News
Ad
Ad
Ad
Tag

sistema solare

Browsing

Studiare le onde di Alfvén, un particolare tipo di onde magnetiche nel Sole, per migliorare le previsioni sulla propagazione del vento solare

Capire appieno i processi fisici che governano l’attività del Sole, la nostra stella, è uno dei principali modi per migliorare la capacità di prevedere i fenomeni solari che possono produrre effetti nello spazio interplanetario e sui pianeti, in particolar modo la Terra, nell’ambito della cosiddetta meteorologia dello spazio (o space weather). Un nuovo passo in questa direzione arriva dal lavoro di un gruppo di ricercatrici e ricercatori dell’Istituto Nazionale di Astrofisica (INAF) e dell’Agenzia Spaziale Italiana (ASI) pubblicato oggi sulla rivista Physical Review Letters. Lo studio suggerisce che, attraverso l’osservazione dei moti e delle riflessioni di un particolare tipo di onde magnetiche che si propagano negli strati più esterni dell’atmosfera del Sole sia possibile risalire alle regioni da cui si è originato il vento solare che possiamo osservare e analizzare quando raggiunge l’ambiente terrestre, migliorando così le informazioni sul suo percorso nello spazio e, quindi, le previsioni dei suoi potenziali effetti sul nostro pianeta.

Immagine coronale del Sole a disco intero, acquisita dallo strumento AIA a bordo della missione spaziale Solar Dynamic Observatory della NASA, raffigurante la regione studiata nel lavoro pubblicato su PRL. Crediti: Adattata da Murabito et al. 2024 (PRL, https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.132.215201)
Immagine coronale del Sole a disco intero, acquisita dallo strumento AIA a bordo della missione spaziale Solar Dynamic Observatory della NASA, raffigurante la regione studiata nel lavoro pubblicato su PRL. Crediti: Adattata da Murabito et al. 2024 (PRL, https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.132.215201)

Il lavoro, guidato dalla ricercatrice INAF Mariarita Murabito, ha utilizzato i dati acquisiti dallo spettrografo ad alta risoluzione EIS a bordo della missione Hinode dell’agenzia spaziale giapponese JAXA e dallo spettropolarimetro italiano ad alta risoluzione IBIS realizzato dall’Istituto Nazionale di Astrofisica e installato fino al 2019 al telescopio Dst (New Mexico, USA) per studiare le onde di Alfvén. Queste, sono onde magnetiche prodotte nello strato visibile di colore rossastro dell’atmosfera solare, che prende il nome di cromosfera. Le onde di Alfvén possono trasportare quantità significative di energia lungo le linee del campo magnetico fino alla porzione più esterna dell’atmosfera solare, la corona, dove è stata osservata la presenza di un elevato flusso di questo tipo di onde. Infatti, nella corona, il campo magnetico gioca un ruolo fondamentale ed è responsabile di tutta l’attività solare che osserviamo: brillamenti, espulsioni di massa coronale, vento solare ed emissione di particelle energetiche.

Studi precedenti hanno rilevato che la composizione chimica della cromosfera e corona solare differiscono da quella della fotosfera. La teoria proposta nel 2004 da Laming per spiegare questo inatteso comportamento, attribuisce la variazione nella composizione chimica alla forza che agisce sulle particelle cariche quando esse si muovono nel campo elettromagnetico del Sole. Questo nuovo studio dimostra la connessione tra le onde di Alfvén e le anomalie di abbondanza degli elementi chimici presenti nella corona, misurando la direzione di propagazione delle onde stesse. Questa connessione è dovuta proprio all’azione di questa forza sul plasma della cromosfera.

“Le onde magnetiche e il loro legame con le anomalie chimiche erano state già rilevate nel 2021. Con il nostro studio abbiamo messo in evidenza, per la prima volta, la direzione di propagazione, ovvero la riflessione, di queste onde. Usando lo stesso modello teorico proposto e modificato negli ultimi 20 anni l’accordo con i dati è sorprendente” commenta l’autrice dell’articolo, Mariarita Murabito, ricercatrice dell’INAF.

Questa connessione tra le onde di Alfvén e le proprietà del vento solare offre uno sguardo innovativo su come le interazioni magnetiche nel Sole possano influenzare l’ambiente spaziale circostante, portando a una maggiore comprensione dei processi che governano la fisica solare e dell’influenza dell’attività solare sui pianeti e corpi minori del Sistema solare.

“Le proprietà chimiche del plasma solare restano invariate attraversando lo spazio interplanetario e possono essere utilizzate come tracciante delle sorgenti del vento solare e delle perturbazioni che in esso si propagano. Capire l’origine di questo tracciante ci offre uno strumento nuovo per comprendere in prospettiva in che modo il Sole governi le condizioni fisiche dello spazio interplanetario e quindi progredire anche nella comprensione dei fenomeni space weather” spiega Marco Stangalini, ricercatore dell’ASI e coautore dell’articolo. “Questi risultati, inoltre, ci permetteranno di sfruttare al meglio i dati ottenuti dalla missione Solar Orbiter dell’ESA e dalle future missioni Solar-C e MUSE, alle quali l’Italia contribuisce, e che si focalizzeranno sullo studio della dinamica dell’atmosfera solare”.

Per ulteriori informazioni:

L’articolo “Observation of Alfv́en Wave Reflection in the Solar Chromosphere: Ponderomotive Force and First Ionization Potential Effect” di Mariarita Murabito, Marco Stangalini, J. Martin Laming, Deborah Baker, Andy S. H. To, David M. Long, David H. Brooks, Shahin Jafarzadeh, David B. Jess, Gherardo Valori è stato pubblicato online sulla rivista Physical Review Letters.

 

Testo e immagini dagli Uffici Stampa INAF e ASI.

ALLA SCOPERTA DELL’UNIVERSO PRIMORDIALE: AL VIA LE ANALISI DEI FRAMMENTI DELL’ASTEROIDE RYUGU

Un team tutto italiano composto da ricercatori e ricercatrici dell’Istituto Nazionale di Astrofisica (INAF), dell’Università degli Studi di Firenze (UNIFI) e dell’Istituto Nazionale di Fisica Nucleare (INFN) avvia le analisi dei due preziosissimi campioni dell’asteroide Ryugu ricevuti a maggio del 2023 nell’ambito di un bando internazionale per l’analisi dei materiali cosmici riportati a Terra dalla missione Hayabusa-2 dell’Agenzia Spaziale giapponese JAXA.

I due grani a disposizione del gruppo di ricerca sono denominati C0242 (del peso di 0,7 milligrammi e lunghezza di 1,712 millimetri) e A0226 (pesante 1,9 milligrammi e lunghezza di 2,288 millimetri). Ciascun grano è posto all’interno di un particolare recipiente di acciaio riempito di azoto, il cui scopo è sia di preservare il grano evitando contaminazioni dovute alle polveri e al vapore d’acqua presenti nell’ambiente, sia di permettere un trasporto sicuro. Per rendere onore alla cultura giapponese, il team italiano ha deciso di assegnare un nome ai due grani attingendo alla tradizione degli anime, in particolare le opere dello studio Ghibli con il suo creatore Hayao Miyazaki. I nomi sono stati scelti guardando sia alla forma (A0226-Totoro) dal film Il mio vicino Totoro, sia al compito di Hayabusa2 di spedire a Terra campioni extraterrestri (C0242-Kiki) dal film Kiki – Consegne a domicilio.

analisi frammenti asteroide Ryugu Foto grani
Al via le analisi dei frammenti dell’asteroide Ryugu. Foto dei grani. Crediti INFN – LNF

Le prime indagini di spettroscopia nell’infrarosso prendono il via presso il laboratorio di luce di sincrotrone Dafne Luce dei Laboratori Nazionali di Frascati dell’INFN, sfruttando così la luce prodotta dall’acceleratore di particelle dei laboratori, Dafne. E, per preservare al meglio i due frammenti di asteroide, i ricercatori hanno ideato e realizzato delle attrezzature speciali:

“per la prima volta apriremo i contenitori dove sono contenuti in atmosfera protetta per poter fare le prime analisi spettroscopiche nell’infrarosso. In questi mesi abbiamo messo a punto dei portacampioni “universali” in grado di poter tener fermo ciascuno dei due frammenti per tutta la durata delle analisi, che durerà alcuni mesi”

spiega Ernesto Palomba, ricercatore INAF e professore presso l’Università “Federico II” di Napoli, che coordina le operazioni di analisi.

“Le tecniche e gli strumenti che abbiamo progettato e realizzato permetteranno di analizzare i campioni preservandoli dalla contaminazione dell’atmosfera terrestre che li danneggerebbe irreversibilmente, cancellando informazioni preziose per capire i meccanismi di formazione ed evoluzione del nostro Sistema solare e dei corpi che lo abitano, compresa la nostra Terra”.

Con le prime analisi il gruppo di ricerca si focalizzerà sullo studio della mineralogia, della materia organica e dell’acqua presente in questi campioni per ottenere le prime informazioni da questi veri e propri fossili del Sistema solare, che risalirebbero proprio alle primissime fasi di formazione del nostro sistema planetario, ovvero circa quattro miliardi di anni fa.

“La luce di sincrotrone di Dafne consentirà di analizzare in modo totalmente non distruttivo i micro-frammenti dei minerali contenuti nei grani dell’asteroide Ryugu.  Le analisi verranno svolte utilizzando un rivelatore per imaging nel medio infrarosso e consentiranno di evidenziare una eventuale presenza di tracce di materiale organico, fornendo importanti informazioni sulle interazioni fisico-chimiche tra molecole organiche e minerali che potrebbero aver avuto un ruolo nell’origine della vita sulla Terra o in altri corpi del Sistema Solare,”

spiega Mariangela Cestelli Guidi, ricercatrice INFN, responsabile della linea di luce di sincrotrone nell’infrarosso del Laboratorio Dafne Luce.

Le analisi dei campioni a Frascati si protrarranno per circa due settimane. Poi i grani di Ryugu verranno trasportati all’Università di Firenze per ulteriori indagini volte ad ottenere maggiori informazioni sulla storia di questi campioni.

“I grani di Ryugu arriveranno a Firenze entro un mese e vi rimarranno per circa sei settimane”

sottolinea Giovanni Pratesi, docente di Mineralogia Planetaria presso l’Università di Firenze e leader del gruppo di ricerca UNIFI.

“L’obiettivo di queste ulteriori indagini è quello di caratterizzare la morfologia e la composizione chimica della superficie dei frammenti, cosa che ci permetterà di avere informazioni preziose per aiutarci a ricostruire la storia di questo asteroide ma anche del nostro Sistema solare”.

Testo, video e immagini dagli Uffici Stampa INAF e INFN.

Celebrando le nuove stelle di Gaia: il nuovo catalogo del satellite Gaia rivela nuove e inaspettate scoperte nell’ammasso Omega Centauri e nel Sistema solare

A poco più di un anno dalla pubblicazione del suo ultimo catalogo contenente due miliardi di stelle, il satellite europeo Gaia torna a far parlare di sé con la pubblicazione di nuovi ed esaltanti risultati che vanno dalle misure di più di mezzo milione di stelle nascoste nell’ammasso Omega Centauri alla determinazione della posizione di oltre 150.000 asteroidi all’interno del Sistema solare con una precisione mai ottenuta prima. Risultati che vedono in prima linea il Dipartimento di Fisica e Astronomia dell’Università di Padova e l’INAF – Osservatorio Astronomico di Padova. Per celebrare questo nuovo importante risultato venerdì 13 ottobre 2023alle ore 18:30, la Specola di Padova aprirà le sue porte per brindare insieme e raccontare questo nuovo capitolo della ricerca astronomica.

satellite Gaia osserva la Via Lattea
rappresentazione artistica del satellite Gaia che osserva la Via Lattea

Da quasi dieci anni il satellite europeo Gaia scruta costantemente il firmamento, mappandolo con una precisione senza precedenti. Infatti, le osservazioni e le informazioni raccolte dall’astrometro più avanzato mai lanciato nello spazio, ci hanno consentito di fare passi da gigante nella nostra comprensione dell’ambiente galattico. Eppure i nuovi dati ci promettono di svelare dettagli ancor più straordinari andando ben oltre gli obiettivi iniziali di Gaia.

Oggi, a poco più di un anno dalla pubblicazione del suo ultimo catalogo, che contiene le posizioni e le caratteristiche di quasi due miliardi di stelle, il satellite dell’Agenzia Spaziale Europea è pronto ad aprire una nuova finestra sulla nostra galassia, la Via Lattea. Gaia, infatti, è riuscita a determinare le posizioni di oltre mezzo milione di astri tutti contenuti in un solo ammasso stellare, ovvero un’area di cielo particolarmente densa di stelle fino a oggi impossibile da osservare con il satellite europeo. Queste zone, tra le più antiche dell’Universo, sono dei veri e propri fossili cosmici e possono fornire preziose informazioni sull’origine della nostra galassia. Oltre a ciò, Gaia è riuscita a determinare le posizioni e le orbite di più di 150.000 asteroidi nel Sistema solare con un’accuratezza mai vista prima e ha scovato oltre 380 potenziali lenti gravitazionali, nelle quali oggetti massicci, come stelle o galassie, agiscono proprio come delle lenti di ingrandimento capaci di mostrarci scorci di universo lontanissimo. Oltre ciò Gaia ha prodotto il più vasto catalogo delle velocità con cui le stelle si avvicinano o si allontanano da noi, essenziale per ricostruire il movimento in 3D dei dintorni solari. In particolare, sono state studiare alcune stelle che variano la loro luminosità su un lungo lasso di tempo, il cui studio contribuirà a chiarire alcuni aspetti, poco noti ma fondamentali, della vita e dell’evoluzione stellare. Una nuova ricca mole di informazioni che “contribuirà a svelare alcuni aspetti misteriosi della vita della nostra Galassia, delle sue stelle e dell’Universo” commenta Michele Trabucchi, ricercatore dell’Università di Padova e primo autore di uno dei lavori pubblicati.

Per celebrare al meglio questo straordinario traguardo della missione Gaia, l’INAF – Osservatorio Astronomico di Padova e il Dipartimenti di Fisica e Astronomica dell’Università di Padova G. Galilei, che sono da sempre in prima linea nello studio del Cosmo, stanno organizzando per venerdì 13 ottobre 2023, un evento pubblico, dal titolo “Aperitivo con Gaia”, volto a svelare i dettagli nascosti dietro questi nuovissimi e preziosissimi dati. A partire dalle 18:30 la Specola aprirà le sue porte al pubblico offendo, a tutti i partecipanti, un aperitivo per celebrare insieme i successi della missione e, a seguire, un incontro con tre astronomi d’eccezione coinvolti direttamente nelle ultime scoperte: Antonella Vallenari, co-responsabile di tutto il consorzio Gaia, Michele Trabucchi, ricercatore presso l’università di Padova e leader di uno dei gruppi di ricerca, e Paola Sartoretti dell’Osservatorio di Parigi–Meudon, astronoma padovana facente parte di uno dei più rilevanti gruppi di lavoro nel consorzio Gaia. Infine, la serata si concluderà, per chi lo desidera, con una suggestiva visita alla Specola in una meravigliosa cornice serale.

Grazie alla missione Gaia stiamo mappando la nostra Galassia con un dettaglio straordinario, che ci consente di continuare a svelare i segreti più profondi del Cosmo. Con le sue ultime rivelazioni Gaia ci ha permesso di gettare uno sguardo più profondo nel nostro passato cosmico aprendo un futuro di scoperte ancora più sorprendenti. Con il suo impegno instancabile nella ricerca dell’ignoto, il satellite europeo ci ha ispirato a sognare in grande e a continuare a esplorare l’infinito. Alzando lo sguardo al cielo, sappiamo che non siamo soli nell’Universo, ma parte di una vasta e meravigliosa danza celeste.

Per partecipare all’evento, è necessario registrarsi, per dettagli e iscrizioni https://www.oapd.inaf.it/seminari-ed-eventi/aperitivo-con-gaia

Testo, video e foto dall’Ufficio Stampa dell’Università di Padova

PROGETTO GLAMS: BASI LUNARI COSTRUITE CON LA MATERIA PRIMA DEL SATELLITE TERRESTRE

Finanziato da ASI – Agenzia Spaziale Italiana – il progetto di ricerca dell’Università di Padova coordinato da Luca Valentini del Dipartimento di Geoscienze in cui si utilizzerà la tecnologia di stampa 3D per realizzare leganti cementizi a partire da sedimenti, polvere e frammenti di materiale lunari che si trovano in loco.

GLAMS (Geopolimeri per Additive Manufacturing e Monitoraggio Lunare) è il nome del progetto biennale dell’Università di Padova finanziato con oltre 400.000 euro dall’Agenzia Spaziale Italiana ed è risultato vincitore del bando “Giornate della ricerca accademica spaziale”, classificandosi al primo posto nell’area tematica “Materiali Avanzati”.

Si pone la finalità di realizzare elementi strutturali per la costruzione di basi lunari, mediante un approccio di stampa 3D che utilizza leganti cementizi formulati a partire da suoli lunari (regoliti), secondo il principio dello sfruttamento di materie prime disponibili in loco. Tale principio consentirà di minimizzare i costi e l’impatto ambientale dovuti al trasporto di materie prime dal pianeta Terra alla Luna.

GLAMS – coordinato dal Centro di Ateneo di Studi e Attività Spaziali “Giuseppe Colombo” (CISAS) – in partnership con l’Istituto di Chimica della Materia Condensata e di Tecnologie per l’Energia del CNR (ICMATE) con sede a Genova e WASP, azienda italiana leader nel settore della stampa 3D – vede come responsabile scientifico il professor Luca Valentini del Dipartimento di Geoscienze, mentre il professor Carlo Bettanini e la dottoressa  Giorgia Franchin del Dipartimento di Ingegneria Industriale sono i leader di specifici work package.

Il team di ricerca intende ottimizzare il “cemento lunare” formulato a partire dalla regolite, tenendo conto delle specificità delle condizioni ambientali del satellite, tra cui le elevate escursioni termiche, le condizioni di ridotta gravità e pressione atmosferica e l’impatto di micro-meteoriti.

A tal fine, gli elementi strutturati verranno realizzati mediante un processo produttivo che consentirà di realizzare materiali con struttura macro-porosa, capace di conferire eccellenti proprietà di isolamento termico, con la finalità di mitigare il degrado dovuto ai cicli gelo-disgelo causato dalle estreme variazioni di temperatura. Inoltre, all’interno delle unità strutturali verranno integrati opportuni sensori per il monitoraggio di impatti micro-meteoritici.

Progetto GLAMS basi lunari Esempio di struttura porosa - analisi 3D mediante microtomografia a raggi X - di un campione di cemento
Esempio di struttura porosa – analisi 3D mediante microtomografia a raggi X – di un campione di cemento

Il progetto GLAMS

Nella prima fase del progetto, l’unità di ricerca dell’Università di Padova, sotto la guida di Luca Valentini e Giorgia Franchin, formulerà i “leganti geopolimerici” ottenuti dall’attivazione chimica della regolite lunare: questo tipo di legante non prevede l’utilizzo del classico cemento Portland, comunemente utilizzato per la costruzione in ambiente terrestre. Infatti, rispetto a quest’ultimo, sono caratterizzati da emissioni di CO2 significativamente ridotte, inoltre le proprietà allo stato fresco di questi leganti verranno opportunamente ottimizzate per consentire una corretta estrusione mediante stampa 3D.

Nelle fasi successive, l’Istituto di Chimica della Materia Condensata e di Tecnologie per l’Energia del CNR con sede a Genova provvederà a selezionare opportuni agenti schiumogeni che consentiranno di conferire una struttura macro-porosa al legante geopolimerico indurito.

Progetto GLAMS basi lunari Stampa 3D per estrusione di miscela geopolimerica
Stampa 3D per estrusione di miscela geopolimerica

Successivamente i partner di WASP si occuperanno di implementare le formulazioni ottimizzate durante le fasi precedenti del progetto, alla realizzazione di un prototipo di elemento strutturale, con struttura macro-porosa, a media scala, mediante stampa 3D.

Infine, il gruppo coordinato da Carlo Bettanini provvederà alla sensorizzazione degli elementi strutturali, integrando opportune reti di sensori, finalizzate al monitoraggio continuo degli impatti micro-meteoritici.

L’auspicio è che i risultati del progetto GLAMS possano contribuire a soddisfare le esigenze delle agenzie spaziali che prevedono, entro il prossimo decennio, di realizzare missioni spaziali finalizzate a costruire habitat lunari che possano ospitare insediamenti umani semi-permanenti.

Luca Valentini
Luca Valentini

Testo e foto dall’Ufficio Stampa dell’Università di Padova sul Progetto GLAMS per la costruzione di basi lunari con materia prima dal satellite.

Intitolato un cratere di Marte a Giovanni Picardi

Il riconoscimento è stato attribuito dall’Unione Astronomica Internazionale al professore della Sapienza, punto di riferimento nel mondo delle applicazioni spaziali di tecnologie radar, scomparso nel 2015.

Lo IAU Working Group per la nomenclatura del sistema planetario ha assegnato il nome di Giovanni Picardi a un ampio cratere di Marte.

“Un riconoscimento per il contributo che il nostro docente ha dato allo studio e alla conoscenza del Pianeta rosso – ha dichiarato la rettrice Antonella Polimeni – e per i nostri ricercatori e le nostre ricercatrici che quotidianamente lavorano per rendere lo spazio meno lontano e sconosciuto”.

Giovanni Picardi è stato punto di riferimento per tutti i radar dell’Agenzia spaziale italiana, a partire dal programma X-SAR sviluppato in collaborazione con l’Agenzia spaziale tedesca e presente in tre voli dello Space Shuttle. Ma ha avuto un ruolo fondamentale anche per i radar presenti in diverse missioni interplanetarie, da Mars Express – di cui è stato responsabile scientifico del radar MARSIS – a Mars Reconnaissance Orbiter fino a Cassini.

Il lavoro scientifico di Picardi, ampiamente riconosciuto a livello internazionale in particolare presso il Jet Propulsion Laboratory della NASA, ha prodotto innovativi concetti di sistema in grado di svelare gli aspetti più nascosti di mondi quali Marte e Titano; nonché di contribuire  a realizzare l’avanzato e innovativo sistema italiano COSMO-SkyMed per l’osservazione della Terra con tecniche radar.

Il contributo del docente della Sapienza è stato fondamentale anche nell’ambito della formazione e della didattica. Come fondatore e primo direttore del Dipartimento di Scienza e tecnica dell’informazione e della comunicazione, poi confluito nel Dipartimento di ingegneria dell’informazione, elettronica e telecomunicazioni, Picardi è stato un “maestro” per almeno tre generazioni accademiche di studenti e ricercatori nel settore delle telecomunicazioni e creatore di un nuovo dottorato interdisciplinare in Telerilevamento.

Marte Curiosity cratere
Immagine da Curiosity. Foto NASA/JPL-Caltech/MSSS in pubblico dominio

Testo dal Settore Ufficio stampa e comunicazione Sapienza Università di Roma

KIKI E TOTORO: “CONSEGNA A DOMICILIO” NEI LABORATORI INAF PER DUE FRAMMENTI DELL’ASTEROIDE RYUGU, CHE SARANNO UTILI COME ISTANTANEA SUL MATERIALE CHE HA DATO ORIGINE AL SISTEMA SOLARE PRIMORDIALE

 Un viaggio lunghissimo nel Sistema solare li ha portati dall’asteroide Ryugu alla Terra, all’interno della capsula di raccolta della sonda Hayabusa2 che li ha prelevati dalla superficie del corpo celeste nel 2019. Due piccoli grani dell’asteroide, lunghi meno di due millimetri e pesanti in totale tre milligrammi, parte del preziosissimo carico di Hayabusa2, sono giunti dal Campus Sagamihara della JAXA in Giappone ai laboratori dell’Istituto Nazionale di Astrofisica a Roma, dove un team di ricerca li analizzerà con l’ambizioso obiettivo di ricostruire la storia dell’evoluzione di Ryugu nei suoi quattro miliardi di anni di vita. In omaggio alla cultura giapponese, i ricercatori INAF hanno ribattezzato i due grani Kiki e Totoro, come i personaggi di altrettanti film di animazione del maestro Hayao Miyazaki.

La missione Hayabusa2 dell’Agenzia spaziale giapponese JAXA ha esplorato l’asteroide Ryugu, grande un chilometro, ottenendo immagini dettagliate della superficie. Hayabusa2 ha scagliato un piccolo proiettile sull’asteroide allo scopo di scavare una piccola porzione del suo strato esterno e mettere a nudo il materiale al di sotto, rimasto preservato per miliardi di anni. Il veicolo spaziale ha poi raccolto frammenti della superficie in due siti differenti di Ryugu, uno di questi nelle vicinanze del cratere. In due camere di raccolta – denominate A e C – sono stati quindi recuperati sia frammenti superficiali che sotto-superficiali, questi ultimi protetti dal vuoto profondo dello spazio fino al momento dell’impatto. La capsula di rientro con il materiale raccolto è stata recuperata a Woomera, in Australia, il 6 dicembre 2020. Si tratta del primo campione raccolto appartenente a una classe di asteroidi molto primitivi, la cui composizione ci fornisce un’istantanea del materiale che ha dato origine al Sistema solare primordiale e alla Terra.

Frammenti dall’asteroide Ryugu, Totoro e Kiki, per conoscere il Sistema solare primordiale. Gallery

La quantità di materiale che è stato raccolto in totale è di circa 5 grammi. Dopo aver completato una prima ispezione, le particelle di Ryugu sono state prelevate singolarmente dai piccoli contenitori di vetro zaffiro con una pinzetta a vuoto e su questi grani è stata eseguita un’analisi al microscopio.

“Grazie al mio contributo nella caratterizzazione dell’asteroide Ryugu, come Co-Investigator della missione Hayabusa 2, sono stato chiamato a far parte del ristretto Team Internazionale che prima  dell’apertura dei bandi pubblici, si è occupato per un anno delle prime analisi in esclusiva” ricorda Ernesto Palomba, ricercatore INAF a Roma.

Nell’ambito del secondo bando internazionale pubblico per l’analisi dei campioni di Ryugu, la JAXA, ha assegnato al gruppo di ricerca INAF coordinato da Ernesto Palomba due grani denominati C0242 (del peso di 0,7 milligrammi e lunghezza di 1,712millimetri) e A0226 ( pesante 1,9 milligrammi e lunghezza di2.288millimetri). Ciascun grano è posto all’interno di un particolare recipiente di acciaio riempito di azoto, il cui scopo è sia di preservare il grano evitando contaminazioni dovute alle polveri e al vapor d’acqua presenti nell’ambiente, sia di permettere un trasporto sicuro. Per rendere onore alla cultura giapponese, il team italiano ha deciso di assegnare un nome ai due grani attingendo alla tradizione degli Anime, in particolare le opere dello studio Ghibli con il suo creatore Hayao Miyazaki. I nomi sono stati scelti guardando sia alla forma (A0226-Totoro) dal film “Il mio vicino Totoro”, sia al compito di Hayabusa 2 di spedire a Terra campioni extraterrestri (C0242-Kiki) dal film “Kiki – Consegne a domicilio”.

“Tra tutte le 38 proposte di analisi accettate dalla JAXA per il secondo bando internazionale, la nostra è l’unica italiana” commenta Palomba e prosegue: “ Il team è composto da una dozzina di persone delle sedi INAF di Roma, Napoli, Catania e dall’Università di Firenze, di cui quasi la metà sono borsisti, studenti di dottorato e postdoc. Per preparaci all’analisi e alla manipolazione di grani millimetrici, abbiamo cominciato a fare palestra con dei frammenti di una meteorite carbonacea,  la Tagish Lake, che si può considerare molto simile ai frammenti di Ryugu. Abbiamo ideato e prodotto dei portacampioni in grado di mantenere fermi i grani durante il trasporto e le analisi. E ora una decina di giorni fa la JAXA ci ha contattato chiedendoci l’indirizzo per spedire i campioni. In realtà in meno di una settimana, con nostra grande emozione, Kiki e Totoro sono arrivati”.

“Per questo progetto, abbiamo avuto anche a supporto un Large Grant dell’INAF” sottolinea Palomba. “Il nostro obiettivo sarà comprendere come questo asteroide si sia evoluto durante i 4 miliardi di anni della sua vita. In particolare, andremo a studiare le trasformazioni causate dall’interazione con l’ambiente spaziale, che a differenza di quanto si potrebbe credere è lungi dall’essere completamente inerte. Una pioggia continua di micrometeoriti, particelle galattiche e cosmiche, nonché il flusso costante del vento solare – il cosiddetto space weathering –  bombarda le superfici dei corpi planetari incessantemente per miliardi di anni, provocando anche sostanziali trasformazioni. Per capire meglio queste trasformazioni, nel nostro progetto abbiamo richiesto due grani, uno proveniente dalla camera A e un altro dalla camera C, cosicché sarà possibile comprendere quanto lo space weathering abbia modificato la superficie dell’asteroide” conclude Palomba.

Testo e immagini dall’Ufficio stampa – Struttura per la Comunicazione di Presidenza Istituto Nazionale di Astrofisica (INAF)

JUICE (Jupiter Icy Moon Explorer): verso il pianeta Giove per svelare i misteri delle sue lune ghiacciate, Ganimede, Europa e Callisto

La sonda lanciata il 14 aprile, arriverà a destinazione dopo otto anni di crociera.

A bordo importanti strumenti finanziati e sviluppati sotto la guida dell’Agenzia Spaziale Italiana con la partecipazione di un team scientifico a cui ha preso parte anche la Sapienza.

Le più grandi lune di Giove. Crediti: ESA – Agenzia Spaziale Europea

Giove e le sue lune ghiacciate – Ganimede, Europa e Callisto – saranno il fulcro dell’indagine della sonda JUICE (Jupiter Icy Moon Explorer), lanciata con successo oggi, 14 aprile alle 14.15 ora italiana, dalla Guyana francese.

JUICE raggiungerà Giove nel 2031, svolgendo la sua missione di studio per tre anni nell’ambiente giovano, molto somigliante a un sistema solare in miniatura. Lì dovrà portare a termine una complessa serie di compiti: dall’osservazione dell’atmosfera e della magnetosfera di Giove, a quella dell’interazione delle lune galileiane con il pianeta.

La sonda visiterà Callisto (il corpo celeste maggiormente ricoperto di crateri nel sistema solare), che potrebbe nascondere un oceano interno, e sonderà gli strati più superficiali della calotta ghiacciata di Europa, identificando siti appropriati per una possibile esplorazione in situ. JUICE terminerà la sua missione a settembre 2035 orbitando per quattro mesi attorno a Ganimede, l’unica luna dotata di un proprio campo magnetico. Sarà la prima volta che una sonda spaziale orbiterà attorno a un satellite diverso dalla nostra Luna. Proprio nella sua fase finale la missione svelerà i risultati più attesi, osservando i dettagli della superficie ghiacciata di Ganimede e fornendo uno spaccato della sua struttura interna.

Lo studio comparato dei tre satelliti gioviani in un’unica missione permetterà di comprendere le cause della loro diversità, dominata dall’influenza di Giove, e di fornire nuovi dati sulla formazione dei sistemi planetari.

Uno dei principali temi scientifici di JUICE riguarda l’eventuale abitabilità degli ambienti dei pianeti giganti e in particolare la possibilità che i satelliti ghiacciati di Giove possano rappresentare un ambiente potenzialmente in grado di supportare attività biotica per tempi lunghi.

La scelta della missione JUICE è il coronamento di un processo iniziato nel 2004, anno in cui l’Agenzia spaziale europea (Esa) ha avviato un’ampia consultazione della comunità scientifica per identificare i traguardi dell’esplorazione planetaria europea nel decennio successivo.

JUICE: ricostruzione artistica
JUICE: ricostruzione artistica. Crediti: ESA – Agenzia Spaziale Europea

La missione dell’Esa, selezionata dallo Space Programme Committee, vede un’importante partecipazione dell’Italia attraverso l’Agenzia spaziale italiana (Asi) e diversi enti e università tra i quali Sapienza Università di Roma, che hanno partecipato alla realizzazione di 3 strumenti: lo strumento di radioscienza e geofisica 3GM, il radar RIME, la camera JANUS.

3GM (Gravity and Geophysics of Jupiter and the Galilean Moons), guidato da Luciano Iess, del Dipartimento di Ingegneria meccanica e aerospaziale della Sapienza, comprende un transponder in banda Ka e un oscillatore ultrastabile (USO), realizzato dall’Agenzia Spaziale Israeliana (ISA). Questo insieme di strumenti sarà utilizzato per misurare il campo di gravità e la struttura profonda delle lune ghiacciate, per determinare l’estensione dell’oceano interno di Ganimede e per studiare l’atmosfera di Giove. La strumentazione di 3GM comprende anche un accelerometro ad alta precisione (HAA), necessario per calibrare i disturbi dinamici interni del satellite, in particolare dovuti al movimento del propellente nei serbatoi.

RIME (Radar for Icy Moon Exploration), radar sottosuperficiale ottimizzato per penetrare la superficie ghiacciata dei satelliti galileiani fin alla profondità di 9 km con una risoluzione verticale fino a 30 m.Il radar RIME è frutto di una collaborazione tra l’Università di Trento e il Jet Propulsion Laboratory (JPL) della NASA.

JANUS (Jovis, Amorum ac Natorum Undique Scrutator) è una camera ottica per studiare la morfologia e i processi globali regionali e locali sulle lune e per eseguire la mappatura delle nubi di Giove.

Importante, inoltre, il coinvolgimento italiano per quanto riguarda la testa ottica dello strumento MAJIS (Moons and Jupiter Imaging Spectrometer), uno spettrometro iper-spettrale a immagine per osservare le caratteristiche e le specie minori della troposfera di Giove nonché per la caratterizzazione dei ghiacci e dei minerali sulle lune ghiacciate.

JUICE: ricostruzione artistica
JUICE: ricostruzione artistica. Crediti: ESA – Agenzia Spaziale Europea

Ai team scientifici dei quattro strumenti finanziati dall’Asi partecipano molte università e istituti di ricerca italiani e stranieri. I Principal Investigator di 3GM, RIME e JANUS appartengono rispettivamente a Sapienza Università di Roma, all’Università di Trento e all’Inaf – Istituto Nazionale di Astrofisica, a cui appartiene anche il Co-Principal Investigator di MAJIS.

Testo e immagini dal Settore Ufficio stampa e comunicazione Sapienza Università di Roma

LA PIÙ ACCURATA MAPPA VULCANICA DEL SATELLITE GIOVIANO IO

Grazie ai dati raccolti dallo stumento JIRAM a bordo della missione NASA Juno, un team di ricerca a guida INAF ha identificato 242 “hot spot”, ovvero zone calde che indicano la presenza di vulcani, di cui 23 non osservati precedentemente sul satellite più interno di Giove. I dati indicano una maggiore concentrazione di punti vulcanici caldi nelle regioni polari rispetto alle latitudini intermedie. Si tratta della mappatura migliore mai ottenuta da remoto.

La più accurata mappa vulcanica del satellite gioviano Io
La più accurata mappa vulcanica del satellite gioviano Io, grazie allo strumento JIRAM. Insieme di figure chiamate “super immagini”, ottenute calcolando la media di più osservazioni JIRAM acquisite in un lasso di tempo di pochi minuti. Questo approccio riduce la possibilità di falsi positivi. Le immagini ritraggono gli hot spot di Io nel corso degli anni. Crediti: F. Zambon et al. / Geophysical Research Letters

L’infernale luna Io (la più interna fra quelle regolari del sistema gioviano) è il corpo vulcanicamente più attivo dell’intero Sistema solare. Un recente articolo pubblicato sulla rivista Geophysical Research Letters (GRL) fa nuova luce sulle proprietà vulcaniche di questo satellite, in particolare grazie a nuovi dati raccolti da JIRAM (Jovian InfraRed Auroral Mapper), uno degli otto strumenti a bordo della sonda NASA Juno. Finanziato dall’Agenzia Spaziale Italiana (ASI) e realizzato da Leonardo, lo strumento vede la responsabilità scientifica dell’Istituto Nazionale di Astrofisica (INAF). L’articolo delinea la mappa più recente della distribuzione degli hot spot (punti vulcanici caldi) di Io prodotta con dati JIRAM da remoto alla migliore scala spaziale attualmente disponibile. I ricercatori, guidati dall’INAF, sono riusciti a ottenere, inoltre, una migliore copertura delle regioni di Io prossime ai poli rispetto al passato.

Francesca Zambon, membro del gruppo JIRAM, ricercatrice dell’INAF di Roma e prima autrice dell’articolo pubblicato su GRL, spiega:

“La mappa degli hot spot presentata nel nostro lavoro è la più aggiornata tra quelle basate su dati di telerilevamento spaziale. Analizzando le immagini infrarosse acquisite da JIRAM, abbiamo individuato 242 punti vulcanici caldi, di cui 23 non presenti in altri cataloghi e localizzati nella maggior parte dei casi nelle regioni polari, grazie alla peculiare orbita della sonda Juno”.

La ricercatrice sottolinea: “Il confronto tra il nostro studio e il catalogo più recente rivela che JIRAM ha osservato l’82% degli hot spot più potenti precedentemente individuati, e la metà degli hot spot di potenza intermedia, dimostrando quindi che questi sono ancora attivi. Tuttavia, JIRAM ha rilevato solo circa la metà degli hot spot più deboli precedentemente segnalati. Le spiegazioni sono due: o la risoluzione di JIRAM non è sufficiente per rilevare questi deboli punti caldi, oppure l’attività di questi centri effusivi potrebbe essersi sbiadita o interrotta”.

Quando la sonda spaziale NASA Voyager 1 avvicinò Io, il più interno dei satelliti galileiani di Giove, nel marzo 1979, le immagini inviate alla Terra rivelarono che la sua superficie appariva punteggiata da una moltitudine di centri vulcanici caldi, con imponenti colate laviche e pennacchi alti fino a qualche centinaio chilometri. In seguito, l’esplorazione condotta soprattutto dalla missione NASA Galileo chiarì che questi punti caldi sono moltissimi: alcune centinaia, molti dei quali con attività pressoché costante.

 

La luna Io mostra molti centri vulcanici, innescati principalmente dalle potenti forze mareali esercitate da Giove. Lo studio dell’attività vulcanica di questo satellite gioviano è la chiave per comprendere la natura dei suoi processi geologici e la sua evoluzione interna. La distribuzione degli hot spot e la loro variabilità spaziale e temporale sono importanti per definire le caratteristiche del riscaldamento delle maree e i meccanismi attraverso i quali il calore fuoriesce dall’interno.

 

Alessandro Mura, leader del gruppo JIRAM e ricercatore dell’INAF di Roma, prosegue:

“Uno dei maggiori punti aperti nella comprensione della struttura interna di Io è se l’attività vulcanica osservabile in superficie sia dovuta a un oceano di magma globale presente nel mantello, oppure a camere magmatiche che si insinuano nella crosta a minori profondità. Le osservazioni di JIRAM sono tuttora in corso, e le future immagini a maggiore definizione saranno fondamentali per meglio evidenziare i punti caldi deboli e per chiarire la struttura interna di Io”.

Giuseppe Sindoni, responsabile del progetto JIRAM per l’ASI, aggiunge:

“La superficie della luna gioviana Io è molto dinamica, con vulcani ed emissioni laviche in continua evoluzione, come dimostrato da questo importante risultato ottenuto dal nostro strumento JIRAM e dall’ottimo lavoro svolto dal team. L’estensione della missione Juno fino al 2025 ci permetterà di monitorare questa evoluzione e di comprendere meglio i processi fisici che guidano un corpo così complesso e dalle fattezze simili alla nostra Terra primordiale, anche in previsione di future missioni dedicate.”

La sonda Juno è stata lanciata ad agosto 2011 dalla base di Cape Canaveral ed è in orbita attorno a Giove dal luglio del 2016. Da allora ha percorso 235 milioni di chilometri. Juno è tuttora la sonda in orbita planetaria più distante della NASA, e continuerà le sue indagini sul pianeta più grande del Sistema solare fino a settembre 2025.

Alla fine dell’anno, il 30 dicembre 2023, durante la 57ma orbita attorno a Giove, la sonda Juno effettuerà il suo passaggio più ravvicinato in assoluto a Io, a una distanza minima di circa 4800 chilometri. Le missioni Europa Clipper della NASA e JUICE di ESA, che opereranno nel sistema di Giove negli anni 2030, non potranno mai avvicinarsi a simili distanze. Sarà quindi cruciale che Juno possa condurre osservazioni anche con JIRAM durante tutte le prossime opportunità previste nel 2023.


 

Per ulteriori informazioni:

L’articolo “Io hot spot distribution detected by Juno/JIRAM”, di F. Zambon, A. Mura, R. M. C. Lopes, J. Rathbun, F. Tosi, R. Sordini, R. Noschese, M. Ciarniello, A. Cicchetti, A. Adriani, L. Agostini, G. Filacchione, D. Grassi, G. Piccioni, C. Plainaki, G. Sindoni, D. Turrini, S. Brooks, C. Hansen-Koharcheck, S. Bolton, è stato pubblicato su Geophysical Research Letters.

Testo e immagine dall’Ufficio stampa – Struttura per la Comunicazione Istituto Nazionale di Astrofisica – INAF sulla mappa vulcanica di Io prodotta dallo strumento JIRAM

CON PEGASUS LA MAPPA DELL’1% DEL PIANO GALATTICO

Sfruttando i telescopi Parkes e ASKAP in Australia, è stata realizzata un’immagine ad altissima definizione dei campi magnetici nella Via Lattea, la nostra galassia. I dati arrivano dal progetto PEGASUS guidato dall’INAF, parte del più ampio programma EMU.

Portate a termine le osservazioni radio di una vasta sezione del piano galattico della Via Lattea (circa l’1%) con i radiotelescopi ASKAP e Parkes (Murriyang), entrambi sviluppati e gestiti dall’Agenzia scientifica australiana CSIRO. Radioastronomi dell’Istituto Nazionale di Astrofisica (INAF) hanno coordinato il gruppo internazionale di ricerca che ha utilizzato il “grande disco” di Parkes per “fotografare” una porzione del disco della nostra galassia, nell’ambito del progetto di ricerca PEGASUS (POSSUM EMU GMIMS All Sky UWL Survey). PEGASUS è uno dei numerosi progetti di esplorazione del più ampio programma Evolutionary Map of the Universe (EMU), che consiste nell’osservazione di tutto l’emisfero sud con ASKAP, uno dei precursori del progetto SKA. L’immagine è stata unita a quella realizzata con le antenne ASKAP per il progetto EMU, guidato dalla Università Macquarie a Sydney, Australia, ottenendo un risultato di straordinaria qualità.

L’immagine,  ampia circa 6-7 gradi o come 12-14 volte il diametro apparente della Luna, mostra una regione caratterizzata da un’emissione estesa associata all’idrogeno gassoso che riempie lo spazio tra le stelle, stelle alla fine del loro ciclo evolutivo chiamate resti di supernova e bolle calde di idrogeno gassoso ionizzato legate alla nascita di nuove stelle. Le stelle non sono visibili in questa immagine poiché la loro luce contiene emissioni radio minime. Questa nuova fotografia della nostra Galassia mostra aspetti dell’evoluzione delle stelle visibili solo ai radiotelescopi.

CON PEGASUS LA MAPPA DELL’1% DEL PIANO GALATTICO
Crediti: R. Kothes (NRC), the EMU and POSSUM teams

Ettore Carretti, dell’INAF di Bologna, è il responsabile della survey PEGASUS insieme a Tom Landecker del National Research Council of Canada e a Xiaohui Sun dell’Università dello Yunnan, in Cina. PEGASUS intende sfruttare le potenzialità del telescopio Parkes (pathfinder del progetto SKA) per mappare tutto il cielo australe a 700-1440 MHz con circa 2100 ore di osservazione. PEGASUS contribuirà a tre progetti: EMU, POSSUM e GMIMS per studiare il magnetismo della Via Lattea. Il progetto PEGASUS ha appena completato le sue osservazioni pilota e mira a osservare l’intero cielo australe nei prossimi due anni.

Il radioastronomo dell’INAF spiega: “Con questa prima fase di PEGASUS abbiamo studiato un’ampia regione del piano Galattico della nostra Galassia. Gli oggetti visibili nell’immagine possono essere studiati nelle onde radio con altissima precisione e accuratezza grazie alla combinazione di dati dei radiotelescopi ASKAP e Parkes. Abbiamo poi combinato la mappa ottenuta con quella dei progetti EMU e POSSUM: il risultato è strabiliante, quando abbiamo aperto l’immagine per la prima volta siamo rimasti meravigliati da tanta qualità e bellezza”.

Carretti aggiunge: “L’obiettivo della survey è duplice. In primo luogo comprendere e studiare i campi magnetici della nostra Galassia, la loro origine e i loro effetti su vari fenomeni come resti di supernove e le grandi strutture della Via Lattea, come il Grande Sperone settentrionale, ma anche galassie, radiogalassie e ammassi di galassie. In secondo luogo, essendo ASKAP, come tutti gli interferometri, poco sensibile alle grandi scale angolari, i dati del progetto PEGASUS raccolti con Parkes completeranno quelli di ASKAP, aggiungendo ai dettagli finissimi già esistenti la forma, le dimensioni e la potenza totale emessa da questi oggetti. Tutto ciò per poter studiare la fisica dei fenomeni che li governano”.

Le survey come PEGASUS osservano l’intero cielo, incluso il cosiddetto Piano Galattico, vale a dire il luogo della Via Lattea in cui risiede il Sistema solare. Si tratta di una regione che contiene innumerevoli stelle, polveri e nubi di gas, nonché una notevole quantità di materia oscura. Studiare il piano della Via Lattea è da sempre uno degli obiettivi più importanti dei radioastronomi, ma la presenza di emissione diffusa nella Galassia rende difficile ottenere immagini prive di artefatti: ciò riduce di fatto la qualità delle immagini finali rendendo l’analisi dei dati un compito particolarmente impegnativo.

Tom Landecker spiega: “Il progetto GMIMS esplora le forze magnetiche nella Via Lattea. Oltre a plasmare la Via Lattea, le forze magnetiche sono coinvolte nella formazione della sua struttura a spirale e nella nascita e morte delle stelle all’interno dei suoi bracci a spirale. I dati principali che otteniamo sono le osservazioni della polarizzazione dell’emissione radio dalla Via Lattea effettuate con grandi radiotelescopi negli emisferi Sud e Nord. In dodici anni, abbiamo effettuato con successo rilevamenti del cielo con il telescopio Parkes, Murriyang, a frequenze radio sia più basse che più alte di quelle di PEGASUS. PEGASUS colmerà una lacuna nei nostri dati, fornendo una visione senza precedenti degli effetti magnetici in tre dimensioni. Osservazioni parallele sono state effettuate utilizzando telescopi canadesi, e altre sono in corso, fornendo una prospettiva globale”.

Andrew Hopkins, a capo del progetto EMU per l’Università Macquarie, afferma: “Il risultato finale della collaborazione PEGASUS/EMU sarà una vista senza precedenti di quasi tutta la Via Lattea, un’immagine circa cento volte più grande di quella realizzata in questa prima fase da PEGASUS, ma con lo stesso livello di dettaglio e sensibilità”.

CON PEGASUS LA MAPPA DELL’1% DEL PIANO GALATTICO. GALLERY


 

Per saperne di più:

ASKAP e Parkes sono gestiti da CSIRO, l’agenzia scientifica nazionale australiana, nell’ambito dell’Australia Telescope National Facility. CSIRO riconosce il popolo Wajarri Yamatji come proprietario storico e detentore del titolo nativo di Inyarrimanha Ilgari Bundara, l’Osservatorio radioastronomico Murchison dove si trova ASKAP, e il popolo Wiradjuri come proprietario storico dell’Osservatorio Parkes.

Testo, video e immagini dall’Ufficio stampa – Struttura per la Comunicazione dell’Istituto Nazionale di Astrofisica – INAF

BEPI COLOMBO: SERENA OSSERVA LA MAGNETOSFERA DI MERCURIO

Bepi Colombo ha fatto centro! Un team di ricercatori guidati dall’Istituto Nazionale di Astrofisica (INAF) riporta, in un articolo pubblicato su Nature Communications, le prime osservazioni della magnetosfera di Mercurio effettuate con l’esperimento Search for Exosphere Refilling and Emitted Neutral Abundances (SERENA), montato a bordo della missione ESA-JAXA BepiColombo. La suite di strumenti SERENA, a guida INAF, ha effettuato misure senza precedenti di particelle sia solari che planetarie, con due dei suoi quattro strumenti, PICAM e MIPA, già operativi. Gli altri due, Strofio ed ELENA, inizieranno a lavorare dopo la messa in orbita. Il tutto con il supporto dell’Agenzia Spaziale Italiana (ASI).

BEPI COLOMBO: SERENA OSSERVA LA MAGNETOSFERA DI MERCURIO
La figura mostra gli spettrogrammi in energia delle particelle misurate, sia fuori che dentro la magnetosfera di Mercurio con lo strumento SERENA a bordo della missione Bepi Colombo ESA-JAXA. Crediti: S. Orsini, T. Alberti, A. Varsani, S. Barabash / Nature Communications

I ricercatori hanno catturato gli spettrogrammi in energia delle particelle misurate sia fuori che dentro la magnetosfera di Mercurio. I dati descritti nello studio fanno riferimento al primo volo ravvicinato della sonda attorno a Mercurio, nell’ottobre 2021. Stefano Orsini, ricercatore dell’INAF di Roma e responsabile scientifico di SERENA, spiega:

“Ogni osservazione ha evidenziato fenomeni sorprendenti e inattesi. Fuori della magnetosfera sono stati osservati degli eventi energetici sovrapposti al tipico vento solare emanato dalla nostra stella madre. Inoltre, un segnale a bassa energia sembra indicare la presenza di gas proveniente dal satellite, che nello spazio continua a rilasciare particelle per effetto dell’esposizione a forti sbalzi termici. Di tale ‘inquinamento’ si dovrà tenere conto per separarlo dal segnale esterno che si vuole studiare”.

SERENA è stato ideato per lo studio dell’ambiente particellare del primo pianeta del Sistema solare. Installato sul satellite Mercury Planetary Orbiter (MPO), tecnicamente SERENA è un rilevatore di particelle energetiche cariche e neutre emesse dalla superficie del pianeta come effetto dell’impatto di ioni energetici provenienti sia dal vento solare che dalla magnetosfera.

Orsini prosegue descrivendo la magnetosfera di Mercurio: “Ci sono i segni di diversi regimi di plasma rispetto a quelli terrestri: ciò è dovuto sia al campo magnetico del pianeta, molto più debole rispetto a quello terrestre, sia alla estrema vicinanza al Sole, che fa di Mercurio il pianeta più ‘stressato’ dalla radiazione solare di tutto il sistema planetario”.

“Le misure della suite SERENA durante il primo flyby di Mercurio dimostrano la varietà di obiettivi scientifici che possono essere indagati in questo straordinario laboratorio naturale”, sottolinea Christina Plainaki, ricercatrice nelle scienze del Sistema solare e ASI Project Scientist per BepiColombo/SERENA. “Particolare rilievo assumono le indagini delle interazioni fra il vento solare e la peculiare magnetosfera del pianeta, in configurazioni non trovate altrove nel Sistema solare e capaci pertanto di offrirci indicazioni fondamentali sulla fisica alla base di questi processi”.

In tutto, gli strumenti italiani a bordo della sonda spaziale lanciata nel 2018 sono quattro: oltre a SERENA, SIMBIO-SYS (Spectrometers and Imagers for MPO BepiColombo Integrated Observatory), ISA (Italian Spring Accelerometer) e MORE (Mercury Orbiter Radio science Experiment). L’arrivo della missione su Mercurio è previsto nel 2025. Dopo i cinque voli ravvicinati già effettuati (attorno alla Terra e a Venere nel 2020, un secondo in prossimità di Venere e il primo di Mercurio nel 2021 e il quinto attorno al pianeta nel 2022), saranno necessari altri quattro flyby del pianeta più vicino al Sole prima di poter inserire nella sua orbita le due sonde che compongono la missione, l’MPO dell’Agenzia spaziale europea (ESA) e il Mercury Magnetospheric Orbiter (MMO) dell’Agenzia spaziale giapponese (JAXA).


 

Per ulteriori informazioni:

L’articolo “Inner southern magnetosphere observation of Mercury via SERENA ion sensors in BepiColombo mission”, di Stefano Orsini, A. Milillo, H. Lichtenegger, A. Varsani, S. Barabash, S. Livi, E. De Angelis, T. Alberti, G. Laky, H. Nilsson, M. Phillips, A. Aronica, E. Kallio, P. Wurz, A. Olivieri, C. Plainaki, J. A. Slavin, I. Dandouras, J. M. Raines, J. Benkhoff, J. Zender, J.-J. Berthelier, M. Dosa, G. C. Ho, R. M. Killen, S. McKenna-Lawlor, K. Torkar, O. Vaisberg, F. Allegrini, I. A. Daglis, C. Dong, C. P. Escoubet, S. Fatemi, M. Fränz, S. Ivanovski, N. Krupp, H. Lammer, François Leblanc, V. Mangano, A. Mura, R. Rispoli, M. Sarantos, H. T. Smith, M. Wieser, F. Camozzi, A. M. Di Lellis, G. Fremuth, F. Giner, R. Gurnee, J. Hayes, H. Jeszenszky, B. Trantham, J. Balaz, W. Baumjohann, M. Cantatore, D. Delcourt, M. Delva, M. Desai, H. Fischer, A. Galli, M. Grande, M. Holmström, I. Horvath, K. C. Hsieh, R. Jarvinen, R. E. Johnson, A. Kazakov, K. Kecskemety, H. Krüger, C. Kürbisch, Frederic Leblanc, M. Leichtfried, E. Mangraviti, S. Massetti, D. Moissenko, M. Moroni, R. Noschese, F. Nuccilli, N. Paschalidis, J. Ryno, K. Seki, A. Shestakov, S. Shuvalov, R. Sordini, F. Stenbeck, J. Svensson, S. Szalai, K. Szego, D. Toublanc, N. Vertolli, R. Wallner & A. Vorburger, è stato accettato per la pubblicazione online sulla rivista Nature Communications.

Testo e immagine dagli Uffici stampa – Struttura per la Comunicazione Istituto Nazionale di Astrofisica (INAF) e Agenzia Spaziale Italiana (ASI).