UN PROTOCOLLO INNOVATIVO PER LA SCOPERTA DI NUOVI POTENZIALI FARMACI
Istituto Telethon Dulbecco, Istituto Nazionale di Fisica Nucleare, Università di Trento e Università degli Studi di Perugia insieme per la ricerca mirata di farmaci in grado di contrastare gravi malattie neurodegenerative ad oggi incurabili
Da sinistra: Lidia Pieri (Sibylla), Graziano Lolli (Dip. CIBIO, UniTrento), Maria Letizia Barreca (Dip. Scienze Farmaceutiche, UniPG), Andrea Astolfi (Dip. Scienze Farmaceutiche, UniPG/Sibylla), Giovanni Spagnolli (Dip. CIBIO, UniTrento/Sibylla), Alberto Boldrini (Sibylla), Luca Teruzzi (Sibylla), Emiliano Biasini (Dip. CIBIO, UniTrento), Pietro Faccioli (Dip. Fisica, UniTrento/INFN-TIFPA), Tania Massignan (Dip. CIBIO, UniTrento, ora a Sibylla)
Trento–Perugia, 12 gennaio 2021 –Un protocollo innovativo per la scoperta di nuovi potenziali farmaci è stato messo a punto da un ampio team internazionale guidato da ricercatori e ricercatrici dell’Università degli Studi di Trento (Dipartimento di Biologia Cellulare, Computazionale e Integrativa e dal Dipartimento di Fisica), dell’Università degli Studi di Perugia (Dipartimento di Scienze Farmaceutiche), dell’Istituto Telethon Dulbecco, Fondazione Telethon e dell’Istituto Nazionale di Fisica Nucleare (INFN).
“Pharmacological Protein Inactivation by Folding Intermediate Targeting” (PPI-FIT), questo il nome del nuovo metodo, è frutto di un lavoro dal forte carattere multidisciplinare, grazie a contributi che vanno dalla fisica teorica all’informatica, alla chimica farmaceutica, dalla biochimica alla biologia cellulare. Il lavoro di ricerca è stato pubblicato oggi sulla rivista Communications Biology – Nature Publishing Group.
«Il nuovo approccio multidisciplinare consiste nell’identificare piccole molecole in grado di bloccare il processo di ripiegamento (folding) di una proteina coinvolta in un processo patologico, promuovendone quindi la degradazione attraverso i meccanismi di controllo presenti nelle cellule» – spiegano i ricercatori. «PPI-FIT è stato applicato per la prima volta nel campo delle malattie da prioni, patologie neurodegenerative rare che colpiscono l’uomo e altri mammiferi e che sono balzate all’attenzione dell’opinione pubblica negli anni Novanta in occasione dell’emergenza “mucca pazza”. Queste patologie sono causate dalla conversione conformazionale di una normale proteina, chiamata proteina prionica cellulare, in una forma patogena aggregata, in grado di propagarsi come un agente infettivo (prione). Grazie al metodo PPI-FIT, gli autori hanno identificato una classe di molecole in grado di ridurre i livelli cellulari della proteina prionica e bloccare la replicazione della forma infettiva nelle colture cellulari».
Il calcolo impiegato nel PPI-FIT si fonda su alcuni metodi matematici originariamente sviluppati in fisica teorica per studiare fenomeni tipici del mondo subatomico, come l’effetto tunnel quantistico. Questi metodi sono poi stati adattati per la simulazione di processi biomolecolari complessi, come il ripiegamento e l’aggregazione di proteine.
I risultati ottenuti indicano che bersagliare i processi di ripiegamento delle proteine potrebbe rappresentare un nuovo paradigma farmacologico per modulare i livelli di diversi fattori coinvolti in processi patologici. Da una prospettiva ancora più ampia, questo studio suggerisce l’esistenza di un generico meccanismo di regolazione dell’espressione proteica, ad oggi non considerato, che agisce al livello dei percorsi di ripiegamento.
Lo studio si è avvalso anche della collaborazione di gruppi di ricerca dell’Università di Santiago de Compostela, dell’Istituto di Biofisica del Consiglio Nazionale delle Ricerche, dell’Institute of Neuropathology dell’University Medical Center di Hamburg-Eppendorf, del Dipartimento di Scienze Biomediche dell’Università di Padova e dell’Istituto Veneto di Medicina Molecolare di Padova.
I risultati descritti nello studio hanno inoltre generato anche due richieste di brevetto da parte delle istituzioni coinvolte, una già approvata e la seconda attualmente in attesa di approvazione.
La start-up Sibylla Biotech (https://www.sibyllabiotech.it), nata dalla collaborazione scientifica tra alcuni degli autori dello studio – Maria Letizia Barreca, Giovanni Spagnolli, Graziano Lolli, Pietro Faccioli ed Emiliano Biasini – e spin off dell’Università degli Studi di Perugia, dell’ Università di Trento e dell’Istituto Nazionale di Fisica Nucleare, sta ora impiegando le potenzialità di PPI-FIT per sviluppare farmaci contro un’ampia varietà di patologie umane, quali ad esempio il cancro e più recentemente COVID-19, come ad oggi documentato dal deposito di tre domande di brevetto.
La tecnologia PPI-FIT
PPI-FIT (Pharmacological Protein Inactivation by Folding Intermediate Targeting) è un protocollo farmacologico in grado di identificare molecole la cui funzione è quella di ridurre l’espressione di una proteina nella cellula, disattivandone la funzione patologica. Questo è possibile perché le molecole sono scelte per legarsi ad una “tasca” proteica identificata su uno stato intermedio del processo di ripiegamento (folding) della proteina. Bloccato a metà strada, il ripiegamento non avviene e la proteina viene degradata dalla cellula stessa.
La possibilità di identificare stati intermedi di folding si basa su una piattaforma di calcolo rivoluzionaria, che permette di simulare al calcolatore i percorsi di ripiegamento di proteine di rilevanza biologica, con livello di precisione atomico. Il metodo di calcolo che ha portato a questo risultato si fonda su metodi matematici di fisica teorica che sono stati adattati per consentire la simulazione di processi biomolecolari complessi, come il ripiegamento e l’aggregazione di proteine, grazie al lavoro di Pietro Faccioli, professore associato nel Dipartimento di Fisica dell’Università di Trento e affiliato all’Istituto Nazionale di Fisica Nucleare, e del suo team.
Una proteina esce dal ribosoma come una catena di amminoacidi, e assume la sua forma biologicamente attiva solo in un secondo momento, dopo aver completato il percorso di ripiegamento (folding). A causa dell’intrinseca complessità, lo studio del ripiegamento di proteine biologicamente interessanti richiede tempi di calcolo inaccessibili con i metodi finora disponibili, anche utilizzando il più grande supercomputer al mondo appositamente disegnato per la dinamica molecolare. L’imponente avanzamento tecnologico che permette le simulazioni alla base di PPI-FIT è il frutto di una visione interdisciplinare nata all’interno del panorama scientifico dell’INFN, che collega la fisica teorica con la chimica e la biologia. Avendo la possibilità di osservare per la prima volta questi percorsi di ripiegamento, la tecnologia PPI-FIT consente di identificare e caratterizzare degli stati intermedi conformazionali che sono visitati dalla proteina durante il percorso verso lo stato biologicamente attivo (o nativo), e la cui emivita ha rilevanza biologica. Tali stati intermedi possono contenere una tasca di legame, diventando quindi nuovi bersagli per lo sviluppo di farmaci in grado di legarli e bloccarli, portando alla loro inattivazione.
La tecnologia è stata inventata dai soci fondatori di Sibylla Biotech nell’ambito di una ricerca accademica sulla replicazione del prione supportata da INFN, Fondazione Telethon, Università degli Studi di Trento e Università degli Studi di Perugia ed è stata utilizzata con successo in studi scientifici e brevettati, per ricostruire il meccanismo di replicazione dei prioni, e per sviluppare una nuova strategia farmacologica contro questi agenti infettivi.
*Giovanni Spagnolli, Tania Massignan, Andrea Astolfi, Silvia Biggi, Marta Rigoli, Paolo Brunelli, Michela Libergoli, Alan Ianeselli, Simone Orioli, Alberto Boldrini, Luca Terruzzi, Valerio Bonaldo, Giulia Maietta, Nuria L. Lorenzo, Leticia C. Fernandez, Yaiza B. Codeseira, Laura Tosatto, Luise Linsenmeier, Beatrice Vignoli, Gianluca Petris, Dino Gasparotto, Maria Pennuto, Graziano Guella, Marco Canossa, Hermann C. Altmeppen, Graziano Lolli, Stefano Biressi, Manuel M. Pastor, Jesús R. Requena, Ines Mancini, Maria L. Barreca, Pietro Faccioli, Emiliano Biasini. “Pharmacological Inactivation of the Prion Protein by Targeting a Folding Intermediate”. Communications Biology, 2012
Testo e immagine dall’Ufficio Stampa Università di Trento e Università degli Studi di Perugia
Ricerca per il contrasto dei tumori solidi presso il Dipartimento di Scienze Farmaceutiche Unipgfinanziata dalla Fondazione Veronesi
il dottor Andrea Astolfi dell’UniPG, tra gli autori della ricerca sulla proteina AKT, una proteina chiave nella proliferazione e nella sopravvivenza di diversi tipi di tumori solidi come il cancro al seno, o di tumori rari come la leucemia mieloide acuta
La Fondazione Umberto Veronesi ha finanziato il progetto “Tuning the Precision Oncology on the PI3K/AKT/mTOR pathway” presentato dal dottore Andrea Astolfi e coordinato dalla Professoressa Maria Letizia Barreca, professore Associato del Dipartimento di Scienze Farmaceutiche dell’Università degli Studi di Perugia.
Lo scopo del progetto – premiato nell’ambito del bando Post-Doctoral Fellowship 2021 – è quello di individuare nuove molecole in grado di colpire selettivamente AKT, una proteina chiave nella proliferazione e nella sopravvivenza di diversi tipi di tumori solidi come il cancro al seno, o di tumori rari come la leucemia mieloide acuta.
Lo studio ha inoltre l’obiettivo di costruire una piattaforma online facilmente consultabile contenente tutte le informazioni note riguardanti l’inibizione di AKT e di altre proteine coinvolte nel suo pathway, come PI3K e mTOR. Questo strumento digitale potrà supportare la comunità scientifica nella ricerca e sviluppo di nuove strategie nell’oncologia di precisione.
Risultato di grande prestigio per i due scienziati per l’Università degli Studi di Perugia: la Fondazione ha ricevuto ben 557 domande, tutte di altissimo profilo. La Fondazione Veronesi nel 2021 erogherà 110 borse di ricerca annuali, raggiungendo ricercatori in 44 Istituti di Ricerca e Università di 27 differenti città.
Testo e foto dall’Università degli Studi di Perugia
Ricerca sull’atrofia muscolare in pazienti tumorali terminali, coordinata dal professor Guglielmo Sorci, è stata finanziata dalla Fondazione AIRC
Il gruppo di ricerca del professor Guglielmo Sorci
La Fondazione AIRC per la Ricerca sul Cancro ha finanziato, per un totale di 408.000 euro in 5 anni, il progetto “Preclinical targeting of RAGE (receptor for advanced glycation end-products) to counteract cancer cachexia” coordinato dal professor Guglielmo Sorci, Ordinario di Anatomia Umana del Dipartimento di Medicina e Chirurgia dell’Università degli Studi di Perugia.
“Il progetto ha lo scopo di comprendere l’effettivo ruolo del recettore RAGE nel sostenere la cachessia indotta da cancro, un particolare tipo di atrofia muscolare: un evento che interessa oltre la metà dei pazienti tumorali terminali e che è causa di morte in molti di essi – spiega il professor Sorci -. Si prefigge, inoltre, di valutare l’effetto dell’uso di inibitori di RAGE o inibitori di ligandi di questo recettore in una serie di modelli pre-clinici, nonché di stabilire una correlazione tra modelli pre-clinici e pazienti cachettici riguardo all’espressione di RAGE a livello muscolare e sierico. L’inibizione farmacologica di RAGE potrebbe rappresentare un promettente approccio per contrastare l’atrofia muscolare in condizioni di cachessia e potrebbe essere utilizzata come esercizio-mimetico in pazienti cachettici con elevata debolezza muscolare”.
Il professor Guglielmo Sorci
Inoltre – viene evidenziato -, RAGE e i suoi ligandi potrebbero rappresentare importanti biomarker per monitorare lo stato cachettico e l’efficacia di trattamenti anti-cachettici, il che riveste una rilevante importanza dato che al momento non esistono biomarker specifici per la cachessia.
Il progetto si avvale della collaborazione di una serie di centri universitari (Roma Sapienza, Torino, Padova, Milano) e fa seguito ad una serie di studi sul recettore RAGE condotti nei laboratori dell’Università degli Studi di Perugia (www.myolab-unipg.com).
Testo e foto dall’Università degli Studi di Perugia sulla ricerca sull’atrofia muscolare in pazienti tumorali terminali, coordinata dal professor Guglielmo Sorci.
Olio: la tecnologia in alto vuotoaumenta il contenuto fenolico nell’extravergine d’oliva
Su “Food Chemistry” i risultati di una ricerca congiuntaUniversità degli Studi di Perugia – Scuola Superiore Sant’Anna di Pisa
PERUGIA/PISA. Le proprietà salutistiche e le caratteristiche sensoriali degli olii sono elementi determinanti per la produzione di olii extravergini di oliva di alta qualità, sempre più graditi dai consumatori.
olive (credits: Alessandra Francini, Istituto di Scienze della Vita della Scuola Superiore Sant’Anna di Pisa)
Una ricerca coordinata da Maurizio Servili, docente al Dipartimento di Scienze Agrarie, Alimentari e Ambientali dell’Università degli Studi di Perugia e da Luca Sebastiani, direttore dell’Istituto di Scienze della Vita della Scuola Superiore Sant’Anna di Pisa, pubblicata sulla rivista internazionale Food Chemistry, ha dimostrato come l’impiego della tecnologia in alto vuoto nel processo di estrazione meccanica dell’olio di oliva abbia un impatto positivo sulla concentrazione dei composti fenolici – ai quali sono legate alcune proprietà salutistiche e sensoriali degli olii extravergini – con incrementi compresi tra il 25 per cento e il 49 per cento, valutati su olii ottenuti da tre tra le principali cultivar nazionali.
diagramma di flusso del processo di estrazione meccanica dell’olio di oliva tradizionale (freccia rossa) e in alto vuoto (freccia blu)
L’applicazione dell’alto vuoto in fase di gramolatura (ovvero la fase di rimescolamento della pasta di olive che favorisce l’aggregazione delle micro-gocce di olio in aggregati più grandi, migliorando le rese) determina invece una riduzione della componente volatile che risulta però essere limitata, grazie all’impiego delle basse temperature in fase di estrazione.
immagine al crio-microscopio elettronico a scansione (Cryo-SEM) di pasta di olive al momento della gramolatura in condizioni di alto vuoto. Sono ben visibili le gocce di olio che sono fuoriuscite dalle cellule e si sono riunite in gocce di olio di diametro superiore (Antonio Minnocci, Istituto di Scienze della Vita della Scuola Superiore Sant’Anna di Pisa)
Un’ulteriore nota positiva e degna di ulteriori approfondimenti per la ricerca è rappresentata dalla forte riduzione di alcuni composti volatili ad impatto negativo sulla qualità degli olii extravergini di oliva quali etanolo, acido acetico ed etil-acetato.
“Grazie alla collaborazione già in corso con Alfa Laval, azienda leader di macchinari per la produzione di olio d’oliva, i risultati di questa ricerca non saranno utili soltanto per il mondo accademico, ma potranno facilitare lo sviluppo di applicazioni dell’alto vuoto su scala industriale con ricadute positive per la qualità dell’olio extravergine di oliva”, spiegano Maurizio Servili e Luca Sebastiani.
i coordinatori della ricerca, da sinistra Maurizio Servili e Luca Sebastiani
Alla ricerca hanno contribuito Gianluca Veneziani, Agnese Taticchi, Sonia Esposto, Stefania Urbani, Roberto Selvaggini, Beatrice Sordini e Luigi Daidone, per il gruppo coordinato da Maurizio Servili del Dipartimento di Scienze Agrarie, Alimentari ed Ambientali dell’Università di Perugia; Luca Sebastiani e Antonio Minnocci dell’Istituto di Scienze della Vita della Scuola Superiore Sant’Anna di Pisa.
albero di olivo (credits: Alessandra Francini, Istituto di Scienze della Vita della Scuola Superiore Sant’Anna di Pisa)
L’articolo “High vacuum-assisted extraction affects virgin olive oil quality: Impact on phenolic and volatile compounds”, pubblicato su “Food Chemistry” (Agnese Taticchi, Sonia Esposto, Gianluca Veneziani, Antonio Minnocci, Stefania Urbani, Roberto Selvaggini, Beatrice Sordini, Luigi Daidone, Luca Sebastiani, Maurizio Servili) è disponibile al link: https://www.sciencedirect.com/science/article/abs/pii/S0308814620322317
Testo e immagini dall’Università degli Studi di Perugia e Scuola Superiore Sant’Anna
Il professor Emidio Albertini premiato per uno studio sul ruolo svolto dalla variazione del numero di cromosominell’evoluzione delle piante
Emidio Albertini
Il Prof. Emidio Albertini, del Dipartimento di Scienze Agrarie, Alimentari e Ambientali (DSA3) dell’Università degli Studi di Perugia, è risultato vincitore di un progetto per il trasferimento di conoscenze di Ricerca e Innovazione Tecnologica nell’ambito dell’H2020-Marie Sklodowska-Curie.
Il Prof. Albertini, che negli ultimi 5 anni è stato responsabile di 4 ‘azioni’ Marie Sklodowska-Curie, ha ottenuto il prestigioso riconoscimento con il progetto dal “The polyploidy paradigm and its role in plant breeding”; è il secondo che lo vede coordinatore ed è volto a comprendere il ruolo giocato dalla variazione del numero cromosomico nella evoluzione delle piante.
Il progetto ha avuto una delle maggiori valutazioni (90.2 su 100) tra quelli finanziati dalla EU confermando il gruppo di Genetica del Dipartimento di Scienze Agrarie, Alimentari e Ambientali dell’Università degli Studi di Perugia ai vertici Europei.
Partner dello studio sono, oltre alle Università di Milano e di Napoli, la University of California, Davis (USA),la Lincoln University (Nuova Zelanda),il CONICET (Argentina),la Galway University (Irlanda) e due industrie, la Sequentia Biotech (Spagna) e la Keygene (Olanda).
“Organismi come l’uomo e gli animali hanno normalmente due set completi di cromosomi (46 cromosomi nel caso dell’uomo) e mal sopportano la presenza di qualche cromosoma soprannumerario che molto spesso porta alla morte dell’organismo – spiega il Prof. Albertini -. Nel corso dei millenni, invece, le piante hanno sviluppato un complesso sistema genetico che ha permesso loro di avere numeri multipli di assetti cromosomici che hanno conferito caratteristiche uniche. Si pensi, ad esempio, ai frumenti, che derivano tutti dalla moltiplicazione di un assetto cromosomico di base. Così dal farro monococco, che ha due assetti cromosomici, nel corso dei millenni si è sviluppato il frumento duro (quello della nostra pasta), che di assetti ne ha 4 e, molti decenni dopo, il frumento tenero (quello del nostro pane) che di set completi di cromosomi ne ha ben 6”.
La notevole superiorità dei poliploidi è stata dunque utilizzata da decenni dai genetisti vegetali per ottenere varietà sempre migliori e più produttive. Nonostante questo, poco si sa su come le piante poliploidi si siano formate in natura. E l’obiettivo di questo progetto è proprio quello di far luce su questo affascinante aspetto evolutivo.
“Siamo molto soddisfatti che il progetto che ci vede coordinatori sia stato finanziato a solo un anno di distanza dalla conclusione del precedente – conclude il Prof. Albertini –: dimostrazione che il lavoro che da anni svolgiamo sullo studio dell’evoluzione delle piante e del loro sistema riproduttivo è apprezzato e riconosciuto a livello internazionale”.
Emidio Albertini
Perugia, 4 settembre 2020
Testo e foto dall’Ufficio Stampa dell’Università degli Studi di Perugia sulla premiazione del professor Emidio Albertini per uno studio sul ruolo svolto dalla variazione del numero di cromosomi nell’evoluzione delle piante.
Onde gravitazionali: le nuove sensazionali scoperte del team internazionale di ricercatori Virgo e LIGO
Il ruolo degli scienziati UNIPG
Helios Vocca e Roberto Rettori
Si è svolta oggi presso il Rettorato dell’Università degli Studi di Perugia la conferenza stampa di presentazione ai giornalisti umbri delle nuove, sensazionali scoperte scientifiche realizzate dai ricercatori dei progetti Virgo e LIGO.
Helios Vocca e Roberto Rettori
All’incontro con i giornalisti – realizzato in contemporanea con l’omologo evento internazionale che ha visto collegati i vari gruppi di ricerca in modalità streaming – erano presenti i professori Helios Vocca, Delegato del Rettore per il settore Ricerca, Valutazione e Fund-raising e Roberto Rettori, Delegato del Rettore per il settore Orientamento, Tutorato e Divulgazione scientifica, insieme a numerosi Delegati Rettorali e Direttori dei Dipartimenti dello Studium.
I ricercatori dei progetti Virgo e LIGO hanno annunciato l’osservazione della fusione di un sistema binario di massa straordinariamente grande: due buchi neri di 66 e 85 masse solari, hanno prodotto alla fine un buco nero di circa 142 masse solari. Il buco nero finale è il più massiccio rivelato finora per mezzo delle onde gravitazionali. Si trova in una regione di massa entro cui non è mai stato osservato prima un buco nero, né con onde gravitazionali né con osservazioni elettromagnetiche, e potrebbe servire a spiegare la formazione dei buchi neri supermassicci. Inoltre, il componente più pesante del sistema binario iniziale si trova in un intervallo di massa proibito dalla teoria dell’evoluzione stellare e rappresenta una sfida per la nostra comprensione degli stadi finali della vita delle stelle massicce.
Helios Vocca
“Il risultato di oggi è per noi fonte di enorme soddisfazione – dichiara il professore Helios Vocca, responsabile del gruppo Virgo Perugia – perché si tratta di una nuova scoperta realizzata grazie ad un detector che è frutto anche del lavoro realizzato dal gruppo Virgo Perugia in trent’anni di attività: un impegno, quello del team perugino, che è stato ampiamente riconosciuto a livello internazionale e che ci vede coinvolti nel management sia del progetto Virgo, sia del nuovo esperimento giapponese ‘Kagra’, guidato da Takaaki Kajita, premio Nobel per la Fisica nel 2015 e laureato honoris causa del nostro Ateneo. Del nostro gruppo, inoltre – aggiunge Vocca – fa parte anche il dottor Michele Punturo, della sezione INFN di Perugia, attualmente Principal Investigator dell’esperimento ‘Einstein Europe’, il futuro detector europeo per le onde gravitazionali.
Il team di Perugia possiede competenze uniche al mondo – spiega il professor Vocca – in particolare sulle sospensioni degli specchi degli interferometri. In virtù di questa altissima specializzazione, stiamo lavorando insieme ad altri colleghi di vari Paesi europei e giapponesi per creare un laboratorio internazionale proprio a Perugia o comunque in Umbria, al fine di sfruttare le ricadute tecnologiche dei rilevatori di onde gravitazionali in altri settori, quali ad esempio quello del rischio sismico, affinché le avanzatissime tecnologie utilizzate nello spazio servano al miglioramento della vita dei cittadini.
Il tutto, inoltre, – conclude il professor Helios Vocca – avrà un’importante valenza per i nostri studenti: stiamo infatti puntando a costruire, in questo ambito scientifico, un’offerta didattica innovativa interuniversitaria, ovvero corsi di laurea realizzati in partnership con altri Atenei del centro-Italia, per dar vita a una ‘scuola’ che sia davvero unica persino a livello internazionale”.
Roberto Rettori
“In questo periodo di emergenza, nel rispetto delle direttive ministeriali, l’Università degli Studi di Perugia non ha mai interrotto né l’attività didattica né quella di ricerca – ha sottolineato il professore Roberto Rettori -. L’esperimento Virgo, che per l’unità di Perugia è coordinato dal professor Helios Vocca del Dipartimento di Fisica e Geologia, ne è una chiara dimostrazione.
I risultati che i nostri eccellenti ricercatori ottengono in tutte le discipline, permettono al nostro Ateneo di crescere e sempre di più diventare un punto di riferimento in Italia e nel mondo, promuovendo quindi Perugia e il suo territorio. Attraverso le numerose iniziative di divulgazione della ricerca che stiamo organizzando in tutta la regione, l’Università degli Studi di Perugia esce dalle sue mura, arriva alla popolazione e diventa suo patrimonio da difendere e valorizzare. Ringrazio il Magnifico Rettore, Professore Maurizio Oliviero, per il supporto costante che offre a tali iniziative nonché tutti i colleghi per il loro lavoro. L’Ateneo di Perugia è soprattutto il luogo accogliente della conoscenza dove i giovani possono realizzare le loro passioni e costruire il loro futuro”.
La Sala Dessau all’Università di Perugia
Perugia, 2 settembre 2020
Virgo e LIGO svelano nuove e inattese popolazioni di buchi neri
Helios Vocca e Roberto Rettori
Virgo e LIGO hanno annunciato l’osservazione della fusione di un sistema binario di massa straordinariamente grande: due buchi neri di 66 e 85 masse solari, hanno prodotto alla fine un buco nero di circa 142 masse solari. Il buco nero finale è il più massiccio rivelato finora per mezzo delle onde gravitazionali. Si trova in una regione di massa entro cui non è mai stato osservato prima un buco nero, né con onde gravitazionali né con osservazioni elettromagnetiche, e potrebbe servire a spiegare la formazione dei buchi neri supermassicci. Inoltre, il componente più pesante del sistema binario iniziale si trova in un intervallo di massa proibito dalla teoria dell’evoluzione stellare e rappresenta una sfida per la nostra comprensione degli stadi finali della vita delle stelle massicce.
Gli scienziati delle collaborazioni internazionali che sviluppano e utilizzano i rivelatori Advanced Virgo presso lo European Gravitational Observatory (EGO) in Italia e i due Advanced LIGO negli Stati Uniti hanno annunciato l’osservazione di un buco nero di circa 142 masse solari, che è il risultato finale della fusione di due buchi neri di 66 e 85 masse solari. I componenti primari e il buco nero finale si trovano tutti in un intervallo di massa mai visto prima, né con onde gravitazionali né con osservazioni elettromagnetiche. Il buco nero finale è il più massiccio rivelato finora per mezzo di onde gravitazionali. L’evento di onda gravitazionale è stato osservato dai tre interferometri della rete globale il 21 maggio 2019. Il segnale (chiamato GW190521) è stato analizzato dagli scienziati, che stimano che la sorgente disti circa 17 miliardi di anni luce dalla Terra. Due articoli scientifici che riportano la scoperta e le sue implicazioni astrofisiche sono stati pubblicati oggi su Physical Review Letters e Astrophysical Journal Letters,
rispettivamente.
“Il segnale osservato il 21 maggio dello scorso anno è molto complesso e, dal momento che il sistema è così massiccio, lo abbiamo osservato per un tempo molto breve, circa 0.1 s”, dice Nelson Christensen, directeur de recherche CNRS presso ARTEMIS a Nizza in Francia e membro della Collaborazione Virgo. “Non assomiglia molto ad un sibilo che cresce rapidamente in frequenza, che è il tipo di segnale che osserviamo di solito: assomiglia piuttosto ad uno scoppio, e corrisponde alla massa più alta mai osservata da LIGO e Virgo.” Effettivamente, l’analisi del segnale – basata su una potente combinazione di modernissimi modelli fisici e di metodi di calcolo – ha rivelato una gran quantità di informazione su diversi stadi di questa fusione davvero unica.
Questa scoperta è senza precedenti non solo perché stabilisce il record di massa tra tutte le osservazioni fatte finora da Virgo e LIGO ma anche perché possiede altre caratteristiche speciali. Un aspetto cruciale, che ha attratto in particolare l’attenzione degli astrofisici, è che il residuo finale appartiene alla classe dei cosiddetti “buchi neri di massa intermedia” (da cento a centomila masse solari). L’interesse verso questa popolazione di buchi neri è collegato ad uno degli enigmi più affascinanti e intriganti per astrofisici e cosmologi: l’origine dei buchi neri supermassicci. Questi mostri giganteschi, milioni di volte più pesanti del Sole e spesso al centro delle galassie, potrebbero essere il risultato della fusione di buchi neri di massa intermedia.
Fino ad oggi, pochissimi esempi di questa categoria sono stati identificati unicamente per mezzo di osservazioni elettromagnetiche, e il residuo finale di GW190521 è la prima osservazione di questo genere per mezzo di onde gravitazionali. Ed è di interesse ancora maggiore, visto che si trova nella regione tra 100 e 1000 masse solari, che ha rappresentato per molti anni una specie di “deserto dei buchi neri”, a causa della scarsità di osservazioni in questo intervallo di massa.
I componenti e la dinamica della fusione del sistema binario che ha prodotto GW190521 offrono spunti astrofisici straordinari. In particolare, il componente più massiccio rappresenta una sfida per i modelli astrofisici che descrivono il collasso in buchi neri delle stelle più pesanti, quando queste arrivano alla fine della loro vita. Secondo questi modelli, stelle molto massicce vengono completamente distrutte dall’esplosione di supernova, a causa di un processo chiamato “instabilità di coppia”, e si lasciano dietro solo gas e polveri cosmiche. Perciò gli astrofisici non si aspetterebbero di osservare alcun buco nero nell’intervallo di massa tra 60 e 120 masse solari: esattamente dove si trova il componente più massiccio di GW190521. Quindi, questa osservazione apre nuove prospettive nello studio delle stelle massicce e dei meccanismi di supernova.
“Parecchi scenari predicono la formazione di buchi neri nel cosiddetto intervallo di massa di instabilità di coppia: potrebbero risultare dalla fusione di buchi neri più piccoli o dalla collisione multipla di stelle massicce o addirittura da processi più esotici”, dice Michela Mapelli, professore presso l’Università di Padova, e membro dell’INFN Padova e della Collaborazione Virgo. “Comunque, è possibile che si debba ripensare la nostra attuale comprensione degli stadi finali della vita di una stella e i conseguenti vincoli di massa sulla formazione dei buchi neri. In ogni caso, GW190521 è un importante contributo allo studio della formazione dei buchi neri.”
Infatti, l’osservazione di GW190521 da parte di Virgo e LIGO porta la nostra attenzione sull’esistenza di popolazioni di buchi neri che non sono mai stati osservati prima o sono inattesi, e in tal modo solleva nuove intriganti domande sui meccanismi con cui si sono formati. A dispetto del segnale insolitamente breve, che limita la nostra capacità di dedurre le proprietà astrofisiche della sorgente, le analisi più avanzate e i modelli attualmente disponibili suggeriscono che i buchi neri iniziali avessero alti valori di spin, o in altre parole che avessero un’elevata velocità di rotazione.
“Il segnale mostra segni di precessione, una rotazione del piano orbitale prodotta da spin elevati e con un’orientazione particolare”, nota Tito Dal Canton, ricercatore del CNRS presso IJCLab ad Orsay, Francia, e membro della Collaborazione Virgo, “L’effetto è debole e non possiamo esserne certi del tutto, ma se fosse vero darebbe forza all’ipotesi che i buchi neri progenitori siano nati e vissuti in un ambiente cosmico molto dinamico e affollato, come un ammasso stellare denso o il disco di accrescimento di un nucleo galattico attivo.”
Parecchi scenari diversi sono compatibili con questi risultati e anche l’ipotesi che i progenitori della fusione possano essere buchi neri primordiali non è stata scartata dagli scienziati. Effettivamente, noi stimiamo che la fusione abbia avuto luogo 7 miliardi di anni fa, un tempo vicino alle epoche più
antiche dell’Universo.
Rispetto alle precedenti osservazioni di onde gravitazionali, il segnale di GW190521 è molto breve e più difficile da analizzare. La complessa natura di questo segnale ci ha spinto a considerare anche altre sorgenti più esotiche, e queste possibilità sono descritte in un altro articolo che accompagna quello della scoperta. La fusione di un sistema binario di buchi neri resta però l’ipotesi più
probabile.
“Le osservazioni portate avanti da Virgo e LIGO illuminano l’universo oscuro e definiscono un nuovo panorama cosmico”, dice Giovanni Losurdo, che guida Virgo ed è dirigente di ricerca presso l’Istituto Nazionale di Fisica Nucleare in Italia, “E oggi, ancora una volta, annunciamo una scoperta senza precedenti. Continuiamo a migliorare i nostri strumenti per aumentare la loro performance e
per vedere sempre più a fondo nell’Universo.”
Informazioni aggiuntive sugli osservatori di onde gravitazionali:
La Collaborazione Virgo è composta attualmente da circa 580 membri provenienti da 109 istituzioni in 13 diversi paesi, che comprendono Belgio, Francia, Germania, Grecia, Irlanda, Italia, Olanda, Polonia, Portogallo, Spagna e Ungheria. Lo European Gravitational Observatory (EGO) che ospita il rivelatore Virgo si trova vicino a Pisa in Italia ed è finanziato dal Centre National de la Recherche Scientifique (CNRS) in Francia, dall’Istituto Nazionale di Fisica Nucleare (INFN) in Italia, e dal Nikhef in Olanda. Una lista dei gruppi della Collaborazione Virgo è disponibile al link http://public.virgo-gw.eu/the-virgo-collaboration/ . Ulteriori informazioni sono disponibili sul sito web di Virgo http://www.virgo-gw.eu
.LIGO è finanziato dalla National Science Foundation (NSF) e la sua operatività dipende da Caltech e MIT, che hanno concepito e guidato il progetto. Il sostegno finanziario per il progetto Advanced LIGO è venuto dall’NSF, con significativi impegni e contributi da parte tedesca (Max Planck Society), inglese (Science and Technology Facilities Council) e australiana (Australian Research Council-OzGrav). Circa 1300 scienziati di tutto il mondo partecipano all’impresa scientifica della Collaborazione LIGO, che include anche la Collaborazione GEO. Una lista di altri partners è disponibile al link https://my.ligo.org/census.php
.
I RICERCATORI DI PERUGIA A CACCIA DELLE ONDE GRAVITAZIONALI
Un’esperienza ventennale nella descrizione teorica e nello sviluppo di tecnologie per osservare le onde gravitazionali che ha condotto anche a ricadute tecnologiche nel campo delle energie rinnovabili.
Helios Vocca e Roberto Rettori
Il gruppo di scienziati di Perugia che lavora all’esperimento Virgo per la rivelazione e lo studio di onde gravitazionali fa parte del Dipartimento di Fisica e Geologia dell’Università di Perugia e della Sezione di Perugia dell’INFN e da circa trent’anni si occupa de i rivelatori delle Onde Gravitazionali. Il gruppo si occupa per lo più di elabora re modelli teorici e tecniche sperimentali per studiare la dinamica dei sistemi fisici non lineari e in particolare p er lo studio del rumore. Si tratta cioè di conoscere le caratteristiche e saper limitare o utilizzare in modo efficiente tutte qu elle vibrazioni che popolano i fenomeni naturali, dalle vibrazioni delle molecole e degli atomi dovute alla temperatura alle vibrazioni macroscopiche che potrebbero disturbare la rivelazione dei segnali che arrivano dal cosmo e che l’esperimento Virgo rivela. Oltre a questo negli ultimi anni ha acquisito competenze di ottica quantistica, di data analisi e modelli stica della Relatività Generale per sistemi compatti.
Il gruppo di ricerca perugino attivo nell’esperimento Virgo è coordinato dal Prof. Helios Vocca (attualmente nel Management Team sia dell’esperimento europeo Virgo che dell’esperimento giapponese Kagra). Sono nel complesso 12, tra scienziati e tecnici, le persone del Dipartimento di Fisica e della Sezione di Perugia dell’Istituto Nazionale di Fisica Nucleare che costituiscono il team coinvolto nell’osservazione e nell’analisi dei dati raccolti sulle onde gravitazionali; fra loro anche il Dott. Michele Punturo responsabile del gruppo di ricerca astroparticellare per la sezione INFN di Perugia e attualmente Principal Investigato dell’esperimento Einstein Telescope, futuro detector europeo per le Onde Gravitazionali.
Le abilità acquisite dal team perugino nello studio delle vibrazioni, da quelle microscopiche a quelle più grandi, ha consentito di apportare un contributo essenziale ai metodi utilizzati per istallare gli specchi e il complesso dei sistemi ottici, cuore dello strumento per l’osservazione delle onde gravitazionali: l’interferometro Virgo. Il rivelatore Virgo istallato a Cascina, nelle campagne poco fuori Pisa, è costituito da due lunghi tubi di tre chilometri l’uno, disposti perpendicolarmente tra loro a formare una elle. All’interno di questi tubi si fa il vuoto e viene fatto correre un raggio laser avanti e indietro attraverso un sistema di specchi. È proprio lo spostamento degli specchi al passaggio dell’onda gravitazionale che ne rileva la presenza. Di conseguenza è cruciale la realizzazione di queste parti dell’apparato. Attraverso una conoscenza accurata del rumore termico, ovvero delle vibrazioni degli atomi e delle molecole che costituisco i materiati di cui sono fatte le parti del rivelatore Virgo, il gruppo di Perugia ha fatto sì che il segnale delle onde gravitazionali non si confondesse con altri disturbi provenienti dall’ambiente. Il gruppo di Perugia si è occupato, sin dalla nascita del progetto Virgo, dello sviluppo del sistema per sospendere gli specchi all’interno delle torri dell’esperimento. Tale sistema è unico perché consente allo specchio di poter oscillare dissipando pochissima energia e quindi rendendolo estremamente sensibile alla rivelazione dei segnali gravitazionali. Il pendolo è costituito da sottilissimi fili prima di acciaio, ora di un particolare vetro: il quarzo fuso. Insieme ai fili è stato ideato e realizzato un sistema originale di ancoraggio degli specchi attraverso tecniche innovative d’incollaggio delle componenti del rivelatore sviluppate tra i laboratori di Perugia e quelli di Glasgow. Queste tecnologie sono alla base dell’aumento di sensibilità che caratterizza il cosiddetto Advanded Virgo.
Le abilità tecniche e le conoscenze teoriche acquisite in questi trent’anni dai fisici dell’Università di Perugia, coinvolti nel progetto Virgo, ha consentito al gruppo di entrare da protagonista anche nell’esperimento giapponese, Kagra (esperimento guidato da una vecchia conoscenza dell’Ateneo perugino, il Prof. Takaaki Kajita premio Nobel in Fisica nel 2015, al quale nel 2017 è stata riconosciuta la laurea Honoris Causa) trasferendo le proprie competenze alla collaborazione asiatica per la realizzazione delle sospensioni criogeniche in zaffiro delle ottiche del rivelatore.
Testi e foto dall’Ufficio Stampa Università di Perugia
Record mondiale di luminosità all’acceleratore di particelle SuperKEKB in Giappone, il ruolo degli scienziati perugini
Luminosità istantanea fornita dall’acceleratore SuperKEKB al rilevatore Belle II in funzione del tempo
Alle 13.34 del 15 Giugno 2020 ora italiana, l’acceleratore SuperKEKB, nel laboratorio KEK a Tsukuba in Giappone, ha stabilito un nuovo record mondiale, raggiungendo la luminosità istantanea di 2.22×1034 cm-2 s -1 . Il precedente record di luminosità era detenuto dal Large Hadron Collider (LHC) del CERN di Ginevra con 2.14×1034 cm-2 s -1 .
La luminosità di un acceleratore esprime la capacità dell’apparato di produrre collisioni tra particelle e pertanto rappresenta uno dei principali elementi per ottenere nuove scoperte nel campo della fisica. In SuperKEKB avvengono collisioni tra elettroni e positroni ad un’energia prossima alla massa della risonanza Y(4S) (10.58 GeV) dove è copiosa la produzione di mesoni B, D e di leptoni t.
L’esperimento Belle II ha come obbiettivo principale la ricerca di effetti di nuova fisica, al di là del Modello Standard, nella produzione e nel decadimento di tale particelle.
Belle II è il risultato di una collaborazione internazionale di circa 1.000 fisici e ingegneri provenienti da 115 università e laboratori di 26 Paesi. L’Italia partecipa attraverso l’Istituto Nazionale di Fisica Nucleare (INFN) e le Università collegate, tra cui la Sezione di Perugia INFN e l’Ateneo perugino.
Claudia Cecchi, Maurizio Biasini, Elisa Manoni
Il gruppo perugino dell’esperimento Belle II, guidato dalla Professoressa Claudia Cecchi del Dipartimento di Fisica e Geologia dell’Università degli Studi di Perugia, contribuisce attivamente alla presa dati dell’esperimento, al mantenimento di una parte del rivelatore in particolare del Calorimetro Elettromagnetico (ECL) per la misura dell’energia di fotoni ed elettroni e ricopre ruoli di responsabilità nell’analisi dei dati per la ricerca di decadimenti rari che potrebbero dare informazioni fondamentali sulla ricerca di Nuova Fisica oltre il modello Standard. Il gruppo si avvale inoltre della collaborazione del Professor Maurizio Biasini, docente dello stesso Dipartimento, e della Dottoressa Elisa Manoni, ricercatrice della Sezione di Perugia dell’Istituto Nazionale di Fisica Nucleare.
Sebbene il Modello Standard descriva correttamente il comportamento delle particelle sub-atomiche note, numerose teorie predicono nuove particelle e ci sono osservazioni di natura astrofisica che suggeriscono l’esistenza di materia ed energia oscure. Inoltre è tutt’ora aperta la questione di quale sia l’origine dell’asimmetria materia-antimateria dell’universo. Nuove particelle, con massa molto grande, possono essere prodotte direttamente se si dispone di energia sufficiente, oppure possono essere osservate indirettamente attraverso gli effetti quantistici con cui modificano i processi di produzione e decadimento delle particelle già note e questo secondo approccio è quello seguito dal collisore SuperKEKB e dall’esperimento Belle II. Questi effetti quantistici sono tanto più rari quanto è maggiore la massa della nuova particella che li genera ed è quindi necessaria una grande quantità di dati per osservarli, per cui la luminosità fornita dal collisore è un fattore cruciale in questa ricerca. L’esperimento Belle II, in circa 10 anni di presa dati, accumulerà una luminosità integrata 50 volte maggiore (corrispondente alla produzione di 50 miliardi di coppie di mesoni B) rispetto ai suoi predecessori Belle e Babar. I dati raccolti fino ad ora hanno già permesso di porre un limite interessante nell’ambito della ricerca della materia oscura e sono stati pubblicati.
Per raggiungere l’alta luminosità necessaria, SuperKEKB adotta l’innovativo schema a nano-beam secondo il quale si fanno collidere fasci di elettroni e positroni organizzati in pacchetti lunghi ed estremamente sottili che si scontrano con un angolo d’incrocio relativamente grande. Questo record di luminosità è stato ottenuto integrando lo schema a nano-beam con il crab-waist, una tecnica quest’ultima che consente di contenere la distribuzione nello spazio delle fasi delle particelle nei fasci interagenti e di stabilizzare le collisioni.
È doveroso ricordare che lo schema a nano-beam ed il crab-waist sono stati concepiti e realizzati grazie ad un lavoropioneristico del gruppo di fisica degli acceleratori dei Laboratori Nazionali di Frascati guidati dal fisico italiano Pantaleo Raimondi, anche nel contesto del progetto, poi non realizzato, dell’acceleratore SuperB.
Perugia, 26 giugno 2020
Testo e foto dall’Ufficio Stampa Università degli Studi di Perugia
Giorni d’estate, di mare, di vacanze, la cistite è in agguato, come prevenirla e curarla: le indicazioni della professoressa Elisabetta Costantini, dell’Ateneo di Perugia
“Il caldo e la cistite possono essere collegati, ma per contrastare l’infezione ci sono buone pratiche e comportamenti attenti da seguire”. Lo evidenzia la professoressa Elisabetta Costantini, Professore Associato dell’Università degli Studi di Perugia e Direttore della Struttura complessa interaziendale di Clinica Urologica ad indirizzo Andrologico ed Uroginecologico Azienda Ospedaliera di Terni e Perugia.
“Il caldo facilita le cistiti, prima di tutto perché è più facile la disidratazione – spiega la professoressa Costantini -. Bere aiuta molto perché urinando più spesso eliminiamo più rapidamente i batteri eventualmente entrati in vescica; l’umidità inoltre, a contatto con i genitali, facilita le vaginiti che a loro volta predispongono alle cistiti. Perciò ricordiamo sempre al mare, a contatto della sabbia, o in piscina o in palestra, di fare attenzione perché l’ambiente umido modifica il microbiota del perineo. È bene inoltre utilizzare indumenti che facilitano la traspirazione, non molto stretti e preferibilmente di cotone o fibre naturali. Infine ricordiamo che l’alimentazione modifica il microbiota intestinale, talora predisponendo alle cistiti. Questo può accadere ad esempio in vacanza e allora il consiglio è di evitare l’alcool, l’eccesso di caffeina, le spezie, i cibi piccanti e gli zuccheri complessi”.
La cistite è un’infezione batterica a carico delle vie urinarie e in particolare della vescica; molto frequente nelle donne, ma che non risparmia gli uomini. Dati statistici affermano che 1 donna su 2 almeno una volta nella vita ha sofferto o soffrirà di cistite e di queste un 30% andrà incontro a ricorrenze. Colpisce invece circa il 12 % degli uomini, e nel sesso maschile ha caratteristiche diverse perché spesso legata ad una patologia uretro-prostatica, quindi meno frequente rispetto alla donna ma più difficile il suo trattamento.
Quali sono i sintomi?
“La diagnosi di cistite è clinica, cioè sulla base di sintomi caratteristici: dolore sovrapubico, senso di peso perineale, aumento della frequenza minzionale, urgenza, necessità impellente di urinare, con talvolta incontinenza da urgenza, bruciore e/o dolore durante la minzione, senso di incompleto svuotamento, sangue nelle urine. Il tutto accompagnato dal riscontro nelle urine di batteri uropatogeni, tra cui il più frequente è l’Escherichia Coli, che ha il suo serbatoio nel nostro intestino” evidenzia la professoressa Costantini che ieri ha parlato della cistite, di come si manifesta, di come prevenirla e curarla, a Speciale Tutta Salute, su Rai3, trasmissione condotta da Michele Mirabella, Pier Luigi Spada e Carlotta Mantovan.
E la cura?
“La terapia è fondamentalmente antibiotica ma quello che oggi è diventato prioritario è riconoscere ed agire sui fattori predisponenti che sono la causa dell’alta recidività; ci sono donne che hanno anche una cistite al mese – rileva ancora -. D’altra parte l’uso indiscriminato degli antibiotici, cioè l’uso scorretto nel senso di scelta dell’antibiotico, dosaggio e durata della terapia ma anche l’autoprescrizione, tipico nella cistite è il ‘fai da te’, sono fattori che oggi hanno una estrema importanza data la ormai nota a tutti problematica dell’antibiotico-resistenza”.
Conoscere e agire sui fattori di rischio è la chiave di volta. Oltre a fattori di predisposizione genetici le infezioni urinarie possono essere legate a modificazioni anatomiche o funzionali dell’apparato urogenitale che devono essere riconosciute e trattate: l’alterato svuotamento vescicale; l’alterazione del microbiota intestinale, vaginale e perineale; igiene intima scorretta; rapporti sessuali non protetti; irregolarità intestinali (stipsi o diarrea); errori nell’alimentazione; problematiche legate alla menopausa; terapia antibiotica non adeguata.
Perugia, 24 giugno 2020
Testo e foto sui consigli della professoressa Costantini sulla cistite, su come prevenirla e curarla, dall’Ufficio Stampa Università degli Studi di Perugia