Ad
Ad
Ad
Tag

Abell 2744

Browsing

Astronomers have revealed the latest deep-field image from the NASA/ESA/CSA James Webb Space Telescope, featuring never-before-seen details in a region of space known as Pandora’s Cluster (Abell 2744). Webb’s view displays three clusters of galaxies — already massive — coming together to form a megacluster. The combined mass of the galaxy clusters creates a powerful gravitational lens, a natural magnification effect of gravity, allowing much more distant galaxies in the early Universe to be observed by using the cluster like a magnifying glass.

Webb Uncovers New Details in Pandora’s Cluster
Webb Uncovers New Details in Pandora’s Cluster. Astronomers estimate 50 000 sources of near-infrared light are represented in this image from the NASA/ESA/CSA James Webb Space Telescope. Their light has travelled through various distances to reach the telescope’s detectors, representing the vastness of space in a single image. A foreground star in our own galaxy, to the right of the image centre, displays Webb’s distinctive diffraction spikes. Bright white sources surrounded by a hazy glow are the galaxies of Pandora’s Cluster, a conglomeration of already-massive clusters of galaxies coming together to form a mega cluster. The concentration of mass is so great that the fabric of spacetime is warped by gravity, creating a natural, super-magnifying glass called a ‘gravitational lens’ that astronomers can use to see very distant sources of light beyond the cluster that would otherwise be undetectable, even to Webb.
These lensed sources appear red in the image, and often as elongated arcs distorted by the gravitational lens. Many of these are galaxies from the early universe, with their contents magnified and stretched out for astronomers to study. Other red sources in the image have yet to be confirmed by follow-up observations with Webb’s Near-Infrared Spectrograph (NIRSpec) instrument to determine their true nature. One intriguing example is an extremely compact source that appears as a tiny red dot, despite the magnifying effect of the gravitational lens. One possibility is that the dot is a supermassive black hole in the early universe. NIRSpec data will provide both distance measurements and compositional details of selected sources, providing a wealth of previously-inaccessible information about the universe and how it has evolved over time.
Credits: NASA, ESA, CSA, I. Labbe (Swinburne University of Technology), R. Bezanson (University of Pittsburgh), A. Pagan (STScI)

Only Pandora’s central core has previously been studied in detail by the NASA/ESA Hubble Space Telescope. By combining Webb’s powerful infrared instruments with a broad mosaic view of the region’s multiple areas of lensing, astronomers aimed to achieve a balance of breadth and depth that will open up a new frontier in the study of cosmology and galaxy evolution.

Astronomers studied the region as part of the Ultradeep NIRSpec and NIRCam ObserVations before the Epoch of Reionization (UNCOVER) programme. The new view of Pandora’s Cluster stitches four Webb snapshots together into one panoramic image, displaying roughly 50 000 sources of near-infrared light.

In addition to magnification, gravitational lensing [1] distorts the appearance of distant galaxies, so they look very different from those in the foreground. The galaxy cluster ‘lens’ is so massive that it warps the fabric of space itself, enough for light from distant galaxies that passes through that warped space to also take on a warped appearance.

In the lensing core to the lower right in the Webb image, which has never been imaged by Hubble, Webb revealed hundreds of distant lensed galaxies that appear like faint arced lines in the image.

The UNCOVER team used Webb’s Near-Infrared Camera (NIRCam) to capture the cluster with exposures lasting 4–6 hours, for a total of about 30 hours of observing time. The next step is to meticulously go through the imaging data and select galaxies for follow-up observation with the Near-Infrared Spectrograph (NIRSpec), which will provide precise distance measurements, along with other detailed information about the lensed galaxies’ compositions, providing new insights into the early era of galaxy assembly and evolution. The UNCOVER team expects to make these NIRSpec observations in the summer of 2023.

In the meantime, all of the NIRCam photometric data have been publicly released so that other astronomers can become familiar with them and plan their own scientific studies with Webb’s rich datasets.

The imaging mosaics and catalogue of sources on Pandora’s Cluster (Abell 2744) provided by the UNCOVER team combine publicly available Hubble data with Webb photometry from three early observation programmes: JWST-GO-2561JWST-DD-ERS-1324, and JWST-DD-2756.

Notes

[1] Gravitational lensing occurs when a massive celestial body — such as a galaxy cluster — causes a sufficient curvature of spacetime for the path of light around it to be visibly bent, as if by a lens. The body causing the light to curve is accordingly called a gravitational lens. According to Einstein’s general theory of relativity, time and space are fused together in a quantity known as spacetime. Within this theory, massive objects cause spacetime to curve, and gravity is simply the curvature of spacetime. As light travels through spacetime, the theory predicts that the path taken by the light will also be curved by an object’s mass. Gravitational lensing is a dramatic and observable example of Einstein’s theory in action. Extremely massive celestial bodies such as galaxy clusters cause spacetime to be significantly curved. In other words, they act as gravitational lenses. When light from a more distant light source passes by a gravitational lens, the path of the light is curved, and a distorted image of the distant object.

Press release from ESA Webb on the new details provided on Pandora’s Cluster by the James Webb Space Telescope.

Webb Draws Back Curtain On Universe’s Early Galaxies

Telescope’s Infrared Vision Explores The Final Frontier

The powerful NASA/ESA/CSA James Webb Space Telescope has found an unexpectedly rich ‘undiscovered country’ of early galaxies that has been largely hidden until now.

A few days after officially starting science operations, the NASA/ESA/CSA James Webb Space Telescope propelled astronomers into a realm of early galaxies, previously hidden beyond the grasp of all other telescopes. Webb is now unveiling a very rich Universe where the first forming galaxies look remarkably different from the mature galaxies seen around us today. Researchers have found two exceptionally bright galaxies that existed approximately 300 and 400 million years after the Big Bang. Their extreme brightness is puzzling to astronomers. The young galaxies are transforming gas into stars as fast as they can and they appear compacted into spherical or disc shapes that are much smaller than our Milky Way galaxy. The onset of stellar birth may have been just 100 million years after the Big Bang, which happened 13.8 billion years ago.

Everything we see is new. Webb is showing us that there’s a very rich Universe beyond what we imagined,” said Tommaso Treu of the University of California at Los Angeles, a co-investigator on one of the Webb programmes. “Once again the Universe has surprised us. These early galaxies are very unusual in many ways.

The results are from Webb’s GLASS-JWST Early Release Science Program (Grism Lens-Amplified Survey from Space), and Cosmic Evolution Early Release Science Survey (CEERS). Two research papers, led by Marco Castellano of the National Institute for Astrophysics in Rome, Italy, and Rohan Naidu of the Center for Astrophysics | Harvard & Smithsonian and the Massachusetts Institute of Technology in Cambridge, Massachusetts have been published in the Astrophysical Journal Letters.

Webb Draws Back Curtain On Universe’s Early Galaxies
Two images showing thousands of galaxies of different colours, shapes, and sizes. In between the two images are two pull-outs showing details from the large images. Credit: NASA, ESA, CSA, T. Treu (UCLA)

In just four days of analysis, researchers found two exceptionally bright galaxies in the GLASS-JWST images. These galaxies existed approximately 450 and 350 million years after the Big Bang (with redshifts of approximately 10.5 and 12.5, respectively), which future spectroscopic measurements with Webb will help confirm.

With Webb, we were amazed to find the most distant starlight that anyone had ever seen, just days after Webb released its first data,”

said Rohan Naidu of the more distant GLASS galaxy, referred to as GLASS-z12, which is believed to date back to 350 million years after big bang. The previous record holder is galaxy GN-z11, which existed 400 million years after the big bang (redshift 11.1), and identified in 2016 by Hubble and Keck Observatory in deep-sky programmes.

Based on all the predictions, we thought we had to search a much bigger volume of space to find such galaxies,” said Castellano.

These observations just make your head explode. This is a whole new chapter in astronomy. It’s like an archaeological dig, when suddenly you find a lost city or something you didn’t know about. It’s just staggering,” added Paola Santini, fourth author of the Castellano et al. GLASS-JWST paper.

While the distances of these early sources still need to be confirmed with spectroscopy, their extreme brightnesses are a real puzzle, challenging our understanding of galaxy formation,” noted Pascal Oesch of the University of Geneva in Switzerland.

Graphic titled “James Webb Space Telescope: Pandora’s Cluster, Abell 2744,” with compass arrows, scale bar, and colour key for reference. Credit: NASA, ESA, CSA, T. Treu (UCLA)

The Webb observations nudge astronomers toward a consensus that an unusual number of galaxies in the early Universe were much brighter than expected. This will make it easier for Webb to find even more early galaxies in subsequent deep sky surveys, say researchers.

We’ve nailed something that is incredibly fascinating. These galaxies would have had to have started coming together maybe just 100 million years after the Big Bang. Nobody expected that the dark ages would have ended so early,” said Garth Illingworth of the University of California at Santa Cruz. “The primal Universe would have been just one hundredth of its current age. It’s a sliver of time in the 13.8-billion-year-old evolving cosmos.

Naidu/Oesch team member Erica Nelson of the University of Colorado noted that “our team was struck by being able to measure the shapes of these first galaxies; their calm, orderly discs question our understanding of how the first galaxies formed in the crowded, chaotic early Universe.” This remarkable discovery of compact discs at such early times was only possible because Webb’s images are so much sharper, in infrared light, than Hubble’s.

These galaxies are very different from the Milky Way or other big galaxies we see around us today,” said Treu.

Illingworth emphasised that the two bright galaxies found by these teams have a lot of light. He said one option is that they could have been very massive, with lots of low-mass stars, like later galaxies. Alternatively, they could be much less massive, consisting of far fewer extraordinarily bright stars, known as Population III stars. Long theorised, they would be the first stars ever born, blazing at blistering temperatures and made up of only primordial hydrogen and helium; only later would stars cook up heavier elements in their nuclear fusion furnaces. No such extremely hot, primordial stars are seen in the local Universe.

Indeed, the most distant source is very compact, and its colours seem to indicate that its stellar population is particularly devoid of heavy elements and could even contain some Population III stars. Only Webb spectra will tell,” said Adriano Fontana, second author of the Castellano et al. paper and a member of the GLASS-JWST team.

Present Webb distance estimates to these two galaxies are based on measuring their infrared colours. Eventually, follow-up spectroscopy measurements showing how light has been stretched in the expanding Universe will provide independent verification of these cosmic yardstick measurements.

Webb Draws Back Curtain On Universe’s Early Galaxies
Graphic titled “Abell 2744 GLASS JWST/NIRCam” with two large images showing thousands of galaxies of different colours, shapes, and sizes, and two smaller pull-outs showing details in the large images. Credit: NASA, ESA, CSA, T. Treu (UCLA)

More information

Webb is the largest, most powerful telescope ever launched into space. Under an international collaboration agreement, ESA provided the telescope’s launch service, using the Ariane 5 launch vehicle. Working with partners, ESA was responsible for the development and qualification of Ariane 5 adaptations for the Webb mission and for the procurement of the launch service by Arianespace. ESA also provided the workhorse spectrograph NIRSpec and 50% of the mid-infrared instrument MIRI, which was designed and built by a consortium of nationally funded European Institutes (The MIRI European Consortium) in partnership with JPL and the University of Arizona.

Webb is an international partnership between NASA, ESA and the Canadian Space Agency (CSA).

Press release from ESA Webb