Ad
Ad
Ad
Tag

Carnegie Institution for Science

Browsing

Webb studies moon-forming disc around massive planet CT Cha B

The disc offers insight into how the moons of solar system gas giants like Jupiter might have formed.

The NASA/ESA/CSA James Webb Space Telescope has provided the first direct measurements of the chemical and physical properties of a potential moon-forming disc encircling a large exoplanet. The carbon-rich disc surrounding the world called CT Cha B, which is located 625 light years away from Earth, is a possible construction yard for moons, although no moons are detected in the Webb data.

Our Solar System contains eight major planets, and more than 400 known moons orbiting six of these planets. Where did they all come from? There are multiple formation mechanisms. The case for large moons, like the four Galilean satellites around Jupiter, is that they condensed out of a dust and gas disc encircling the planet when it formed. But that would have happened over 4 billion years ago, and there is scant forensic evidence today.

Webb has now provided the first direct view of material in a disc around a large exoplanet. An international team of astronomers have uncovered a carbon-rich disc encircling the world called CT Cha b, which is located 625 light-years away from Earth.

The young star the planet orbits is only 2 million years old and still accreting circumstellar material. However, the circumplanetary disc discovered by Webb is not part of the larger accretion disc around the central star. The two objects are 74 billion kilometres apart.

Observing planet and moon formation is fundamental to understanding the evolution of planetary systems across our galaxy. Moons likely outnumber planets, and some might be habitats for life as we know it. But we are now only entering an era where we can witness their formation.

This discovery fosters a better understanding of planet and moon formation, say researchers. Webb’s data is invaluable for making comparisons to our Solar System’s birth over 4 billion years ago.

“We can see evidence of the disc around the companion, and we can study the chemistry for the first time. We’re not just witnessing moon formation – we’re also witnessing this planet’s formation,” said co-lead author Sierra Grant of the Carnegie Institution for Science in Washington, D.C., USA.

“We are seeing what material is accreting to build the planet and moons,” added main lead author Gabriele Cugno of the University of Zurich in Switzerland and member of the National Centre of Competence in Research PlanetS.

Dissecting starlight

Infrared observations of CT Cha b were made with Webb’s MIRI (Mid-Infrared Instrument) using its medium resolution spectrograph. An initial look into Webb’s archival data revealed signs of molecules within the circumplanetary disc, which motivated a deeper dive into the data. Because the planet’s faint signal is buried in the glare of the host star, the researchers had to disentangle the light of the star from the planet using high-contrast methods.

“We saw molecules at the location of the planet, and so we knew that there was stuff in there worth digging for and spending a year trying to tease out of the data. It really took a lot of perseverance,” said Grant.

Ultimately, the team discovered seven carbon-bearing molecules within the planet’s disc, including acetylene (C2H2) and benzene (C6H6). This carbon-rich chemistry is in stark contrast to the chemistry seen in the disc around the host star, where the researchers found water but no carbon. The difference between the two discs offers evidence for their rapid chemical evolution over only 2 million years.

Genesis of moons

A circumplanetary disc of debris has long been hypothesized as the birthplace of Jupiter’s four major moons. These Galilean satellites must have condensed out of such a flattened disc billions of years ago, as evident in their co-planar orbits about Jupiter. The two outermost Galilean moons, Ganymede and Callisto, are 50% water ice. But they presumably have rocky cores, perhaps made of carbon or silicon.

“We want to learn more about how our Solar System formed moons. This means that we need to look at other systems that are still under construction. We’re trying to understand how it all works,” said Cugno. “How do these moons come to be? What are the ingredients? What physical processes are at play, and over what timescales? Webb allows us to witness the drama of moon formation and investigate these questions observationally for the first time.”

In the coming year, the team will use Webb to perform a comprehensive survey of similar objects to better understand the diversity of physical and chemical properties in the discs around young planets.

This is an illustration of a young planet with a surrounding disc of dust and gas, potentially forming moons. The planet, which appears red, is shown at lower right, enveloped by a cloudy disc. The host star appears at upper left, and glows yellow, with its own reddish disc of debris. The black background of space is speckled with stars. At the bottom of the illustration, graphics of molecules are listed in the following order: Acetylene, Carbon Dioxide, Ethane, Benzene, Hydrogen cyanide.
The James Webb Space Telescope studies the potential moon-forming disc around the massive exoplanet CT Cha B. An artistic rendering of a dust and gas disc encircling the young exoplanet, CT Cha b, 625 light-years from Earth. Spectroscopic data from the NASA/ESA/CSA James Webb Space Telescope suggest the disc contains the raw materials for moon formation. The planet appears at lower right, while its host star and surrounding protoplanetary disc are visible in the background.
Credit: NASA, ESA, CSA, STScI, G. Cugno (University of Zürich, NCCR PlanetS), S. Grant (Carnegie Institution for Science), J, Olmsted (STScI), L. Hustak (STScI)

Bibliographic information:

Gabriele Cugno and Sierra L. Grant 2025, ApJL 991 L46, DOI: 10.3847/2041-8213/ae0290

 

Press release from ESA Webb.

Crushed, Zapped, Boiled, Baked And More: Nature Used 57 Recipes To Create Earth’s 10,500+ “Mineral Kinds”

Washington, DC—A 15-year study led by Carnegie’s Robert Hazen and Shaunna Morrison details the origins and diversity of every known mineral on Earth, a landmark body of work that will help reconstruct the history of life on our planet, guide the search for new minerals and ore deposits, predict possible characteristics of future life, and aid the search for habitable exoplanets and extraterrestrial life.

For more than a century, thousands of mineralogists from around the globe have carefully documented “mineral species” based on their unique combinations of chemical composition and crystal structure. Carnegie scientists Robert Hazen and Shaunna Morrison took a different approach, emphasizing how and when each kind of mineral appeared through more than 4.5 billion years of Earth history.

In twin papers published by American Mineralogist, Hazen, Morrison, and their collaborators detail how they used extensive database analysis to cluster kindred species of minerals together and distinguish new mineral species based on when and how they originated, rather than solely on their chemical and physical characteristics.

Their work indicates that the number of “mineral kinds”—a term coined in 2020 by Hazen and Morrison—totals more than 10,500. In comparison, the International Mineralogical Association recognizes about 6,000 mineral species on the basis of crystal structure and chemical composition alone.

pyrite 21 mineral kinds
Nature Used 57 Recipes To Create Earth’s 10,500+ “Mineral Kinds”: Pyrite forms in 21 different ways, the most of any mineral. Pyrite is so stable that it forms both at high temperature and low, both with and without water, and both with the help of microbes and in harsh environments where life plays no role whatsoever. These examples formed by the gradual precipitation of crystals from a solution rich in iron and sulfur. The large cubes are wonders of nature. Credit: ARKENSTONE/Rob Lavinsky

“This work fundamentally changes our view of the diversity of minerals on the planet,” Hazen explained. “For example, more than 80 percent of Earth’s minerals were mediated by water, which is, therefore, fundamentally important to mineral diversity on this planet.  By extension, it explains one of the key reasons why the Moon and Mercury and even Mars have far fewer mineral species than Earth.”

“It also tells us something very profound about the role of biology,” he added.  “One third of Earth’s minerals could not have formed without biology—shells and bones and teeth, or microbes, for example—or the vital indirect role of biology—importantly by creating an oxygen-rich atmosphere that led to 2,000 minerals that wouldn’t have formed otherwise. Each mineral specimen has a history. Each tells a story. Each is a time capsule that reveals Earth’s past as nothing else can.”

According to Hazen and Morrison—along with collaborators Sergey Krivovichev of the Russian Academy of Sciences and Robert Downs of the University of Arizona—nature created 40 percent of Earth’s mineral species by more than one method—for example, many minerals arose both abiotically and with a helping hand from living organisms—and in several cases more than 15 different “recipes” produced the same crystal structure and chemical composition.

Of the 5,659 mineral species surveyed by Hazen and colleagues, nine arose via 15 or more origin pathways, each incorporating various combinations of physical, chemical, and biological processes—everything from near-instantaneous formation by lightning or meteor strikes, to changes caused by water-rock interactions or high-pressure, high-temperature transformations that took place over hundreds of millions of years.

And, as if to demonstrate a sense of humor, nature has used 21 different ways over the last 4.56 billion years to create pyrite, also known as Fool’s Gold—the most origin stories of any mineral.  Pyrite, composed of one part iron to two parts sulfide, is so stable that it forms under a huge variety of circumstances, including meteorites, volcanos, hydrothermal deposits, by pressure between layers of rock, near-surface rock weathering, in microbially-precipitated deposits, and via several mining-associated processes.

To reach their conclusions, Hazen and Morrison built a database of every known process of formation of every known mineral. Relying on large, open-access mineral databases, amplified by thousands of primary research articles on the geology of mineral localities around the world, they identified 10,556 different combinations of minerals and modes of formation.

“No one has undertaken this huge task before,” said Hazen, who honored last year by the IMA with its medal for his outstanding achievements in mineral crystal chemistry, particularly in the field of mineral evolution.  “In these twin papers, we are putting forward our best effort to lay the groundwork for a new approach to recognizing different kinds of minerals. We welcome the insights, additions, and future versions of the mineralogical community.”

The papers’ groundbreaking observations and conclusions include:

  • Water has played a dominant role in the mineral diversity of Earth, was involved in the formation of more than 80 percent of mineral species.
  • Life played a direct or indirect role in the formation of almost half of known mineral species while a third of known minerals—more than 1,900 species—formed exclusively as a consequence of biological activities.
  • Rare elements play a disproportionate role in Earth’s mineral diversity.  Just 41 elements—together constituting less than 5 parts per million of Earth’s crust—are essential constituents in some 2,400 (more than 42 percent) of Earth’s minerals.  The 41 elements include arsenic, cadmium, gold, mercury, silver, titanium, tin, uranium, and tungsten.
  • Much of Earth’s mineral diversity was established within the planet’s first 250 million years
  • Some 296 known minerals are thought to pre-date Earth itself, of which 97 are known only from meteorites, with the age of some individual mineral grains estimated at 7 billion years—which was billions of years before the origin of our Solar System.
  • The oldest known minerals are tiny, durable zircon crystals that are almost 4.4 billion years old.
  •  More than 600 minerals have derived from human activities, including more than 500 minerals caused by mining, 234 of them formed by coal mine fires.

Hazen, Morrison, and their colleagues propose that, complementary to the IMA-approved mineral list, new categorizations and groupings be created on the basis of a mineral’s genesis.  For example, science can group 400 minerals formed by condensation at volcanic fumaroles—the openings in the Earth’s surface that emit steam and volcanic gasses.

Their papers detail other considerations in the clustering and classification of minerals, such as the eon in which they formed. For example, Earth’s so-called Great Oxidation Event about 2.3 billion years ago led new minerals to form at the planet’s near-surface.  And about 4.45 billion years ago, when water first appeared, the earliest water-rock interactions may have produced as many as 350 minerals in near-surface marine and terrestrial environments.

 

It appears, too, that hundreds of different minerals may have formed on Earth prior to the giant impact that vaporized much of our planet’s crust and mantle and led to the Moon’s formation about 4.5 billion years ago.  If so, those minerals were obliterated, only to reform as Earth cooled and solidified.

Beyond accidental mineral creations, humanity has manufactured countless thousands of mineral-like compounds that don’t qualify as minerals by the IMA standards, but do qualify as mineral kinds by Hazen and Morrison’s methodology. This includes building materials, semiconductors, laser crystals, specialty alloys, synthetic gemstones, plastic debris and the like—all “likely to persist for millions of years in the geologic record, providing a clear sedimentary horizon that marks the so-called “Anthropocene Epoch.”

Meanwhile, there are also 77 “biominerals,” that were formed by a variety of metabolic processes—this includes everything from minerals derived by corals, shells, and stinging nettles to minerals in bones, teeth, and kidney stones. Another 72 minerals originated directly or indirectly from the guano and urine of birds and bats.

The researchers noted that between the formation of oceans, the extensive development of continental crust, and perhaps even the initiation of some early form of the process that now drive plate tectonics, many important mineral-forming processes—and the origins of as many as 3,534 mineral species—took place in Earth’s first 250 million years. If so, then most of the geochemical and mineralogical environments invoked in models of life’s origins would have been present by 4.3 billion years ago.

If life is “a cosmic imperative that emerges on any mineral- and water-rich world,” the authors concluded, “then these findings support the hypothesis that life on Earth ​emerged rapidly, in concert with a vibrant, diverse Mineral Kingdom, in the earliest stages of planetary evolution.”

__________________

The research was supported by the John Templeton Foundation, the NASA Astrobiology Institute ENIGMA team, and the Carnegie Institution for Science.

 

Bibliographic information:

On the paragenetic modes of minerals: A mineral evolution perspective, American Mineralogist (1-Jul-2022), DOI: 10.2138/am-2022-8099

 

Press release from Carnegie Science on the work about “mineral kinds”.