News
Ad
Ad
Ad
Tag

ossa

Browsing

“M-Wall”: un’attrazione da Luna Park per mantenere in forma gli astronauti sulla Luna

Un team di scienziati dell’Università Statale di Milano ha ideato come tenere in allenamento, all’interno dei moduli abitativi spaziali e attraverso una corsa che sembrerebbe impossibile, i futuri astronauti che stazioneranno a lungo sulla Luna, aiutandoli a mantenere le funzioni corporee a livello terrestre. La pubblicazione su Royal Society Open Science.

Milano, 2 maggio 2024 – L’uomo sta per tornare sulla Luna. E questa volta per restarci a lungo, come prevede il programma Artemis della NASA. Ma vivere in condizioni di microgravità come quelle presenti sul nostro satellite ha effetti negativi sul corpo umano: indebolimento muscolare, perdita di densità ossea, problemi di circolazione.

Ora però i ricercatori dell’Università degli Studi di Milano hanno individuato un sistema che potrà permettere agli astronauti di allenarsi anche sulla Luna e prevenire così l’insorgenza di questi disturbi fisici. 

Correre sulla Luna è infatti impossibilese un’astronauta ci provasse, finirebbe per saltellare più che muoversi in avanti. Ma la ricerca, pubblicata sulla rivista Royal Society Open Science, ha dimostrato che un astronauta potrebbe però correre orizzontalmente sulla parete verticale di un cilindro di 10 metri di diametro, come quelle all’interno dei cosiddetti Muri delle morte (Wall of Death) nei quali si esibiscono i motociclisti.

“Sulla Terra, per un uomo è impossibile correre dentro questi cilindri perché la potenza muscolare della corsa è insufficiente a raggiungere prestazioni tali da contrastare la gravità terrestre e rimanere ‘attaccati’ alla parete” spiega Alberto Minetti, professore ordinario di Fisiologia all’Università Statale di Milano e coordinatore dello studio. Nella nostra sperimentazione, invece, abbiamo simulato le condizioni gravitarie lunari, che sono 1/6 di quelle terrestri. Abbiamo noleggiato un’attrazione simile a quelle che si trovano al Luna Park, ribattezzata “M-Wall” dal gruppo di ricerca su suggerimento ESA (European Space Agency), e un braccio telescopico per edilizia, estensibile fino a 40 metri di altezza. A questo braccio abbiamo sospeso alcuni volontari con un’imbragatura a bande elastiche, tese al punto di sgravare il peso corporeo di 5/6 del valore terrestre. Dopo una breve familiarizzazione, i volontari sono riusciti a correre orizzontalmente ad altezza costante sul muro verticale, proprio come i motociclisti acrobatici sulla Terra, continua Minetti, con una velocità dai 19 ai 22 km/ora.

“M-Wall”: un’attrazione da Luna Park per mantenere in forma gli astronauti sulla Luna. Gallery

Un astronauta, correndo su una parete anche a velocità leggermente inferiori, genera una gravità artificiale laterale ben più alta di quella che agisce verticalmente sul nostro satellite. Questo, sulla Luna, gli permetterebbe di tenersi in allenamento e combattere così lo scadimento delle condizioni osteomuscolari, cardiocircolatorie e di controllo neuromotorio indotte dalla permanenza prolungata in ipogravità. Infatti, l’analisi biomeccanica e, indirettamente, energetica della corsa hanno mostrato che l’intensità della locomozione e le forze di impatto al contatto possono mantenere la massa muscolare e la densità ossea a livelli ‘terrestri’. Inoltre questo esercizio a corpo libero coinvolgerà il senso dell’equilibrio e quindi anche il controllo motorio.

“Si prevede che saranno sufficienti due sessioni di pochi minuti al giorno e che si potranno utilizzare le pareti dei moduli abitativi degli astronauti (che sono previsti circolari), riducendo al minimo l’extra spazio necessario al soggiorno sul nostro satellite”, conclude Alberto Minetti.

Testo, video e foto dall’Ufficio Stampa Direzione Comunicazione ed Eventi istituzionali Università Statale di Milano.

 Le nanoplastiche alterano il microambiente osseo

 Uno studio interdisciplinare dell’Università degli Studi di Milano ha esposto le tre principali tipologie cellulari coinvolte nel mantenimento della massa ossea a nanoplastiche fluorescenti, analizzandone l’effettivo ingresso nella cellula e scoprendo che, a causa delle ridotte dimensioni, le nanoplastiche possono interagire direttamente con le cellule ossee, andandone a modificare le nomali attività. La pubblicazione su Science Direct – Journal of Hazardous Materials.

nanoplastiche microambiente osseo Nel pannello ordinato (pannelo A) compaiono, partendo da sinistra: osteociti, osteoblasti e osteoclasti (fila superiore localizzazione delle nanoplastiche, fila inferiore visibili i nuclei e i contorni delle cellule. Crediti per l'immagine: Lavinia Casati
Nel pannello ordinato (pannelo A) compaiono, partendo da sinistra: osteociti, osteoblasti e osteoclasti (fila superiore localizzazione delle nanoplastiche, fila inferiore visibili i nuclei e i contorni delle cellule. Crediti per l’immagine: Lavinia Casati

Milano, 2 novembre 2023 – Le nanoplastiche alterano il delicato equilibrio e la relazione esistente nel microambiente osseo, attività che potrebbe riflettersi in una maggiore suscettibilità a sviluppare patologie legate all’impoverimento osseo: ecco la conclusione a cui è giunto un team di scienziati e recentemente pubblicata su Science Direct – Journal of Hazardous Materials.

La plastica è il materiale che maggiormente caratterizza la nostra epoca: la gestione errata del rifiuto plastico ha determinato infatti un accumulo massivo di oggetti plastici nell’ambiente, che, a seguito della degradazione e della frammentazione a causa di processi chimici, fisici e biologici, originano micro e nanoplastiche, misurate rispettivamente in micrometri (ovvero con dimensioni comprese tra 0,1 e 5.000 µm, ovvero 5mm) e nanometri (le cui dimensioni vanno da 0,001 a 0,1 µm, cioè da 1 a 100 nanometri).

E sono proprio le nanoplastiche l’oggetto dello studio frutto di una collaborazione interdisciplinare, interdipartimentale e interuniversitaria tra Lavinia Casati, ricercatore di Patologia Generale presso il Dipartimento di Scienze della Salute della Statale di Milano, il laboratorio di Patologia Generale coordinato da Raffaella Chiaramonte, docente di Patologia Generale dello stesso Ateneo, e altri gruppi di ricercatori, tra cui il team di ricerca di Marco Parolini, docente di Ecologia del Dipartimento di Scienze e Politiche Ambientali, i ricercatori del Dipartimento di Biotecnologie Mediche e Medicina Traslazionale dell’Università degli Studi di Milano e dell’Università di Parma.

Le nanoplastiche, ad oggi, rappresentano una delle più recenti categorie di contaminanti emergenti, la cui distribuzione in ambiente e gli effetti sugli esseri viventi sono largamente sconosciuti.

“A oggi esistono pochi studi inerenti agli effetti indotti dall’esposizione alle nanoplastiche su modelli ecotossicologici e ancora meno studi sull’uomo”, spiega Lavina Casati, ultimo autore e corresponding author della ricerca. “Proprio da questo nasce la nostra ricerca, che ci ha permesso di descrivere l’azione di questi contaminanti sull’osso, usando un modello in vitro che potesse fornirci una visione ad ampio spettro”.

Per poter scattare la fotografia del microambiente osseo, gli scienziati si sono serviti delle tre principali tipologie cellulari coinvolte nel mantenimento della massa ossea, ovvero i precursori degli osteoblasti, (le cellule che depongono l’osso), gli osteociti (considerati i controllori del processo di rimodellamento osseo) e i precursori degli osteoclasti (ovvero le cellule che lo degradano). Utilizzando tecniche di colture cellulari, hanno esposto queste cellule a delle nanoplastiche fluorescenti di dimensioni pari a 50 nanometri, verificando l’effettivo ingresso delle nanoplastiche nella cellula e la loro localizzazione, attraverso tecniche di imaging e citofluorimetria: le nanoplastiche sono in grado di entrare nelle cellule in un modo che è sia attivo che passivo, e vanno a localizzarsi a livello citoplasmatico.  Sono stati poi valutati gli aspetti tossicologici, medianti saggi enzimatici e colorimetrici e parametri funzionali (mediante scratch test e saggi immunoistochimici). Le nanoplastiche riducono la vitalità delle cellule, ne aumentano la morte e inducono la formazione di radicali liberi. A livello funzionale, inoltre, le nanoplastiche alterano la capacità migratoria degli osteoblasti e potenziano il riassorbimento indotto dagli osteoclasti.

Per descrivere al meglio anche l’effetto delle nanoplastiche a livello molecolare, infine, è stato analizzato l’impatto sull’espressione di geni coinvolti nel mantenimento della massa ossea: il team di ricerca ha trovato un coinvolgimento di geni relativi all’innesco di processi infiammatori nei precursori degli osteoblasti e negli osteociti e un’induzione dei geni coinvolti nei processi differenziativi degli osteoclasti.

“Anche se saranno necessari ulteriori studi per delineare al meglio la complessa interrelazione tra nanoplastiche e rimodellamento osseo a livello della salute umana, questo studio ci permette di iniziare ad esplorare nuovi orizzonti inerenti ai contaminanti ambientali e al loro impatto sull’uomo”, conclude Lavinia Casati.

Articoli correlati:

Microplastiche e nanoplastiche, ambiente e salute umana 

 

Testo e immagine dall’Ufficio Stampa Direzione Comunicazione ed Eventi istituzionali Università Statale di Milano

Identificata la causa della malattia genetica rara della piccola Bea nel gene ARHGAP36

La prestigiosa rivista Nature Communications ha pubblicato il lavoro internazionale che ha studiato la malattia rara relativa al caso della piccola Bea.

Nel 2010 Bea venne visitata nell’Ambulatorio di Genetica Clinica Pediatrica dell’Ospedale Infantile Regina Margherita di Torino perché presenta delle tumefazioni alle articolazioni. Le radiografie e la TAC rilevarono rapidamente una situazione molto particolare, una serie di “calcificazioni” che stavano progressivamente trasformando la cartilagine in osso. Bea era una bimba vivace ed intelligente, ma ben presto le articolazioni si bloccarono, rendendo impossibili i movimenti di braccia e gambe. Gli esami radiologici mostrarono un quadro sempre più grave: nessuno specialista aveva mai visto un caso come quello di Bea in tutto il mondo. La famiglia creò una Onlus, si adoperò per far conoscere il caso e la zia pubblicò #Leggera come una piuma – Il Mondo di Bea (Pathos edizioni) per far conoscere la malattia. I mezzi di comunicazione si interessarono al caso e Bea venne conosciuta da molte persone che accompagnarono la famiglia nel lungo percorso di malattia della bambina.

Dopo 13 anni e centinaia di esperimenti, un gruppo internazionale di ricercatori, coordinati dalla dott.ssa Elisa Giorgio ricercatrice dell’Università di Pavia e di Fondazione Mondino IRCCS, è riuscito ad identificare la causa della malattia di Bea, chiarendo come questa sia una malattia genetica non solo rarissima, ma semplicemente unica. La ricerca è iniziata attraverso la collaborazione tra i Pediatri che hanno inizialmente approfondito il quadro clinico (Prof. Giovanni Battista Ferrero, Prof.ssa Margherita SilengoUniversità di Torino) ed il laboratorio di Genetica Medica e malattie rare del prof. Alfredo Brusco (Dipartimento di Scienze MedicheUniversità di TorinoCittà della Salute e della Scienza, Torino). Per capire il complesso meccanismo alla base della malattia è stata necessaria una collaborazione con diversi centri italiani (Dott. Marco Tartaglia, Ospedale Pediatrico Bambin Gesù, Roma; Prof. Massimo Delledonne, Università di Verona) ed esteri (Prof. Malte Spielmann, Università di Lubecca e Kiel, Germania).

Nella foto da sinistra: Palazzo del Lavoro (edificio coperto con il tricolore), Pala Vela (dietro al CTO), Ospedali CTO (grattacielo) e Regina Margherita (edificio ai piedi del CTO) e il Tetto di Torino Esposizioni (tetto ad arco tra gli alberi). Foto Flickr di Simone Graziano Panetto, CC BY 2.0

Inizialmente erano state approfondite le cause note di malattie genetiche associate alle calcificazioni ectopiche, quadri clinici caratterizzati da formazione di osso in tessuti normalmente non ossificati, come muscoli, tendini e legamenti. Questi disturbi sono solitamente causati da una mutazione genetica, come nella Fibrodisplasia ossificante progressiva (FOP), una rara malattia genetica in cui i muscoli e i tessuti molli vengono gradualmente sostituiti dalle ossa. La FOP è causata da una mutazione nel gene ACVR1, responsabile dell’informazione necessaria per formare tessuto osseo nei vari distretti scheletrici. Quando questo gene è mutato, invia un segnale anomalo a vari tessuti che progressivamente calcificano e si trasformano in osso

 

LA RICERCA

La malattia di Bea aveva molte similitudini con la FOP, ma si era presentata nelle prime settimane di vita con un’evoluzione molto rapida ed invalidante. Le analisi genetiche avevano da subito escluso questa malattia.

Nel frattempo il gruppo di ricerca aveva identificato, con una serie di approfondimenti, un’anomalia cromosomica unica, mai descritta in letteratura caratterizzata dalla presenza di un segmento del cromosoma 2 doppio, inserito sul cromosoma X della bambina.

Questa anomalia dei cromosomi, ovvero l’inserzione di una regione di un cromosoma su un altro, può portare a un’espressione genica alterata. Questi eventi sono rari, molto eterogenei tra loro, ed è assai complesso capirne le conseguenze biologiche. Solo negli ultimi anni la tecnologia ha messo a disposizione dei ricercatori degli approcci estremamente complessi per poter studiare queste anomalie cromosomiche.

L’attività di ricerca ha permesso di capire che il pezzo di cromosoma 2 in più conteneva delle regioni in grado di attivare i geni sul cromosoma X nei tessuti sbagliati. In particolare, si è dimostrato che il gene ARHGAP36 produce una proteina in quantità molto più elevate dell’atteso, ma soprattutto nel tessuto sbagliato, la cartilagine. Proprio questo gene induce la formazione si tessuto osseo dove non dovrebbe essere presente.

“Questo studio è la dimostrazione di come la collaborazione tra gruppi di ricerca con competenze diverse sia la chiave per ottenere successi scientifici” spiega la dott.ssa Giorgio. “La ricerca ha bisogno di tempo e si costruisce sulle conoscenze che a mano a mano gli scienziati accumulano; nel 2010 non avevamo i mezzi tecnologici, né le conoscenze di base per capire la malattia di Bea”. Proprio la Dott.ssa Giorgio nel 2015 aveva scoperto un meccanismo simile a quello che causa la malattia di Bea (chiamato in gergo tecnico “adozione di un enhancer”) come causa di una rara forma di malattia neurodegenerativa, l’ADLD, adesso uno dei filoni di ricerca del suo laboratorio a Pavia.

La definizione del meccanismo biologico alla base del quadro clinico ha permesso di dare alla famiglia della bambina una risposta attesa da molti anni, una risposta che permette, come in tutte le malattie rare, di porre fine all’odissea diagnostica, complessa e dolorosa che caratterizza queste patologie.

LE PROSPETTIVE 

Studiando le malattie rare come quella di Bea, gli scienziati possono trovare percorsi e meccanismi che potrebbero essere coinvolti anche in malattie più comuni. Lo studio identifica un gene ARHGAP36 come implicato nella formazione ossea, un’informazione del tutto sconosciuta fino ad ora. Studiando questo gene e la sua funzione è possibile che capiremo meglio le malattie ossee nella popolazione generale. Al momento è troppo presto per pensare ad un utilizzo pratico della ricerca fatta, ma i ricercatori coinvolti sono entusiasti di aver contribuito a risolvere uno dei casi più difficili di malattia genetica rara conosciuta, quello della piccola Bea.

 

Nature Communications, Nat Commun. 2023 Apr 11;14(1):2034. doi: 10.1038/s41467-023-37585-8. PMID: 37041138

Enhancer hijacking at the ARHGAP36 locus is associated with connective tissue to bone transformation.

Melo US, Jatzlau J, Prada-Medina CA, Flex E, Hartmann S, Ali S, Schöpflin R , Bernardini L, Ciolfi A, Moeinzadeh M-H, Klever M-K, Altay A, Vallecillo-Garcia P, Carpentieri G, Delledonne M, Ort M-J, Schwestka M, Ferrero GB, Tartaglia M, Brusco A, Gossen M, Strunk D, Geißler S, Mundlos S, Stricker S, Knaus P, Giorgio E, Spielmann M. –  https://www.nature.com/articles/s41467-023-37585-8

 

Testo dall’Ufficio Stampa Area Relazioni Esterne e con i Media Università degli Studi di Torino

Due mutazioni genetiche alla base della straordinaria resistenza al freddo dei Fuegini, gli antichi abitanti della Terra del Fuoco 

L’analisi dei resti scheletrici e l’analisi genomica dei Fuegini, conservati presso il Museo di Antropologia Giuseppe Sergi della Sapienza, ha mostrato che l’adattamento alle basse temperature di questa popolazione era determinato da due particolari varianti genetiche che determinano una attivazione del grasso bruno. I risultati dello studio sono stati pubblicati sulla rivista Scientific Reports da un gruppo di ricercatori dei Dipartimenti di Medicina Sperimentale, Biologia ambientale e di Medicina molecolare dell’Ateneo romano.

mutazioni genetiche freddo Fuegini Sapienza
Stampa che ritrae un gruppo di Fuegini nel loro ambiente naturale

Nel 1881 Science pubblicava un articolo sulle testimonianze dei viaggi dei primi esploratori nella Terra del Fuoco, incluse quelle di Charles Darwin che nel 1871 aveva descritto gli abitanti dell’estremo sud della Patagonia nel libro The Descent of Man. Uno dei tratti distintivi degli uomini che vivevano in quella terra lontana e inospitale era una incredibile resistenza al freddo, anche a fronte di sistemi di protezione insufficienti. La peculiarità di questi uomini, detti Fuegini, di essere spesso nudi o al massimo coperti da un pezzo di pelle gettato sopra le spalle, colpì infatti i primi viaggiatori europei.

I Fuegini, decimati dalle malattie e ormai quasi estinti già dai primi decenni del Novecento, hanno lasciato molti interrogativi senza risposta, primo fra tutti come riuscissero a sopportare le basse temperature cui erano esposti, senza una adeguata protezione.

Oggi, grazie a una ricerca internazionale coordinata dai Dipartimenti di Medicina sperimentale, Biologia ambientale e Medicina molecolare della Sapienza e pubblicata sulla rivista Scientific Reports, emergono dati che potrebbero far luce sull’elevata capacità di adattamento al freddo di questi antichi abitanti della Terra del Fuoco.

mutazioni genetiche freddo Fuegini
Scheletri di Fuegini conservati al Museo di Antropologia Giuseppe Sergi della Sapienza

Il team di scienziati, sotto la guida di Lucio Gnessi e Giorgio Manzi della Sapienza ha analizzato alcuni resti scheletrici dei Fuegini conservati presso il Museo di Antropologia Giuseppe Sergi dell’Ateneo. Dall’analisi dei reperti ci si sarebbe aspettati di rilevare una certa fragilità ossea, data l’esposizione di questi antichi abitanti alle basse temperature; è stata osservata invece una densità minerale ossea simile a quella di coloro che vivono in un clima temperato.

Diverse, le domande che si sono posti i ricercatori in questo studio: che cosa ha protetto, dunque, le ossa dei Fuegini dagli effetti negativi del freddo? Esiste una correlazione tra condizioni dell’osso e resistenza alle basse temperature?

Grazie alla collaborazione con esperti genetisti e bioinformatici, interrogando le banche dati che raccolgono informazioni sul patrimonio genetico di molte popolazioni, i ricercatori hanno individuato due piccole varianti genetiche mai descritte prima, presenti solo nei Fuegini e non in altri popoli esposti anch’essi al freddo estremo. Queste varianti sono collegate a uno dei meccanismi più importanti di adattamento metabolico al freddo, ovvero allo sviluppo e all’attivazione del grasso bruno, un particolare tipo di grasso la cui funzione principale è quella di produrre calore in risposta alle basse temperature, bruciando energia.

Il grasso bruno ha, inoltre, un effetto protettivo sullo scheletro. Nell’uomo, la sua quantità è proporzionale alla densità ossea; è noto, peraltro, che topi privati del grasso bruno perdono massa ossea, se esposti al freddo.

“Oggi è possibile predire gli effetti potenziali di varianti genetiche molto piccole o anche non codificanti, ricorrendo alla cosiddetta analisi in silico – spiega Lucio Gnessi della Sapienza, coordinatore della ricerca – che sfrutta simulazioni matematiche tramite l’utilizzo di software sofisticati e algoritmi complessi”.

“L’analisi in silico ha costantemente mostrato un effetto causale di alta probabilità tra le mutazioni identificate nel genoma dei Fuegini e lo sviluppo, l’accumulo e l’attivazione del grasso bruno” – conclude Giorgio Manzi della Sapienza, altro coordinatore del lavoro.

Dopo oltre un secolo dalle testimonianze degli esploratori dell‘800, questi dati possono finalmente confermare l’ipotesi che lo straordinario adattamento al freddo dei Fuegini sia stato il risultato di varianti genetiche responsabili di un eccezionale accumulo di tessuto adiposo bruno.

La ricerca è stata condotta in collaborazione con altri centri internazionali come il Centre for Neuropsychiatric Genetics and Genomics di Cardiff, l’Unità di Medicina Nucleare dell’IRCCS Regina Elena di Roma, il Museo di Storia Naturale dell’Università di Firenze, l’Unità di Endocrinologia e Diabete dell’Università Campus Biomedico di Roma e il Dipartimento di Medicina Clinica e Sperimentale dell’Università Politecnica delle Marche di Ancona.

Riferimenti:

Bone density and genomic analysis unfold cold adaptation mechanisms of ancient inhabitants of Tierra del Fuego – Mikiko Watanabe, Renata Risi, Mary Anne Tafuri, Valentina Silvestri, Daniel D’Andrea, Domenico Raimondo, Sandra Rea, Fabio Di Vincenzo, Antonio Profico, Dario Tuccinardi, Rosa Sciuto, Sabrina Basciani, Stefania Mariani, Carla Lubrano, Saverio Cinti, Laura Ottini, Giorgio Manzi & Lucio Gnessi – Scientific Reports 2021 DOI: https://doi.org/10.1038/s41598-021-02783-1

 

Testo e foto dal Settore Ufficio stampa e comunicazione Sapienza Università di Roma

ERCOLANO – Trovare del tessuto cerebrale in resti archeologici dell’antichità è una cosa molto rara. Nel cervello i processi di morte cellulare sono molto rapidi, essendo costituito per l’80% di acqua. La decomposizione, quindi, inizia dopo 36-75 ore e la scheletrizzazione (cioè l’ultima fase della decomposizione) si ha tra circa i 5 e i 10 anni dopo la morte.  Sempre che non sia stato sottoposto a tecniche di mummificazione, come quelle utilizzate in Egitto, è difficile che questo delicato tessuto possa sopravvivere per anni, se non millenni. Trovare, poi, questo tessuto vetrificato, è una cosa ancor più rara.

Collegio degli Augustali. Foto: Pier Paolo Petrone, Università Federico II di Napoli. Copyright 2020

È quello che è accaduto durante alcune indagini paleoforensi nel sito archeologico di Ercolano a opera di un team di studiosi, guidati dall’antropologo forense Pier Paolo Petrone, responsabile del Laboratorio di Osteobiologia Umana e Antropologia Forense presso la sezione dipartimentale di Medicina Legale dell’Università “Federico II” di Napoli. Durante la loro ricerca, i membri del team hanno rinvenuto del materiale vetroso tra le ossa craniche di una vittima dell’eruzione del Vesuvio del 79 a.C. Tale materiale, in parte incrostato sul cranio della vittima, è stato successivamente analizzato, per poter accertare potesse trattarsi realmente di tessuto cerebrale vetrificato.

Frammento di cervello vetrificato. Foto: Università Roma Tre

La vetrificazione è un processo durante il quale un liquido, esposto a un’elevata temperatura, viene velocemente e bruscamente raffreddato, trasformandosi in un materiale simile al vetro. Gli autori dello studio spiegano che il tessuto cerebrale in questione, inizialmente esposto al caldo estremo della nube piroclastica del Vesuvio, ha poi ricevuto uno shock termico, con un abbassamento brusco di temperatura, che ha determinato la sua trasformazione in un materiale vitreo.

tessuto cerebrale Ercolano Pier Paolo Petrone
Collegio degli Augustali, il luogo del ritrovamento. Foto: Pier Paolo Petrone, Università Federico II di Napoli. Copyright 2020

A seguito di questo ritrovamento, si è proceduto a studiare il campione sfruttando un approccio multidisciplinare, coinvolgente esperti specializzati in diversi ambiti. Tramite l’uso del Microscopio elettronico a scansione e specifici strumenti di elaborazione delle immagini, il team è giunto alla  conclusione che non solo il materiale vetrificato apparteneva al sistema nervoso centrale della vittima, ma anche che al suo interno risultano preservate strutture tubulari simili agli assoni neuronali.

In seguito, il campione è stato sottoposto all’analisi proteomica, che consente di individuare specifici tipi di proteine, le quali sono sintetizzate da diversi geni del DNA. Grazie a questa tecnica, il team ha riscontrato una forte espressione di alcuni geni, presenti in abbondanza nel cervello, oltre che in altri distretti.

tessuto cerebrale Ercolano
Pier Paolo Petrone in laboratorio. Pier Paolo Petrone, Università Federico II di Napoli. Copyright 2020

Questa scoperta e future analisi più approfondite del campione, potranno dirci molto più rispetto alle caratteristiche del tessuto e delle proteine al suo interno, oltre che fornirci informazioni utili su proprietà tipiche dell’espressione genica nella popolazione di Ercolano.

Abbiamo intervistato il dott. Pier Paolo Petrone dell’Università “Federico II” di Napoli, e la dott.ssa Maria Giuseppina Miano del CNR di Napoli, che hanno risposto alle domande di ScientifiCult sul tessuto cerebrale da Ercolano.

tessuto cerebrale Ercolano Pier Paolo Petrone
Assoni, tessuto cerebrale dalla vittima di Ercolano. Foto: Università Roma Tre

Vedendo il profilo dell’espressione genica, si nota come tutte le strutture da voi indicate siano molto vicine a cavità cerebrali in cui è presente il liquido cerebrospinale. Come pensate che questo possa aver influito sul processo di vetrificazione? Pensate che la posizione più centrale e, quindi, più protetta, abbia giocato a sua volta qualche ruolo?

Pier Paolo Petrone: Osservazione interessante, ma non abbiamo al momento evidenze in questo senso. Tutto il cervello sembra aver reagito allo stesso modo, dando luogo a questo materiale dalla consistenza e apparenza vetrosa. Qualcosa di assolutamente unico, mai visto prima né negli altri siti sepolti dall’eruzione, né in eruzioni vulcaniche recenti.

Nel vostro studio avete analizzato l’espressione di alcuni geni le cui mutazioni sono presenti in alcune patologie importanti (Disturbo di Alzheimer, disabilità intellettiva, ipoplasia ponto-cerebellare). Pensate che un’analisi più approfondita di queste espressioni geniche possa dirci di più sullo stato del ragazzo vittima del Vesuvio?

Maria Giuseppina Miano: I dati da noi raccolti non ci consentono di avere informazioni di questo tipo. Non abbiamo dati sulle sequenze amminoacidiche delle proteine identificate né della sequenza nucleotidica dei geni corrispondenti. Ma non possiamo escludere che ulteriori studi possano darci altre importanti informazioni.

Il guardiano nel suo letto. Pier Paolo Petrone, Università Federico II di Napoli. Copyright 2020

Con l’analisi proteomica sono emerse espressioni di geni presenti in gran quantità nel cervello. Questi geni, però, si esprimono allo stesso modo in molti altri distretti del nostro organismo (ad esempio nelle ossa, come il MED13L o ATP6V1F). Con quali modalità avete escluso la possibilità che il campione possa essere stato contaminato nei secoli?

Pier Paolo Petrone: La contaminazione in questo caso è da escludere, in quanto il corpo della vittima era immerso nella cenere vulcanica, e così è rimasto per quasi duemila anni, fino alla sua scoperta negli anni ‘60 e quella, più recente, del  tessuto vetrificato nel cranio. Peraltro, le analisi biochimiche hanno mostrato la presenza di acidi grassi dei capelli umani e di sette proteine altamente rappresentate in tutti i distretti cerebrali, confermando l’appartenenza univoca di questo tessuto al cervello della vittima.

Neurone dal midollo spinale. Foto: Università Roma Tre

Come spiegate nell’articolo, il tessuto non è stato alterato in alcun modo dopo la vostra manipolazione. Pensate quindi di ritornare a fare ulteriori analisi biochimiche? Nel caso in cui pensiate di fare ulteriori analisi, quali ulteriori risultati ipotizzate di poter ottenere? (Es. Alterazioni della struttura proteica che suggeriscono un’anomalia genetica).

Maria Giuseppina Miano: Sono varie le linee di ricerca in corso e tutte molto promettenti. Ulteriori indagini sono in programma per poter identificare la sequenza amminoacidica delle proteine sinora rinvenute, e stabilire la presenza di eventuali varianti polimorfiche che potrebbero “raccontarci” qualcosa in più sulle caratteristiche genetiche degli abitanti di Ercolano a quel tempo.

Pier Paolo Petrone: Altre informazioni le stiamo già avendo dalla sperimentazione in corso su questo cervello, con l’obiettivo di stabilire la temperatura cui è stato esposto e i tempi di raffreddamento del deposito di cenere vulcanica. Informazioni, queste, cruciali per la valutazione del rischio vulcanico al Vesuvio, che incombe su Napoli e i suoi tre milioni di abitanti. Lo studio di un cervello di 2000 anni fa in futuro potrebbe salvare vite umane.

 

Riferimenti bibliografici sul tessuto cerebrale da Ercolano:

Petrone, P., Giordano, G., Vezzoli, E., Pensa, A., Castaldo, G., Graziano, V., Sirano, F., Capasso, E., Quaremba, G., Vona, A., Miano, M. G., Savino, S., & Niola, M. (2020). Preservation of neurons in an AD 79 vitrified human brain. PloS one15(10), e0240017. https://doi.org/10.1371/journal.pone.0240017

Petrone, P., Pucci, P., Niola, M., Baxter, P. J., Fontanarosa, C., Giordano, G., Graziano, V., Sirano, F., & Amoresano, A. (2020). Heat-Induced Brain Vitrification from the Vesuvius Eruption in c.e. 79. The New England journal of medicine382(4), 383–384. https://doi.org/10.1056/NEJMc1909867