leipzig area are currently underway at TROPOS, as is a Europe-wide study of the EU research infrastructure for short-lived atmospheric constituents such as aerosol, clouds and trace gases (ACTRIS), the German contribution to which is coordinated by TROPOS.

Publication:

Dominik van Pinxteren, Sebastian Düsing, Alfred Wiedensohler, Hartmut Herrmann (2020): Meteorological influences on nitrogen dioxide: Influence of weather conditions and weathering on nitrogen dioxide concentrations in outdoor air 2015 to 2018. Series of publications of the LfULG, issue 2/2020 (in German only)
https://publikationen.sachsen.de/bdb/artikel/35043
This study was commissioned by the State Office for Environment, Agriculture and Geology (LfULG).

Project:

LfULG-Projekt „Meteorologische Einflüsse auf Stickstoffdioxid“:
https://www.luft.sachsen.de/Inhalt_FuE_Projekt_Witterung_NOx_Ozon.html

 

Press release on traffic density, wind and air stratification influence concentrations of air pollutant NO2 by Tilo Arnhold from the Leibniz Institute for Tropospheric Research (TROPOS)