News
Ad
Ad
Ad
Tag

PM10

Browsing

I risultati dello studio su Neurochemistry International

POLVERI SOTTILI E SCLEROSI MULTIPLA: DIMOSTRATO L’EFFETTO SU NEUROINFIAMMAZIONE E RIPARAZIONE DELLA MIELINA

I ricercatori del NICO – Università di Torino hanno dimostrato per la prima volta gli effetti negativi dell’esposizione al PM sulle capacità rigenerative del tessuto nervoso

polveri sottili sclerosi multipla mielina
Foto di JuergenPM

Secondo l’OMS causa la morte prematura di circa 4 milioni di persone nel mondo ogni anno. Ma l’esposizione cronica ad alti livelli di polveri sottili – il famoso PM (particulate matter) – è anche associata a una prevalenza della Sclerosi Multipla in alcune popolazioni. In particolare nei grandi centri urbani, dove i picchi di PM precedono sistematicamente i ricoveri ospedalieri dovuti all’esordio o alla recidiva di patologie croniche autoimmuni, tra cui la Sclerosi Multipla, come dimostrano numerosi studi epidemiologici. A oggi restano tuttavia da chiarire i meccanismi con cui l’esposizione al PM eserciti un effetto sul sistema nervoso centrale.

Grazie a un progetto pilota finanziato da AISM e la sua Fondazione FISM – Fondazione Italiana Sclerosi Multipla, le ricercatrici del NICO – Neuroscience Institute Cavalieri Ottolenghi dell’Università di Torino hanno chiarito per la prima volta che l’esposizione al PM ha effetti negativi sulle capacità rigenerative del tessuto nervoso, e in particolare della mielina, il rivestimento degli assoni che – se danneggiato, come avviene nella SM – compromette la trasmissione delle informazioni fra i neuroni.

 

Lo studio è nato grazie alla collaborazione tra i ricercatori del NICO Enrica Boda, Roberta Parolisi, Annalisa Buffo (Gruppo Fisiopatologia delle Cellule Staminali Cerebrali), Francesca Montarolo e Antonio Bertolotto (Gruppo Neurobiologia Clinica – CRESM, Centro di Riferimento Regionale SM dell’Ospedale San Luigi Gonzaga di Orbassano, TO) con il gruppo di ricerca di Valentina Bollati dell’Università di Milano e Andrea Cattaneo dell’Università dell’Insubria.

I risultati della ricerca – pubblicati sulla rivista Neurochemistry International – dimostrano in un modello animale che l’esposizione al PM2.5 ostacola la riparazione della mielina, inibisce il differenziamento degli oligodendrociti e promuove l’attivazione degli astrociti e della microglia, cellule che di norma svolgono funzioni di sostegno per i neuroni ma che – quando attivate dal sistema immunitario come accade nella Sclerosi Multipla – contribuiscono alla neuroinfiammazione.

Nelle prime fasi di malattia, la mielina può comunque essere riparata da cellule gliali presenti nel tessuto nervoso, chiamate oligodendrociti, il che contribuisce alla remissione – purtroppo spesso solo temporanea – dei sintomi. Le ricerche in corso nei nostri laboratori sono importanti perché permettono di capire quali fattori possono ostacolarne la riparazione – sottolinea la prof.ssa Enrica Boda del NICO, Università di Torino –  aggiungendo un tassello nella comprensione dei meccanismi di neurotossicità del PM. I nostri studi – continua – ora si focalizzano nell’identificare i meccanismi cellulari e molecolari che mediano il trasferimento del ‘danno’ dovuto all’inalazione del PM2.5 dai polmoni al sistema nervoso centraleRiconoscere fattori di rischio ambientali modificabili – come l’inquinamento dell’aria – e i meccanismi che mediano le loro azioni può fornire informazioni importanti per prevenire le recidive della Sclerosi Multipla agendo su politiche ambientali, stile di vita e possibilmente, progettazione di nuovi strumenti di prevenzione e interventi terapeutici”.

 

Neurochemistry International, maggio 2021

Exposure to fine particulatematter (PM2.5) hampers myelin repair in a mouse model of white matter demyelination.
Parolisi R, Montarolo F, Pini A, Rovelli S, Cattaneo A, Bertolotto A, Buffo A, Bollati V, Boda E

Testo e immagini dall’Ufficio Stampa dell’Università degli Studi di Torino

CORONAVIRUS NELL’ARIA? SOLO IN PRESENZA DI ASSEMBRAMENTI

Uno studio multidisciplinare, condotto a maggio 2020, analizza le concentrazioni in atmosfera di SARS-CoV-2 a Venezia e Lecce, evidenziandone le implicazioni per la trasmissione airborne. La ricerca, pubblicata su Environment International, è stata condotta da Cnr-Isac, Università Ca’ Foscari Venezia, Cnr-Isp e Istituto zooprofilattico sperimentale della Puglia e della Basilicata

Fig 2 Confronto delle concentrazioni di PM10 (in alto) e PM2.5 (in basso) nei due siti durante il periodo di campionamento

VENEZIA – La rapida diffusione del Covid-19, e il suo generare focolai di differente intensità in diverse regioni dello stesso Paese, hanno sollevato importanti interrogativi sui meccanismi di trasmissione del virus e sul ruolo della trasmissione in aria (detta airborne) attraverso le goccioline respiratorie. Mentre la trasmissione del SARS-CoV-2 per contatto (diretta o indiretta tramite superfici di contatto) è ampiamente accettata, la trasmissione airborne è invece ancora oggetto di dibattito nella comunità scientifica.

Grazie ad uno studio multidisciplinare, condotto dall’Istituto di scienze dell’atmosfera e del clima del Consiglio nazionale delle ricerche (Cnr-Isac) di Lecce, dall’Università Ca’ Foscari Venezia, dall’Istituto di scienze polari del Cnr (Cnr-Isp) di Venezia e dall’Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata (Izspb), sono state analizzate le concentrazioni  e le distribuzioni dimensionali delle particelle virali nell’aria esterna raccolte simultaneamente, durante la pandemia, in Veneto e Puglia nel mese di maggio 2020, tra la fine del lockdown e la ripresa delle attività. La ricerca, avviata grazie al progetto “AIR-CoV (Evaluation of the concentration and size distribution of SARS-CoV-2 in air in outdoor environments) e pubblicata sulla rivista scientifica Environment International, ha evidenziato una bassa probabilità di trasmissione airbone del contagio all’esterno se non nelle zone di assembramento.

“Il nostro studio ha preso in esame due città a diverso impatto di diffusione: Venezia-Mestre e Lecce, collocate in due parti del Paese (Nord e Sud Italia) caratterizzate da tassi di diffusione del COVID-19 molto diversi nella prima fase della pandemia”, spiega Daniele Contini, ricercatore Cnr-Isac.

Durante la prima fase della pandemia, la diffusione del SARS-CoV-2 è stata eccezionalmente grave nel Veneto, con un massimo di casi attivi (cioè individui infetti) di 10.800 al 16 aprile 2020 (circa il 10% del totale dei casi italiani) su una popolazione di 4,9 milioni. Invece, la Puglia ha raggiunto il massimo dei casi attivi il 3 maggio 2020 con 2.955 casi (3% del totale dei casi italiani) su una popolazione di 4,0 milioni di persone. All’inizio del periodo di misura (13 maggio 2020), le regioni Veneto e Puglia erano interessate, rispettivamente, da 5.020 e 2.322 casi attivi.

coronavirus aria COVID-19 airborne
Fig 1 Numero giornaliero di individui infetti osservati in Veneto e Puglia durante l’epidemia di Covid-19

“Il ruolo della trasmissione airborne dipende da diverse variabili quali la concentrazione e la distribuzione dimensionale delle particelle virali in atmosfera e le condizioni meteorologiche. Queste variabili poi, si diversificano a seconda che ci considerino ambienti outdoor e ambienti indoor”, sottolinea Marianna Conte, ricercatrice Cnr-Isac.

La potenziale esistenza del virus SARS-CoV-2 nei campioni di aerosol analizzati è stata determinata raccogliendo il particolato atmosferico di diverse dimensioni dalla nanoparticelle al PM10 e determinando la presenza del materiale genetico (RNA) del SARS-CoV-2 con tecniche di diagnostica di laboratorio avanzate.

“Tutti i campioni raccolti nelle aree residenziali e urbane in entrambe le città sono risultati negativi, la concentrazione di particelle virali è risultata molto bassa nel PM10 (inferiore a 0.8 copie per m3 di aria) e in ogni intervallo di dimensioni analizzato (inferiore a 0,4 copie/m3 di aria)”, prosegue Contini. “Pertanto, la probabilità di trasmissione airborne del contagio in outdoor, con esclusione di quelle zone molto affollate, appare molto bassa, quasi trascurabile. Negli assembramenti le concentrazioni possono aumentare localmente così come i rischi dovuti ai contatti ravvicinati, pertanto è assolutamente necessario rispettare le norme anti-assembramento anche in aree outdoor”.

“Un rischio maggiore potrebbe esserci in ambienti indoor di comunità scarsamente ventilati, dove le goccioline respiratorie più piccole possono rimanere in sospensione per tempi più lunghi ed anche depositarsi sulle superfici”, sottolinea Andrea Gambaro, professore a Ca’ Foscari. “E’ quindi auspicabile mitigare il rischio attraverso la ventilazione periodica degli ambienti, l’igienizzazione delle mani e delle superfici e l’uso delle mascherine”.

“Lo studio e l’applicazione di metodi analitici sensibili con l’utilizzo di piattaforme tecnologicamente avanzate permettono, oggi, di rilevare la presenza del Sars-CoV-2 anche a concentrazioni molto basse, come potrebbe essere negli ambienti outdoor e indoor, rendendo la diagnostica di laboratorio sempre più affidabile” conclude Giovanna La Salandra, dirigente della Struttura ricerca e sviluppo scientifico dell’Izspb.

Lo studio delle concentrazioni in alcuni ambienti indoor di comunità sarà oggetto di una seconda fase del progetto AIR-CoV.

 

L’articolo su coronavirus e concentrazioni nell’aria:

D. Chirizzi, M. Conte, M. Feltracco, A. Dinoi, E. Gregoris, E. Barbaro, G. La Bella, G. Ciccarese, G. La Salandra, A. Gambaro, D. Contini, 2020. SARS-CoV-2 concentrations and virus-laden aerosol size distributions in outdoor air in north and south of Italy. Environment International 106255, https://doi.org/10.1016/j.envint.2020.106255
Link open access: https://authors.elsevier.com/sd/article/S0160412020322108

 

Testo e immagini dall’Università Ca’ Foscari Venezia sulle concentrazioni e le distribuzioni dimensionali delle particelle di coronavirus nell’aria raccolte durante la prima fase della pandemia.

L’inquinamento atmosferico è un problema che occupa spesso le prime pagine dei giornali nel periodo autunno-inverno, quando nelle grandi città i livelli di polveri sottili salgono sopra i limiti di legge e scattano le consuete (e insufficienti) misure di blocco del traffico per cercare di ridurlo.

D’estate non se ne parla più, e sembra quasi che il problema scompaia. E invece no, cambia solo termini. L’osservato speciale dei mesi estivi è un altro, l’ozono. Vediamo quindi di che si tratta, come si forma e quali sono i limiti di legge.

L’ozono stratosferico

Conosciamo l’ozono (O3) come composto fondamentale per la vita sulla Terra, in quanto, in stratosfera, filtra le radiazioni UV del Sole dannose per la vita. Queste radiazioni possono causare tumori della pelle o incidere sul sistema immunitario, così come possono causare alterazione di alcuni ecosistemi, in particolare quelli acquatici, e influire così su catene alimentari e cicli biogeochimici.

ozono stratosferico
L’ozono nella stratosfera è fondamentale per la vita sulla Terra. (Foto di Arek Socha da Pixabay)

L’assottigliamento dello strato di ozono stratosferico (o “ozonosfera”), causato in particolare da composti clorurati e fluorurati derivanti da attività umana (applicazioni industriali e prodotti di consumo come frigoriferi, condizionatori d’aria ed estintori), è stata grande fonte di preoccupazione a livello globale in particolare dalla seconda metà degli anni ’80 e ha portato al bando quasi totale di CFC e di altre sostanze alogenate.

L’ozono troposferico

Lo stesso composto, fondamenta negli strati alti dell’atmosfera, risulta invece dannoso se presente in elevate quantità a livello di troposfera, ovvero, se presente nella parte di atmosfera in cui viviamo e respiriamo.

La molecola di ozono
Struttura della molecola di ozono. Immagine di Ben Mills, generata in Accelrys DS Visualizer, in pubblico dominio

L’ozono è un inquinante secondario, che si forma in presenza di inquinanti precursori (ossidi di azoto NOx e composti organici volatili – COV) e forte radiazione luminosa. Per questo motivo è un inquinante tipicamente estivo, a causa della maggiore luce solare è in questo periodo dell’anno che si forma in quantità maggiori, insieme ad altri inquinanti atmosferici dannosi (formaldeide, nitrato di periossiacetile acido nitrico), e viene spesso chiamato anche “smog fotochimico”. 

I precursori dell’ozono possono essere di origine naturale (come eruzioni vulcaniche o incendi spontanei), ma in modo più prevalente sono di origine antropogenica (traffico veicolare e attività industriali).

L’esposizione ad alte concentrazioni di ozono è potenzialmente pericolosa per la salute umana, in quanto è altamente irritante per le vie respiratorie e può causare malattie polmonari, insufficienza respiratoria e tumori. Sulla vegetazione, provoca effetti visibili alle foglie, e conseguente alterazione della fotosintesi e della crescita della pianta.

Il monitoraggio

L’ozono è uno dei composti principali monitorati costantemente per valutare la qualità dell’aria, insieme a polveri sottili (PM10 e PM2,5) e biossido di azoto. I limiti di concentrazione sono stabiliti dal D.Lgs 155/2010.

Limiti di legge dell'ozono troposferico
Fonte: elaborazione da D. Lgs. 155/2010

Per capire meglio questi valori, ecco le definizioni, così come riportate dal D.Lgs. 155/2010: 

  • soglia di informazione: livello oltre il quale sussiste un rischio per la salute umana in caso di esposizione di breve durata per alcuni gruppi particolarmente sensibili della popolazione nel suo complesso ed il cui raggiungimento impone di assicurare informazioni adeguate e tempestive; 
  • soglia di allarme: livello oltre il quale sussiste un rischio per la salute umana in caso di esposizione di breve durata per la popolazione nel suo complesso e il cui raggiungimento impone di adottare provvedimenti immediati;
  • obiettivo a lungo termine: livello da raggiungere nel lungo periodo mediante misure proporzionate, al fine di assicurare un’efficace protezione della salute umana e dell’ambiente.

Tra questi, il parametro principale da prendere in considerazione è l’obiettivo a lungo termine.  Secondo i dati più recenti forniti dall’ISPRA (Istituto Superiore per la Protezione e la Ricerca Ambientale), nel 2018 sulle 312 centraline di monitoraggio sparse sul territorio nazionale, in ben 291 (il 92%) è stato superato il valore limite per questo parametro, e i valori più elevati sono stati riscontrati nel Nord Italia.

Il monitoraggio degli inquinanti atmosferici spetta alle Arpa, ovvero alle Agenzie regionali per la protezione ambientale, che quotidianamente pubblicano sui loro siti Internet i valori riscontrati e emanano così dei bollettini sulla qualità dell’aria. Per esempio, l’Arpa Lombardia riporta i dati in una mappa e consente la ricerca per composto e per comune. Se volete quindi conoscere la situazione dalle vostre parti, sapete dove cercare.  

smog fotochimico inquinamento atmosferico estate
Foto di Albrecht Fietz da Pixabay