News
Ad
Ad
Ad
Tag

sistema nervoso

Browsing

Neuroblastoma: scoperte nel DNA “non codificante” le regioni che attivano i geni responsabili della malattia grave

Per questo studio i ricercatori hanno utilizzato tecniche avanzate di ingegneria genetica, sequenziamento e bioinformatica. I risultati aiuteranno a capire le cause dei tumori più aggressivi.

neuroblastoma DNA non codificante malattia grave
Neuroblastoma: scoperte nel DNA “non codificante” le regioni che attivano i geni responsabili della malattia grave. Foto 1. Da sinistra Annalaura Montella, Vito Alessandro Lasorsa, Achille Iolascon, Mario Capasso, Matilde Tirelli, Sueva Cantalupo

Un altro traguardo verso la comprensione del neuroblastoma è stato raggiunto al CEINGE-Biotecnologie avanzate di Napoli. Grazie a tecniche avanzatissime di ingegneria genetica, di sequenziamento e di bioinformatica, i ricercatori hanno individuato le regioni regolatrici che indirizzano i geni la cui funzionalità alterata è responsabile della maggiore aggressività di uno dei tumori del sistema nervoso dei bambini.

Foto 2. Servizio Bioinformatica per NGS, da sinistra V. Aievola, F. Bonfiglio, Mario Capasso, Vito Alessandro Lasorsa, G. D’Alterio

Gli studiosi, guidati da Mario Capasso e Achille Iolascon, professori di Genetica Medica del Dipartimento di Medicina Molecolare e Biotecnologie Mediche – Università degli Studi di Napoli Federico II e Principal Investigator del CEINGE, si sono soffermati questa volta sul cosiddetto DNA “non codificante”, in passato indicato erroneamente con lo sprezzante soprannome di “DNA spazzatura”: è una porzione enorme del genoma (circa il 99% del totale) contenente particolari sequenze il cui ruolo nel determinare le malattie rimane da ancora scoprire.

«Abbiamo studiato in particolare le regioni del DNA che regolano la trascrizione dei geni, in gergo detti “intensificatori” o “enhancer” – spiega Capasso – che possono essere immaginati come la manopola del volume di una radio con la quale possiamo aumentare o diminuire l’intensità di produzione di specifici geni. Abbiamo analizzato 25 linee cellulari di neuroblastoma mediante la tecnica di sequenziamento ChiP-seq e abbiamo scovato le regioni regolatrici del genoma di questo tumore pediatrico che per molti bambini rimane incurabile. Una volta individuate e localizzate, siamo andati a vedere se in esse erano presenti mutazioni, stavolta analizzando oltre 200 campioni, un numero importante trattandosi di una malattia rara. Ed effettivamente ne abbiamo trovate, in quantità superiore rispetto al restante parte del DNA».

Foto 3. Mario Capasso

I ricercatori hanno anche dimostrato che l’insieme di questi intensificatori del genoma del neuroblastoma, quando mutati, sono tra le cause di una prognosi sfavorevole per i piccoli pazienti.

neuroblastoma DNA non codificante malattia grave
Foto 4. Interazioni tra intensificatori e restanti regioni del DNA mediante HIC Seq

Il viaggio attraverso il DNA non codificante non è terminato qui. Utilizzando un’ulteriore tecnica di sequenziamento integrata con analisi bioinformatiche avanzate (HiC data analysis), eseguite dal dott. Alessandro Vito Lasorsa (esperto bioinformatico del CEINGE), i ricercatori hanno valutato tutte le possibili interazioni delle regioni regolatrici individuate con tutti i geni fin ad oggi conosciuti e hanno scoperto che esse interagiscono proprio con tre geni noti avere un ruolo chiave nello sviluppo dei tumori. E lo hanno dimostrato con studi in-vitro, creando in laboratorio una linea cellulare ingegnerizzata:

«Grazie a una tecnica di genome editing di ultima generazione detta CRISPR-Cas9 –, chiarisce Achille Iolascon – abbiamo confermato che le mutazioni che colpiscono le regioni intensificatrici individuate regolano proprio i tre geni che insieme ad altri sono coinvolti nello sviluppo embrionale e nella risposta del sistema immunitario. Molti di questi geni inoltre sono classificati o come bersagli terapeutici del cancro o come marcatori di una prognosi nefasta della malattia».

neuroblastoma DNA non codificante malattia grave
Neuroblastoma: scoperte nel DNA “non codificante” le regioni che attivano i geni responsabili della malattia grave. Foto 1. Da sinistra Da sinistra Annalaura Montella, Vito Alessandro Lasorsa, Achille Iolascon, Mario Capasso, Matilde Tirelli, Sueva Cantalupo

La ricerca è stata finanziata dalla Fondazione AIRC per la Ricerca sul Cancro, OPEN Onlus, Fondazione Italiana per la Lotta al Neuroblastoma ed è stata pubblicata sulla rivista internazionale di alto impatto Cancer Research*.

*Cancer Research  – Somatic mutations enriched in cis-regulatory elements affect genes involved in embryonic development and immune system response in neuroblastoma – Vito Alessandro Lasorsa, Annalaura Montella, Sueva Cantalupo, Matilde Tirelli, Carmen de Torres, Sanja Aveic, Gian Paolo Tonini, Achille Iolascon and Mario Capasso

Testo e foto dall’Ufficio Stampa Università Federico II di Napoli.

SLA: aggiunto un nuovo tassello nella comprensione degli aggregati molecolari nella malattia

Un gruppo di ricercatori della Sapienza e dell’Università degli Studi di Perugia, in collaborazione con l’Istituto italiano di tecnologia (IIT), ha pubblicato sulla rivista iScience uno studio che fa luce su una nuova forma di RNA e sul suo coinvolgimento in malattie neurodegenerative come la Sclerosi laterale amiotrofica. Il lavoro è stato supportato dall’European Research Council e da Fondazione AriSLA.

SLA aggregati molecolari
SLA: aggiunto un nuovo tassello nella comprensione degli aggregati molecolari nella malattia. Foto di Arek Socha

La Sclerosi laterale amiotrofica, nota come SLA, è una malattia neurodegenerativa che colpisce i motoneuroni, le cellule neuronali responsabili dell’innervazione muscolare, la cui degenerazione porta alla paralisi progressiva, culminando in una incapacità motoria e respiratoria.

Nella SLA si identificano due forme, quella familiare dovuta a specifiche mutazioni genetiche, e quella sporadica, la cui patogenesi non è correlata a chiara familiarità congenita e le cui cause sono ancora per lo più sconosciute. Sebbene numerosi studi abbiano permesso di caratterizzare varie proteine coinvolte nella SLA, c’è ancora molto da scoprire sulla complessità dell’insorgenza e progressione della malattia e, soprattutto, sulla sua possibile cura.

Il team di ricercatori del Dipartimento di Biologia e biotecnologie Charles Darwin di Sapienza Università di Roma e del Centro for Life Nano- & Neuro-Science dell’Istituto Italiano di Tecnologia (IIT) a Roma, coordinati da Irene Bozzoni e in collaborazione con Mariangela Morlando dell’Università degli studi di Perugia, ha aggiunto un nuovo tassello nella comprensione di questa patologia, individuando un nuovo componente molecolare degli aggregati patologici caratteristici della SLA, l’RNA circolare circ-Hdgfrp3.

Gli RNA circolari sono così chiamati proprio per la loro forma peculiare che li rende particolarmente resistenti alla degradazione. Essi rappresentano una nuova classe di molecole espresse in tutte le cellule e in particolar modo nel sistema nervoso, dove il loro malfunzionamento è stato associato a diversi stati patologici.

Lo studio, pubblicato sulla rivista iScience, analizza la presenza di questo specifico RNA circolare in associazione alla SLA: più esattamente, esso è stato evidenziato negli aggregati patologici prodotti da mutazioni della proteina FUS associate a una grave forma della malattia. La proteina FUS, infatti, che normalmente è localizzata nel nucleo, a seguito di specifiche mutazioni viene a trovarsi nel citoplasma, dove può aggregarsi formando grosse inclusioni, tipiche della SLA, che sequestrano molti componenti cellulari impedendone la corretta localizzazione e funzione.

Il gruppo di ricerca, impiegando avanzate tecniche di imaging e studiando motoneuroni di modelli animali analizzati in vitro, ha studiato gli effetti delle mutazioni della proteina FUS sulla localizzazione di questo RNA circolare. Mentre in motoneuroni sani esso si muove lungo i prolungamenti dei neuroni, facendo quindi pensare a una importante funzione di spola da e verso la periferia della cellula, in condizioni patologiche questo RNA circolare rimane intrappolato negli aggregati della proteina FUS; ciò indica che la formazione di tali agglomerati patologici può avere un effetto deleterio nelle normali funzioni di spola di questo RNA circolare e contribuire, così, al malfunzionamento dei motoneuroni.

“In questo studio abbiamo definito le caratteristiche di questo RNA – dichiara Irene Bozzoni a capo del gruppo della Sapienza – e descritto le alterazioni che si verificano nei motoneuroni che portano mutazioni della proteina FUS associate alla SLA”.

Questa ricerca, finanziata dall’European Research Council (ERC) e da Fondazione AriSLA, apre nuove interessanti frontiere nella comprensione delle malattie neurodegenerative, rispetto al ruolo degli aggregati patologici e degli RNA in essi contenuti.

Riferimenti:

Circ-Hdgfrp3 shuttles along neurites and is trapped in aggregates formed by ALS-associated mutant FUS – Eleonora D’Ambra, Tiziana Santini, Erika Vitiello, Sara D’Uva, Valentina Silenzi, Mariangela Morlando e Irene Bozzoni – iScience 2021 https://doi.org/10.1016/j.isci.2021.103504

 

Testo dal Settore Ufficio stampa e comunicazione Sapienza Università di Roma

Ipermemoria: un ricordo per ogni giorno. Nel cervello di “chi non dimentica” svelato il meccanismo che ordina la memoria

Un nuovo studio italiano, pubblicato sulla rivista Cortex, rivela l’esistenza di un’area cerebrale che permette alle persone dotate di ipermemoria autobiografica di “datare” i ricordi

Foto di Alexas_Fotos 

Un nuovo studio interamente italiano e pubblicato sulla rivista Cortex ha rilevato cosa rende il cervello degli individui “ipermemori” capace di ricordare anche i più piccoli dettagli di ogni giorno della loro vita. Grazie all’analisi di questi individui sono state identificate le aree del cervello specificamente deputate a dare una dimensione temporale ai ricordi, organizzando quelle informazioni che nelle persone comuni restano memorie indistinte e sfocate.

La ricerca, condotta presso i laboratori della Fondazione Santa Lucia IRCCS di Roma, è stata coordinata dall’equipe composta dai ricercatori Patrizia Campolongo, Valerio Santangelo, Tiziana Pedale e Simone Macrì, e ha coinvolto la Sapienza Università di Roma, l’Istituto Superiore di Sanità e l’Università di Perugia.

Per realizzare lo studio è stato chiesto a 8 soggetti ipermemori, già protagonisti nel 2018 di un altro lavoro della stessa equipe di ricerca, di ricordare un evento molto lontano nel tempo, di circa 20 anni prima. L’attività neuronale di questi 8 soggetti è stata quindi rilevata in tempo reale attraverso la risonanza magnetica funzionale, una tecnica non invasiva che permette ai ricercatori di osservare il cervello in azione e identificarne le aree più attive durante il ricordo dell’evento passato. Al gruppo di ipermemori è stato affiancato un gruppo di controllo composto da 21 persone senza particolari abilità o deficit della memoria.

I ricercatori hanno poi utilizzato una tecnica molto innovativa, chiamata Multivoxel Pattern Analysis (MVPA) per verificare che la migliore rappresentazione neurale dei ricordi nelle persone ipermemori fosse associata al ruolo funzionale di specifiche aree del cervello.

“I risultati dell’indagine – spiegano gli autori – hanno mostrato che nel discriminare tra ricordi autobiografici vecchi e nuovi, per le persone con ipermemoria si rileva un’elevata specializzazione della porzione ventro-mediale della corteccia prefrontale del cervello, un’area che si ritiene sia deputata all’organizzazione delle funzioni cognitive superiori. Questa stessa regione del cervello sembra essere meno precisa nelle persone con una memoria normale, fino a farci “confondere” la dimensione temporale del ricordo, vecchio o nuovo”.

“La memoria autobiografica permette di rievocare esperienze relative a tutto l’arco della vita consentendoci di conferire una dimensione temporale e narrativa alla nostra esistenza – continuano gli autori – e qui per la prima volta al mondo sono stati studiati i meccanismi neurobiologici associati alla dimensione temporale dei ricordi tramite una metodologia innovativa e, soprattutto, in un gruppo di persone ‘speciali’”.

Il dato che emerge da questo nuovo avanzamento scientifico è cruciale, non solo per l’analisi delle doti speciali di queste persone, ma soprattutto per aprire nuove frontiere di ricerca per la neuroriabilitazione della memoria e per la ricerca sulle funzioni mnesiche, in pazienti con una lesione del sistema nervoso centrale.

“Comprendere i sistemi neurobiologici alla base dell’iper-funzionamento della memoria – concludono i ricercatori – fornisce importanti indicazioni su quali aree è necessario intervenire per stimolare il ripristino di un funzionamento adeguato della memoria in persone con deficit o lesioni neurologiche”.

Riferimenti:

Enhanced cortical specialization to distinguish older and newer memories in highly superior autobiographical memory – Valerio Santangelo, Tiziana Pedale, Simone Macrì, Patrizia Campolongo. – Cortex 2020 https://doi.org/10.1016/j.cortex.2020.04.029

 

Il testo viene congiuntamente da: Ufficio Stampa Sapienza Università di Roma, Ufficio Stampa Fondazione Santa Lucia IRCCS, Ufficio stampa Istituto Superiore di Sanità, Ufficio Comunicazione Istituzionale, Social media e Grafica Università degli Studi di Perugia