Ad
Ad
Ad
Tag

Chongqing

Browsing

Fish Fossils of Tujiaaspis vividus Breathe New Life into Fin and Limb Evolutionary Hypothesis

A trove of fossils, unearthed in rock from China dating back some 436 million years, has revealed for the first time that the mysterious galeaspids, members of an extinct clade of jawless fish, possessed paired fins.

The discovery, by an international team led by Prof. ZHU Min from the Institute of Vertebrate Palaeontology and Palaeoanthropology (IVPP) of the Chinese Academy of Sciences and Prof. Philip Donoghue from the University of Bristol, shows the primitive condition of paired fins before they separated into pectoral and pelvic fins, the forerunner of arms and legs.

The findings were published in Nature on Sept. 28.

Fish fossils of Tujiaaspis vividus breathe new life into fin and limb evolutionary hypothesis. Fig. 1 Life reconstructions of Tujiaaspis vividus (Image by ZHENG Qiuyang)

Until now, the only surviving galeaspid fossils were heads, but these new fossils comprise whole bodies. They were found in rocks in Hunan Province and Chongqing and were named Tujiaaspis after the indigenous Tujia people who live in the region.

Fig. 3 The holotype specimen and its interpretative drawing of Tujiaaspis vividus from 436 million years old rocks of Chongqing, China (Image by Gai, et al.)

Theories abound about the evolutionary beginnings of vertebrate fins and limbs—the evolutionary precursors of arms and legs—and are mostly based on comparative embryology. There is a rich fossil record of early vertebrate , but they either had separated paired fins or they didn’t. There has been little evidence for the gradual evolution of fins.

According to first author GAI Zhikun, a professor at IVPP, “The anatomy of galeaspids has been something of a mystery since they were first discovered more than half a century ago. Tens of thousands of fossils are known from China and Vietnam, but almost all of them are just heads—nothing has been known about the rest of their bodies—until now.”

The new fossils are spectacular, preserving the whole body for the first time and revealing that these animals possessed paired fins that extended all the way from the back of the head to the very tip of the tail. This is a great surprise since scientists had thought galeaspids lack paired fins altogether.

Tujiaaspis breathes new life into a century old hypothesis for the evolution of paired fins, through differentiation of pectoral (arms) and pelvic (legs) fins over evolutionary time from a continuous head-to-tail fin precursor,” said corresponding author Prof. Donoghue.

This “fin-fold” hypothesis has been very popular, but it has lacked any supporting evidence until now. The discovery of Tujiaaspis resurrects the fin-fold hypothesis and reconciles it with contemporary data on genetic control of the embryonic development of fins in living vertebrates.

Tujiaaspis shows the “primitive condition” for the evolution of paired fins, according to Prof. ZHU, who said that later jawless fish showed the first evidence for the separation of this fin-fold into pectoral and pelvic fins. Prof. ZHU also noted that the vestiges of elongate fin-folds could be seen in the embryos of living jawed fishes, which could be manipulated to produce them. 

Fig. 2 3D reconstruction of Tujiaaspis vividus (Image by YANG Dinghua)

Bristol’s Dr. Humberto Ferron, a co-author, used computational engineering approaches to simulate the behaviour of models of Tujiaaspis with and without the paired fins. He said,

“The paired fins of Tujiaaspis act as hydrofoils, passively generating lift for the fish without any muscular input from the fins themselves. The lateral fin-folds of Tujiaaspis allowed it to swim more efficiently.”

“Our new analyses suggest that the ancestor of jawed vertebrates likely possessed paired fin-folds, which became separated into pectoral and pelvic regions,” said co-author Dr. Joseph Keating from the University of Bristol.

He noted that the primitive fins evolved musculature and skeletal support that allowed our fish ancestor to better steer their swimming and add propulsion.

“It is amazing to think that the evolutionary innovations seen in Tujiaaspis underpin locomotion in animals as diverse as birds, whales, bats, and humans,” he said.

Press release from the Chinese Academy of Sciences

Dawn of Fishes — Early Silurian Jawed Vertebrates Revealed Head to Tail

A newly discovered fossil “treasure hoard” dating back some 436 million years to the early Silurian period reveals, for the first time, the complete body shape and form of some of the first jawed fishes.

The discovery was published in Nature on Sept. 28 by an international team led by Prof. ZHU Min from the Institute of Vertebrate Paleontology and Paleoanthropology (IVPP) of the Chinese Academy of Sciences and Prof. Per E. Ahlberg from Uppsala University, as the cover story and one in a series of four papers in the same issue.

The Gnathostomata or jawed vertebrates, which include not only almost all the backboned animals you see in zoos and aquariums but humankind as well, have a mysterious origin. The so-called molecular clock, which deduces the age of the most recent common ancestor of two animals by evaluating the difference between the two sets of DNA, suggests that the most recent common ancestor of all modern jawed vertebrates lived 450 million years ago during the Ordovician period. As a result, the origin of jaws cannot be later than that.

However, the fossil record of jawed vertebrates only becomes abundant from the Early Devonian (~419 million years ago), i.e., the beginning of the “Age of Fishes.” Only in the past 10 years have scientists found several complete jawed fishes from the Late Silurian (~425 million years ago). Even so, these records are still more than 25 million years later than when jaws should have originated. The dearth of earlier fossils means that jawed vertebrates are a “ghost lineage” in the early Silurian.

Silurian jawed fishes
Fig. 3 Slab containing the holotypes of Shenacanthus vermiformis and Xiushanosteus mirabilis (Image by Zhu, et al.)

The remarkable discovery of complete early Silurian jawed fishes is the result of 20 years of continuous effort by the authors searching for fossil fishes in all possible Silurian rock strata in China. The breakthrough was finally made in late 2020, when complete early Silurian fishes were found in Xiushan County, Chongqing.

LI Qiang and CHEN Yang, both co-authors and leaders of the fieldtrips, recalled their research:

“We remember it was a rainy day. We climbed a mountain ghat. At the 38th turn we found a complete Silurian fish, which initiated an explosion of discoveries in this area in the next two years.”

Fig. 1 Life reconstruction of Xiushanosteus mirabilis (Image by ZHANG Heming)

The authors reported two species. The first one and the most abundant species was named Xiushanosteus mirabilis. It is a tiny, 3-cm-long placoderm or armored jawed fish. The flat and semicircular head, along with the trunk armor, are reminiscent of its jawless ancestors, but its paired fins and powerful tail made Xiushanosteus a much more capable swimmer.

First author ZHU You’an, associate research professor at IVPP and also an Uppsala University alumnus, said,

“As a placoderm expert, I am dazzled by the early age and completeness of Xiushanosteus. It is like a dream. A lot of the anatomical features make perfect sense; it was an ‘Oh, now I know’ moment in my career.”

Fig. 2 Life reconstruction of Shenacanthus vermiformis (Image by ZHANG Heming)

The second fish reported is named Shenacanthus vermiformis. Also very small, it is an early shark relative. However, all the sharks we know are covered in tiny scales, or at most small mosaic plates. Shenacanthus instead has prominent “shoulder armor” made of several large plates that completely encircle its body. This feature, thought to be exclusive in placoderms, provides a strong hint that the first cartilaginous fishes were armored, similar to placoderms.

“Only 20 years ago it was still believed that sharks are primitive and other jawed fish evolved from a shark-like archetype. Now with the discovery of Shenacanthus, we can finally make certain that the opposite is true,” said Prof. ZHU You’an.

“Previously we could only dream of such exceptional and early fossils,” said corresponding author Prof. Ahlberg. “However, they are more than curiosities; they are first and foremost crucial data to test—and either support or confound—our long-held hypotheses regarding the rise of our lineage.”

“The excavation continues to yield remarkable materials,” said Prof. ZHU Min, who led the project and is also a CAS academician. “The Chongqing Lagerstätte, like the Chengjiang and Jehol biotas, will become a world-famous paleontological heritage and will provide key evidence for how the extraordinary diversity of the jawed vertebrates we see today arose.”

Press release from the Chinese Academy of Sciences