News
Ad
Ad
Ad
Tag

Nature Communications

Browsing

TUMORE AL SENO: IDENTIFICATO UN NUOVO MECCANISMO MOLECOLARE ALLA BASE DELLE FORME PIÙ AGGRESSIVE

Pubblicati sulla prestigiosa rivista Nature Communications i risultati di una ricerca coordinata da Università di Torino, Università Statale di Milano, Istituto Europeo di Oncologia (IEO) e sostenuta da Fondazione AIRC. Il meccanismo molecolare riguarda la proteina p140Cap che inibisce a monte l’attività della beta-Catenina, una potente proteina coinvolta nella crescita tumorale.

MilanoTorino, 11 maggio 2023. Una nuova chiave di lettura per comprendere i tumori della mammella più aggressivi nasce dagli studi condotti in collaborazione tra due gruppi di scienziati di Milano e Torino. Hanno coordinato la ricerca la professoressa Paola Defilippi, ordinario di Biologia applicata e Responsabile del Laboratorio di ricerca “Piattaforme di segnalazione nei tumori” presso il Dipartimento di Biotecnologie Molecolari e Scienze per la Salute dell’Università di Torino, e il professor Salvatore Pece, ordinario di Patologia generale all’Università Statale di Milano e Direttore del Laboratorio “Tumori Ormono-Dipendenti e Patobiologia delle Cellule Staminali” dell’Istituto Europeo di Oncologia (IEO). I risultati dello studio, sostenuto da Fondazione AIRC per la ricerca sul cancro, sono appena stati pubblicati sulla rivista Nature Communications.

La ricerca ha portato alla scoperta di un meccanismo molecolare con cui i tumori mammari si arricchiscono in cellule staminali tumorali. A loro volta queste cellule, da un lato, funzionano da forza motrice della crescita della massa tumorale e, dall’altro lato, sopprimono la risposta immunitaria naturale che, a livello del microambiente circostante il tumore, dovrebbe invece contrastare la crescita del cancro.

All’origine dell’intero processo c’è verosimilmente p140Cap, una proteina in grado di inibire la crescita tumorale. La sua assenza, che caratterizza almeno il 40-50% di tutti i casi di tumori mammari umani, determina una cascata di eventi che portano all’attivazione incontrollata del gene responsabile della sintesi di beta-Catenina, una potente proteina coinvolta nella crescita tumorale. Una volta attivata, la beta-Catenina provoca l’espansione del compartimento delle cellule staminali tumorali. A loro volta queste cellule rilasciano citochine anti-infiammatorie, inibendo così direttamente la risposta immunitaria anti-tumorale e creando un ambiente favorevole all’ulteriore crescita del tumore.

“Dunque p140Cap – sottolinea la professoressa Paola Defilippi – si comporta come una specie di interruttore molecolare che, tramite l’inibizione di beta-Catenina e la conseguente riduzione del compartimento delle cellule staminali tumorali, esercita una duplice funzione anti-tumorale: inibisce l’espansione della massa tumorale e sostiene una efficiente risposta immunitaria anti-tumorale nel microambiente circostante”.

“Attraverso studi clinici retrospettivi in coorti di pazienti – continua il professor Salvatore Pece – abbiamo dimostrato una chiara correlazione tra bassi livelli della proteina p140Cap nei tumori mammari più aggressivi e ridotta presenza di cellule del sistema immunitario, in particolare linfociti, nelle aree circostanti il tumore. Questi dati suggeriscono che p140Cap potrebbe essere utilizzato come un utile biomarcatore nella pratica clinica, per identificare i tumori mammari con alterazioni della risposta immunitaria anti-tumorale”.

Spiega Vincenzo Salemme, ricercatore del Dipartimento di Biotecnologie Molecolari e Scienze per la Salute dell’Università di Torino e primo autore dell’articolo:

“Il meccanismo molecolare con cui p140Cap inibisce a monte l’attività della beta-Catenina dipende dal fatto che la prima proteina è parte di un complesso macchinario multi-proteico deputato a distruggere la stessa beta-Catenina, che così non si accumula eccessivamente all’interno della cellula. In assenza di p140Cap questa funzione è alterata, come accade in alcuni tumori mammari, dove aumentano di conseguenza sia i livelli di beta-Catenina, sia la sua azione capace di influire sull’espansione delle cellule staminali tumorali”.

Continua la professoressa Paola Defilippi“Nel corso degli ultimi anni è emerso in modo chiaro che tra i principali responsabili all’origine della formazione e della continua crescita dei tumori ci sono le cellule staminali tumorali. Si tratta di cellule dotate di capacità illimitata di auto-rinnovamento e in grado di sostenere nel tempo la crescita della massa tumorale. In nostri precedenti studi avevamo già messo in luce il ruolo inibitore di p140Cap sulla crescita tumorale e stabilito che la perdita di questa proteina è legata a una maggiore aggressività biologica e a un decorso clinico più sfavorevole di alcuni tipi di tumori mammari. Non avevamo però ancora una completa comprensione del meccanismo d’azione specifico e della varietà di conseguenze funzionali legate alla perdita di p140Cap sulla crescita tumorale. Ora, attraverso questi studi sappiamo che questa funzione dipende da un’azione diretta di p140Cap sull’attività di beta-Catenina. Inoltre, grazie ai risultati ottenuti sia in topi di laboratorio con tumore mammario, sia in campioni ottenuti da pazienti, abbiamo compreso che la presenza di p140Cap è fondamentale. Infatti questa proteina, inibendo le cellule staminali tumorali, da un lato blocca direttamente la crescita del tumore e dall’altro lato permette una efficiente risposta immune anti-tumorale nel microambiente circostante il tumore stesso”.

“Sappiamo inoltre – aggiunge la professoressa Defilippi – che possiamo inibire l’azione tumorigenica delle cellule staminali tumorali e, al contempo, ripristinare una efficiente risposta immunitaria anti-tumorale nei tessuti circostanti la neoplasia. Ciò è possibile simulando la funzione di p140Cap all’interno del macchinario di distruzione della beta-Catenina, attraverso l’utilizzo di farmaci al momento disponibili solo per uso sperimentale”.

“I risultati dei nostri studi – sottolinea il professor Pece – si collocano nella prospettiva di alcuni tra i più importanti concetti emersi nella ricerca oncologica degli ultimi anni, nel tentativo di spiegare l’aggressività biologica e clinica dei tumori, in particolare di quelli mammari. Sappiamo oggi che i tumori più aggressivi e con decorso clinico più sfavorevole sono quelli arricchiti in cellule staminali tumorali, oppure quelli in grado di sfuggire alla risposta immunitaria naturale, rendendo inefficienti i meccanismi di barriera anti-tumorale esercitati dalle cellule del sistema immunitario. La nostra scoperta, dell’esistenza di un nuovo circuito molecolare p140Cap/beta-Catenina, apre a una prospettiva concreta per la stratificazione a fini terapeutici delle pazienti con tumore mammario che hanno perduto p140Cap. Tale perdita è infatti alla base dell’acquisizione contemporanea di entrambe queste caratteristiche aggressive della biologia dei tumori mammari. Grazie a questi risultati le pazienti potrebbero beneficiare in futuro di nuove terapie per colpire le cellule staminali tumorali e ripristinare una efficiente risposta immunitaria contro il cancro. Terapie di questo tipo sono oggi l’obiettivo delle principali linee di ricerca per lo sviluppo di nuovi farmaci in oncologia”.

“Questo studio rappresenta per noi motivo di grande soddisfazione – conclude il professor Pece – non solo per la sua valenza scientifica ma anche perché dimostra l’importanza dello sforzo cooperativo tra gruppi di ricerca che fondono differenti competenze scientifiche e piattaforme tecnologiche per far avanzare la conoscenza della biologia dei tumori mammari e aprire nuove prospettive terapeutiche per le pazienti”.

tumore al seno meccanismo molecolare p140Cap beta-Catenina
Identificato nuovo meccanismo molecolare alla base delle forme più aggressive di tumore al seno. Foto di Pexels

Testo dall’Ufficio Stampa Area Relazioni Esterne e con i Media Università degli Studi di Torino

Identificata la causa della malattia genetica rara della piccola Bea nel gene ARHGAP36

La prestigiosa rivista Nature Communications ha pubblicato il lavoro internazionale che ha studiato la malattia rara relativa al caso della piccola Bea.

Nel 2010 Bea venne visitata nell’Ambulatorio di Genetica Clinica Pediatrica dell’Ospedale Infantile Regina Margherita di Torino perché presenta delle tumefazioni alle articolazioni. Le radiografie e la TAC rilevarono rapidamente una situazione molto particolare, una serie di “calcificazioni” che stavano progressivamente trasformando la cartilagine in osso. Bea era una bimba vivace ed intelligente, ma ben presto le articolazioni si bloccarono, rendendo impossibili i movimenti di braccia e gambe. Gli esami radiologici mostrarono un quadro sempre più grave: nessuno specialista aveva mai visto un caso come quello di Bea in tutto il mondo. La famiglia creò una Onlus, si adoperò per far conoscere il caso e la zia pubblicò #Leggera come una piuma – Il Mondo di Bea (Pathos edizioni) per far conoscere la malattia. I mezzi di comunicazione si interessarono al caso e Bea venne conosciuta da molte persone che accompagnarono la famiglia nel lungo percorso di malattia della bambina.

Dopo 13 anni e centinaia di esperimenti, un gruppo internazionale di ricercatori, coordinati dalla dott.ssa Elisa Giorgio ricercatrice dell’Università di Pavia e di Fondazione Mondino IRCCS, è riuscito ad identificare la causa della malattia di Bea, chiarendo come questa sia una malattia genetica non solo rarissima, ma semplicemente unica. La ricerca è iniziata attraverso la collaborazione tra i Pediatri che hanno inizialmente approfondito il quadro clinico (Prof. Giovanni Battista Ferrero, Prof.ssa Margherita SilengoUniversità di Torino) ed il laboratorio di Genetica Medica e malattie rare del prof. Alfredo Brusco (Dipartimento di Scienze MedicheUniversità di TorinoCittà della Salute e della Scienza, Torino). Per capire il complesso meccanismo alla base della malattia è stata necessaria una collaborazione con diversi centri italiani (Dott. Marco Tartaglia, Ospedale Pediatrico Bambin Gesù, Roma; Prof. Massimo Delledonne, Università di Verona) ed esteri (Prof. Malte Spielmann, Università di Lubecca e Kiel, Germania).

Nella foto da sinistra: Palazzo del Lavoro (edificio coperto con il tricolore), Pala Vela (dietro al CTO), Ospedali CTO (grattacielo) e Regina Margherita (edificio ai piedi del CTO) e il Tetto di Torino Esposizioni (tetto ad arco tra gli alberi). Foto Flickr di Simone Graziano Panetto, CC BY 2.0

Inizialmente erano state approfondite le cause note di malattie genetiche associate alle calcificazioni ectopiche, quadri clinici caratterizzati da formazione di osso in tessuti normalmente non ossificati, come muscoli, tendini e legamenti. Questi disturbi sono solitamente causati da una mutazione genetica, come nella Fibrodisplasia ossificante progressiva (FOP), una rara malattia genetica in cui i muscoli e i tessuti molli vengono gradualmente sostituiti dalle ossa. La FOP è causata da una mutazione nel gene ACVR1, responsabile dell’informazione necessaria per formare tessuto osseo nei vari distretti scheletrici. Quando questo gene è mutato, invia un segnale anomalo a vari tessuti che progressivamente calcificano e si trasformano in osso

 

LA RICERCA

La malattia di Bea aveva molte similitudini con la FOP, ma si era presentata nelle prime settimane di vita con un’evoluzione molto rapida ed invalidante. Le analisi genetiche avevano da subito escluso questa malattia.

Nel frattempo il gruppo di ricerca aveva identificato, con una serie di approfondimenti, un’anomalia cromosomica unica, mai descritta in letteratura caratterizzata dalla presenza di un segmento del cromosoma 2 doppio, inserito sul cromosoma X della bambina.

Questa anomalia dei cromosomi, ovvero l’inserzione di una regione di un cromosoma su un altro, può portare a un’espressione genica alterata. Questi eventi sono rari, molto eterogenei tra loro, ed è assai complesso capirne le conseguenze biologiche. Solo negli ultimi anni la tecnologia ha messo a disposizione dei ricercatori degli approcci estremamente complessi per poter studiare queste anomalie cromosomiche.

L’attività di ricerca ha permesso di capire che il pezzo di cromosoma 2 in più conteneva delle regioni in grado di attivare i geni sul cromosoma X nei tessuti sbagliati. In particolare, si è dimostrato che il gene ARHGAP36 produce una proteina in quantità molto più elevate dell’atteso, ma soprattutto nel tessuto sbagliato, la cartilagine. Proprio questo gene induce la formazione si tessuto osseo dove non dovrebbe essere presente.

“Questo studio è la dimostrazione di come la collaborazione tra gruppi di ricerca con competenze diverse sia la chiave per ottenere successi scientifici” spiega la dott.ssa Giorgio. “La ricerca ha bisogno di tempo e si costruisce sulle conoscenze che a mano a mano gli scienziati accumulano; nel 2010 non avevamo i mezzi tecnologici, né le conoscenze di base per capire la malattia di Bea”. Proprio la Dott.ssa Giorgio nel 2015 aveva scoperto un meccanismo simile a quello che causa la malattia di Bea (chiamato in gergo tecnico “adozione di un enhancer”) come causa di una rara forma di malattia neurodegenerativa, l’ADLD, adesso uno dei filoni di ricerca del suo laboratorio a Pavia.

La definizione del meccanismo biologico alla base del quadro clinico ha permesso di dare alla famiglia della bambina una risposta attesa da molti anni, una risposta che permette, come in tutte le malattie rare, di porre fine all’odissea diagnostica, complessa e dolorosa che caratterizza queste patologie.

LE PROSPETTIVE 

Studiando le malattie rare come quella di Bea, gli scienziati possono trovare percorsi e meccanismi che potrebbero essere coinvolti anche in malattie più comuni. Lo studio identifica un gene ARHGAP36 come implicato nella formazione ossea, un’informazione del tutto sconosciuta fino ad ora. Studiando questo gene e la sua funzione è possibile che capiremo meglio le malattie ossee nella popolazione generale. Al momento è troppo presto per pensare ad un utilizzo pratico della ricerca fatta, ma i ricercatori coinvolti sono entusiasti di aver contribuito a risolvere uno dei casi più difficili di malattia genetica rara conosciuta, quello della piccola Bea.

 

Nature Communications, Nat Commun. 2023 Apr 11;14(1):2034. doi: 10.1038/s41467-023-37585-8. PMID: 37041138

Enhancer hijacking at the ARHGAP36 locus is associated with connective tissue to bone transformation.

Melo US, Jatzlau J, Prada-Medina CA, Flex E, Hartmann S, Ali S, Schöpflin R , Bernardini L, Ciolfi A, Moeinzadeh M-H, Klever M-K, Altay A, Vallecillo-Garcia P, Carpentieri G, Delledonne M, Ort M-J, Schwestka M, Ferrero GB, Tartaglia M, Brusco A, Gossen M, Strunk D, Geißler S, Mundlos S, Stricker S, Knaus P, Giorgio E, Spielmann M. –  https://www.nature.com/articles/s41467-023-37585-8

 

Testo dall’Ufficio Stampa Area Relazioni Esterne e con i Media Università degli Studi di Torino

Dall’RNA nuovi possibili trattamenti per i tumori: con la scoperta di una nuova correlazione tra le molecole di RNA circolari e il tumore pediatrico rabdomiosarcoma, saranno possibili nuovi innovativi approcci terapeutici; lo studio pubblicato su Nature Communications.

Scoperta una nuova correlazione tra le molecole di RNA circolari e il tumore pediatrico rabdomiosarcoma. I risultati di questa ricerca aprono una nuova strada nell’identificazione di innovativi approcci terapeutici contro questa forma di cancro.

ospedale RNA circolari e rabdomiosarcoma
Foto di djedj

Un gruppo di ricercatrici e ricercatori dell’Istituto Italiano di Tecnologia – IIT e della Sapienza Università di Roma guidato da Irene Bozzoni, coordinatrice del laboratorio Non coding RNAs in Physiology and Pathology, ha scoperto una nuova correlazione tra le molecole di RNA circolari e il tumore pediatrico rabdomiosarcoma. I risultati, pubblicati sulla rivista Nature Communications, rappresentano un importante contributo per lo sviluppo di innovativi approcci terapeutici.

L’RNA rappresenta, insieme al DNA e alle proteine, uno dei principali componenti di cui la cellula dispone per rispondere in maniera efficace ai continui stimoli a cui è sottoposta. L’RNA ha recentemente acquisito una popolarità anche nel pubblico di non addetti ai lavori in quanto ha rappresentato la tecnologia adottata per il vaccino per il Covid-19, strumento indispensabile nella prevenzione dei contagi dovuti all’ormai noto virus SARS-CoV-2.

Esistono classi di RNA diversi per struttura e funzione. Tra queste, c’è quella degli RNA circolari (circRNA), così chiamati in quanto presentano una struttura chiusa, ad anello, che fornisce alcuni vantaggi, primo fra tutti una elevata stabilità rispetto agli RNA lineari.

Questi rappresentano una classe da poco riscoperta in quanto, fino a circa dieci anni fa, il loro studio era fortemente limitato dall’assenza di tecniche appropriate per la loro identificazione in campioni biologici.

I circRNA svolgono molteplici funzioni all’interno della cellula e per questo sono coinvolti in processi fisiologici fondamentali ma anche nello sviluppo di diverse patologie, tra cui il cancro.

Il gruppo di ricercatori e ricercatrici della Sapienza e dell’Istituto Italiano di Tecnologia ha studiato il ruolo degli RNA circolari nel rabdomiosarcoma, un tumore pediatrico ad alta diffusione, classificato tra i cosiddetti sarcomi dei tessuti molli che origina da cellule staminali da cui derivano numerosi tessuti, tra cui il muscolo scheletrico. Per questo motivo, tale tumore può presentarsi in tutte le sedi in cui sono presenti i muscoli.

Gli autori dello studio pubblicato su Nature Communications hanno caratterizzato l’espressione degli RNA circolari in questo tumore, scoprendo che alcuni di questi mostrano livelli più alti rispetto al contesto sano.

Cercando i meccanismi alla base di questo effetto, gli autori hanno scoperto che il responsabile sarebbe un gruppo di proteine che operano la deposizione e la lettura dell’N6-metiladenosina (m6A) sull’RNA. Tali proteine presentano livelli decisamente alti sia in biopsie che in linee di rabdomiosarcoma. Inoltre, lo studio ha dimostrato che l’aumento di m6A promuove la proliferazione e l’attività metastatica delle cellule tumorali di rabdomiosarcoma. Questo effetto potrebbe essere in parte riconducibile alle molecole di RNA circolare direttamente regolate da tale modifica.

Nel processo sarebbe coinvolta anche l’elicasi DDX5, una proteina nota per i molteplici ruoli nel metabolismo dell’RNA. DDX5 è in grado di stimolare la produzione di un gruppo di circRNA e interagisce con YTHDC1, una proteina che lega gli RNA che contengono m6A e che è stata precedentemente descritta dallo stesso gruppo di Sapienza come promotore della produzione di una classe di RNA circolari.

I risultati di questo studio, finanziato dalla Fondazione AIRC, rappresentano un prezioso contributo per la comprensione dei meccanismi molecolari alla base di questo tumore e per lo sviluppo di nuovi approcci terapeutici laddove le strategie tradizionali hanno fallito.

Riferimenti:

The m6A reader YTHDC1 and the RNA helicase DDX5 control the production of rhabdomyosarcoma-enriched circRNAs – Dario Dattilo, Gaia Di Timoteo, Adriano Setti, Andrea Giuliani, Giovanna Peruzzi, Manuel Beltran Nebot, Alvaro Centrón-Broco, Davide Mariani, Chiara Mozzetta and Irene Bozzoni –

Nature Communications 2023. doi: 10.1038/s41467-023-37578-7

https://www.nature.com/articles/s41467-023-37578-7

 

Testo dal Settore Ufficio stampa e comunicazione Sapienza Università di Roma

Rivelare la terza dimensione della luce con l’intelligenza artificiale: sviluppato un polarimetro “intelligente” ultra-veloce e super-compatto che permette di utilizzare la polarizzazione della luce per nuove applicazioni

Ricercatori dell’Istituto dei sistemi complessi del Consiglio nazionale delle ricerche e della Sapienza Università di Roma hanno sviluppato un polarimetro “intelligente” ultra-veloce e super-compatto che permette di utilizzare la polarizzazione della luce per applicazioni nei campi della comunicazione ottica sicura, dei sensori fotonici e della medicina. Lo strumento è descritto in un articolo su Nature Communications.

Ricercatori dell’Istituto dei Sistemi complessi del Consiglio nazionale delle ricerche di Roma (Cnr-Isc) e del Dipartimento di Fisica della Sapienza Università di Roma hanno sviluppato un innovativo strumento che permette di “vedere” tramite la polarizzazione, e utilizzare tale proprietà per applicazioni nei campi della comunicazione ottica sicura su grande distanza, dei sensori fotonici con funzionalità aumentate, e nuovi strumenti per la medicina.

La polarizzazione, assieme alla frequenza e all’intensità, è una delle tre proprietà fondamentali delle onde elettromagnetiche. Mentre le ultime due si manifestano ogni giorno tramite i colori e la brillantezza di una moltitudine di sorgenti di luce diverse quali led, microonde e laser, la polarizzazione della luce è meno conosciuta. I nostri occhi non sono sensibili a questa proprietà – che indica la direzione di oscillazione del campo ottico – e non ci accorgiamo, pertanto, di come essa sia alla base del funzionamento di oggetti di uso comune, come i display. Vedere tramite la polarizzazione permette di rilevare oggetti apparentemente invisibili in condizioni di scarsissima visibilità, e di scoprire dettagli che sono nascosti nelle normali fotografie. Inoltre, in applicazioni quali la visione digitale permette di osservare caratteristiche fisiche dei materiali nascoste – come tensioni, torsioni ed imperfezioni superficiali – e svolge un ruolo chiave nel settore dell’informazione quantistica.

Lo strumento sviluppato da Davide Pierangeli e Claudio Conti, rispettivamente dell’Istituto dei sistemi complessi del Cnr e del Dipartimento di Fisica della Sapienza Università di Roma supera il limite dell’assenza, fino ad oggi, di metodi e strumenti compatti per ottenere immagini in polarizzazione in modo ultraveloce: gli attuali rivelatori, infatti – i cosiddetti polarimetri – utilizzano molte misurazioni tramite apparati ottici costosi e voluminosi.

In particolare, il dispositivo realizzato è innovativo in quanto permette di misurare molte polarizzazioni in un singolo “shot”, basandosi sull’intelligenza artificiale. Inoltre, non necessita dei componenti ottici convenzionali di polarizzazione.

“Rivelare la cosiddetta «terza dimensione della luce» in modo efficiente è una sfida centrale per la fotonica”, spiega Davide Pierangeli (Cnr-Isc). “La nostra idea è stata quella di rivelare la polarizzazione misurando un’altra proprietà fisica apparentemente non collegata ad essa, cioè la distribuzione d’intensità ottica che viene prodotta da un chip disordinato, e da questa tramite tecniche di apprendimento automatico estrarre l’informazione sulle molte polarizzazioni codificate nel fascio laser”.

“Il nostro studio dimostra un rivelatore di polarizzazione smart basato su intelligenza artificiale con funzionalità attualmente non ottenibili in strumenti convenzionali”, continua Claudio Conti (Sapienza Università di Roma). “Questo apre le porte alla comunicazione ottica sicura, a nuovi strumenti per la medicina e la guida autonoma”.

Il risultato, pubblicato sulla rivista Nature Communications, apre importanti prospettive per l’applicazione della luce polarizzata strutturata nella comunicazione ottica, nell’imaging, e nella computazione.

 

polarimetro luce intelligenza artificiale

Riferimenti:

Single-shot polarimetry of vector beams by supervised learning – Davide Pierangeli & Claudio Conti – Nature Communications (2023) https://doi.org/10.1038/s41467-023-37474-0

Testo e immagine dal Settore Ufficio stampa e comunicazione Sapienza Università di Roma

LA VITAMINA B3 NELLA SUA FORMA NIACINA CONTRASTA IL DEPERIMENTO FISICO ASSOCIATO AL CANCRO, SECONDO UN NUOVO STUDIO PUBBLICATO SU NATURE COMMUNICATIONS.

Uno studio coordinato dal gruppo di ricerca del Dipartimento di Scienze Cliniche e Biologiche dell’Università di Torino ha dimostrato come la niacina, una forma di vitamina B3, migliori lo stato dei mitocondri, contrasti l’atrofia muscolare e le alterazioni del metabolismo energetico nei pazienti oncologici.

vitamina B3 deperimento cancro cachessia neoplastica
La vitamina B3 (niacina) contrasta la cachessia neoplastica, il deperimento fisico associato al cancro. Foto di Tung Nguyen

Il gruppo di ricerca coordinato dal Prof. Fabio Penna del Dipartimento di Scienze Cliniche e Biologiche dell’Università di Torino ha appena pubblicato un lavoro scientifico sulla prestigiosa rivista ‘Nature Communications’ (https://rdcu.be/c82wc) in cui si dimostra l’efficacia della niacina, una forma della vitamina B3, nel contrastare la cachessia neoplastica, una sindrome multifattoriale caratterizzata dalla perdita progressiva di massa muscolare, con o senza perdita di massa grassa, di un paziente oncologico.

La crescita del cancro e i trattamenti antitumorali generano adattamenti dannosi nei pazienti, che spesso si traducono in sindromi paraneoplastiche, tra cui la cachessia neoplastica, la più rilevante e di impatto negativo. La cachessia è caratterizzata da infiammazione e stress metabolico in diversi organi, con conseguente compromissione della funzionalità dei tessuti, ridotta tolleranza alla chemioterapia e scarsa risposta immunitaria: tutti fattori che contribuiscono a compromettere la qualità della vita e ridurre la sopravvivenza. Nella pratica oncologica, tutta l’attenzione è focalizzata sulle terapie mirate al cancro, ignorando spesso lo stato generale del paziente e perdendo l’opportunità di trattare il cancro e le sindromi associate come una malattia unica. Nella ricerca attuale, volta a considerare il sistema cancro-paziente nel complesso, è stato considerato il metabolismo energetico per trovare nuove opzioni di trattamento anti-cachessia.

L’identificazione del target specifico, ovvero il metabolismo del NAD⁺ (nicotinammide adenina dinucleotide), è avvenuta studiando modelli preclinici di ricerca (topi portatori di tumori) grazie a Juha Hulmi di Jyväskylä (Finlandia), le cui analisi hanno mostrato l’associazione tra atrofia muscolare e carenza di NAD⁺. Poiché il NAD⁺ è fondamentale per il corretto funzionamento dei mitocondri, la ‘centrale energetica’ delle nostre cellule, la perdita di NAD⁺ può spiegare il deficit energetico che si verifica nei tessuti dei pazienti oncologici, analogamente a quanto accade nella miopatia mitocondriale primaria, dove il potenziamento del NAD⁺ con la vitamina B3 contrasta il dismetabolismo, come dimostrato dal pionieristico lavoro di Eija Pirinen (Finlandia).

Il contributo torinese alla ricerca è stato quello di caratterizzare il metabolismo del NAD⁺ nel contesto della cachessia neoplastica e di testare l’efficacia della rigenerazione del NAD⁺ nei topi portatori di tumore, modelli animali che Marc Beltrà ha recentemente messo a punto nel laboratorio di Torino. Lo studio di intervento è stato preceduto dal lavoro di Noora Pöllänen (Finlandia), il cui screening dei disturbi del metabolismo NAD⁺ nei nuovi modelli di cachessia ha confermato che la perdita di NAD⁺ e la ridotta espressione dei geni associati è un tratto comune nella cachessia sperimentale innescata da tumori intestinali e pancreatici. Nel tentativo di estendere e convalidare questa osservazione in clinica, il gruppo di Roberta Sartori (Dipartimento di Scienze Biomediche, Università di Padova e Fondazione Ricerca Biomedica Avanzata VIMM di Padova) si è unito al consorzio e ha dimostrato il verificarsi delle alterazioni del NAD⁺ e del metabolismo energetico nel muscolo di pazienti oncologici affetti da tumori del colon-retto o del pancreas. I pazienti sono stati reclutati presso l’U.O.C. Chirurgia Generale 1 Azienda Ospedale – Università di Padova in collaborazione con un team di ricercatori del DiSCOG (Dipartimento di Scienze Chirurgiche Oncologiche e Gastroenterologiche), Università di Padova.

Allo scopo di dimostrare l’importanza di queste alterazioni per la potenziale cura della cachessia, si è deciso di testare l’efficacia della niacina (vitamina B3) nell’aumentare i livelli di NAD⁺ nei topi portatori di tumore. La niacina ha prevenuto la carenza di NAD⁺ muscolare ed ha migliorato lo stato dei mitocondri, contrastando l’atrofia muscolare e le alterazioni del metabolismo energetico. Considerando che la niacina è poco costosa ed è stata utilizzata in modo sicuro per il trattamento dell’ipercolesterolemia negli esseri umani, ne viene proposto l’uso per la gestione dei pazienti oncologici che presentano una compromissione del metabolismo energetico. In futuro, mirare allo squilibrio metabolico nell’ospite invertirà potenzialmente il circolo vizioso della cachessia e della mancata risposta alle terapie anti-tumorali, migliorando la sopravvivenza e la qualità della vita dei malati di cancro.

Testo dall’Ufficio Stampa Università di Torino

UN NUOVO STUDIO, PUBBLICATO SU NATURE COMMUNICATIONS, CHE VEDE PROTAGONISTI VIMM – UNIVERSITÀ DI PADOVA VA AD INDIVIDUARE UN NUOVO GENE CHE REGOLA L’INTEGRITÀ DEL MUSCOLO SCHELETRICO

Lo studio del gruppo di ricerca guidato da Marco Sandri, Principal Investigator dell’Istituto Veneto di Medicina Molecolare (VIMM) e Professore dell’Università di Padova è stato pubblicato sulla prestigiosa rivista “Nature Communications”.

Anais Franco e Marco Sandri al VIMM gene integrità muscolo scheletrico
Anaïs Franco Romero e Marco Sandri al VIMM

La perdita di forza è una condizione condivisa da molteplici e frequenti situazioni fisiopatologiche e che impatta fortemente sulla qualità della vita dei soggetti. L’ invecchiamento, l’immobilizzazione, la malnutrizione, le infezioni, i tumori, il diabete e l’obesità, le patologie epatiche, cardiache, renali e polmonari sono tutte condizioni che frequentemente inducono la perdita di massa muscolare – processo noto con il termine di atrofia muscolare – e l’insorgenza di uno stato di debolezza ed affaticamento che causa anche una minore risposta alle terapie.

Purtroppo, i meccanismi molecolari che inducono l’atrofia muscolare non sono ancora completamente definiti, e ad oggi non esistono terapie atte a prevenirla o contrastarla. Un aiuto importante può arrivare dalla ricerca, e in particolare da quella rivolta a conoscere e studiare i geni che hanno un ruolo nella regolazione della massa muscolare, con il fine di identificare nuovi bersagli per future terapie farmacologiche.

Tuttavia, un ostacolo importante a questo tipo di ricerca nasce dall’elevato numero di geni sconosciuti tra quelli che codificano le proteine: dei 20.000 geni conosciuti, più di 5.000 sono infatti inesplorati (i cosiddetti geni oscuri o dark genes).

Uno degli scopi del laboratorio del Prof. Marco SandriPrincipal Investigator dell’Istituto Veneto di Medicina Molecolare (VIMM) e Professore Ordinario in Patologia Clinica e Direttore del Dipartimento di Scienze Biomediche dell’Università di Padova è proprio quello di studiare i “geni oscuri” e capirne la loro funzione all’interno del muscolo scheletrico.

In quest’ottica, i risultati pubblicati sulla prestigiosa rivista “Nature Communications” dal Gruppo di ricerca del Prof. Sandri, contenuti all’interno dello studio coordinato da Anaïs Franco Romero e Jean Philipe Leduc-Gaudet (primi co-autori dello studio) hanno portato all’identificazione di un nuovo gene – chiamato MYTHO (Macroautophagy and YouTH Optimizer) – importante per l’integrità del muscolo scheletrico e in particolare del processo di degradazione delle proteine e degli organelli.

Questo processo cellulare deve funzionare correttamente e in modo bilanciato: un eccesso di degradazione proteica potrebbe infatti portare a una diminuzione della massa muscolare, mentre al contrario un blocco di questo processo potrebbe portare ad un accumulo di organelli e di proteine danneggiate che impediscono una normale contrazione muscolare.

Nello specifico, i ricercatori hanno visto come l’inibizione acuta di questo nuovo gene abbia un ruolo protettivo in caso di tumore, immobilizzazione e assenza di nutrimenti. Tuttavia, poiché la funzione di questo gene è critica per la pulizia della cellula, non si può ridurre la sua funzione per periodi prolungati perché si causa un accumulo di materiale non degradato, risultando in una degenerazione cellulare e diminuzione della forza muscolare. Quest’ultima situazione sembra verificarsi in una malattia muscolare genetica chiamata Distrofia muscolare di tipo 1 (DM1), in cui i ricercatori hanno trovato una riduzione di espressione di questo nuovo gene.

“La scoperta di nuovi geni che controllano la qualità dei nostri muscoli apre nuovi orizzonti non solo terapeutici – con la possibilità di sviluppare nuovi farmaci che preservino la forza – ma anche diagnostici” ha sottolineato Marco Sandri.

“Grazie alla conoscenza di questi geni e del loro funzionamento saremo in grado di identificare nuove cure per tutti i pazienti che hanno malattie ereditarie, di cui non si conosce il gene mutato”.

Lo studio, sostenuto in Italia da Fondazione Cariparo e in Francia dalla Fondazione AFM Telethon è stato condotto in stretta collaborazione con un team di ricercatori della prestigiosa McGill University di Montreal, diretto da Gilles Gouspillou Sabah NA Hussain.

 

Titolo dello studio:

MYTHO is a novel regulator of skeletal muscle autophagy and integrity

Nature Communications – 2023

Link alla pubblicazone:

https://www.nature.com/articles/s41467-023-36817-1

Autori:

Jean-Philippe Leduc-Gaudet,  Anaïs Franco-Romero,  Marina Cefis, Alaa Moamer, Felipe E. Broering, Giulia Milan, Roberta Sartori, Tomer Jordi Chaffer, Maude Dulac, Vincent Marcangeli, Dominique Mayaki, Laurent Huck, Anwar Shams, José A Morais, Elise Duchesne, Hanns Lochmuller, Marco Sandri, Sabah NA Hussain, Gilles Gouspillou.

 

Testo e immagini dagli Uffici Stampa VIMM e dell’Università di Padova

Le microscopiche regole del cuore: nuovo meccanismo di apertura dei canali ionici

Un nuovo studio coordinato dal Dipartimento di Ingegneria meccanica e aerospaziale della Sapienza e dall’Università di Chicago rivela un nuovo meccanismo di apertura di alcuni canali ionici che regolano la contrazione cardiaca. Lo studio, pubblicato sulla rivista Nature Communications, è stato realizzato nell’ambito del progetto ERC HyGate.

meccanismo di apertura di alcuni canali ionici cuore
Un nuovo studio rivela un nuovo meccanismo di apertura di alcuni canali ionici che regolano la contrazione cardiaca. Foto di Parentingupstream

Gli organi vitali come i muscoli, il cuore e il cervello per funzionare hanno bisogno di proteine, i canali ionici, che regolano il passaggio di ioni come potassio o sodio attraverso la membrana delle cellule grazie a un meccanismo controllato di apertura e chiusura definito “gating”.

Un nuovo studio pubblicato sulla rivista Nature Communications, coordinato dalla Sapienza e dall’Università di Chicago, ha esaminato il canale ionico Ether-à-go-go-Related Gene (hERG), un canale voltaggio-dipendente permeabile al potassio che regola la contrazione del cuore. Malfunzionamenti di questo canale sono associati alla Sindrome del QT Lungo di tipo 2 (LQTS2), una grave patologia cardiaca che può portare ad aritmia e persino alla morte improvvisa anche in persone molto giovani.

I ricercatori hanno rilevato la presenza di una catena inaspettata di contatti tra gli amminoacidi che collega il sensore del canale, sensibile alle variazioni di voltaggio, al poro che effettivamente ne determina l’apertura e la chiusura. Mutando gli amminoacidi più importanti di questa catena è stato possibile identificare, grazie ad una sinergia tra simulazioni molecolari e esperimenti di elettrofisiologia, un nuovo meccanismo di gating, di tipo non canonico.

 “Tali risultati– spiega Alberto Giacomello del Dipartimento di Ingegneria meccanica e aerospaziale della Sapienza, coordinatore del lavoro – forniscono nuovi dettagli sul meccanismo di apertura e chiusura del canale hERG utili sia alla comprensione delle cause molecolari alla base della LQTS2 sia alla progettazione di terapie più specifiche per il trattamento della patologia.”

Riferimenti:
Noncanonical electromechanical coupling paths in cardiac hERG potassium channel – Carlos A. Z. Bassetto Jr, Flavio Costa, Carlo Guardiani, Francisco Bezanilla & Alberto Giacomello – Nat Commun 14, 1110 (2023). https://doi.org/10.1038/s41467-023-36730-7

Testo dal Settore Ufficio stampa e comunicazione Sapienza Università di Roma

NEI GUSCI D’UOVO LA STORIA EVOLUTIVA DELL’UCCELLO ELEFANTE DEL MADAGASCAR

Uno studio internazionale, a cui ha partecipato l’Università di Torino, rivela importanti informazioni molecolari in substrati finora poco studiati, che possono far luce sulle antiche relazioni tra umani e animali.

L’Università di Torino ha partecipato allo studio “Molecular exploration of fossil eggshell uncovers hidden lineage of giant extinct bird”, pubblicato martedì 28 febbraio sulla rivista Nature Communications.  La ricerca, frutto di una collaborazione tra numerosi Atenei,  offre nuove informazioni sulla storia del misterioso “uccello elefante” che andò incontro ad estinzione circa mille anni fa, quando i primi gruppi umani arrivarono in Madagascar.

I rari resti scheletrici dell’uccello elefante non consentono di determinare con certezza il numero di specie una volta esistite, né tantomeno la loro distribuzione geografica, ma le biomolecole preservate in frammenti di guscio d’uovo datati a circa seimila anni fa hanno ora potuto migliorare la conoscenza dell’evoluzione e biodiversità dell’uccello elefante.

L’uccello elefante (vorompatra in malgascio) era enorme, con esemplari alti fino a tre metri, non era in grado di volare, e rappresenta uno dei più affascinanti misteri della storia delle interazioni tra la specie umana ed animale – anche perché il suo parente più prossimo è il kiwi, l’uccello simbolo della Nuova Zelanda. Tradizionalmente il nome si attribuisce agli scritti di Marco Polo, e l’uccello elefante potrebbe essere correlato alla genesi di diversi miti di area mediorientale.

uccello elefante Madagascar

Non potendo pienamente ricostruire la storia evolutiva su base morfologica, un gruppo di ricercatrici e ricercatori internazionali ha effettuato analisi paleomolecolari (genetiche e proteomiche) e geochimiche su 960 frammenti di guscio d’uovo provenienti da 291 località in Madagascar. Lo studio ha confermato la separazione tra due famiglie, Aepyornis e Mullerornis, con morfologie e dimensioni diverse, e ha evidenziato una sorprendente variabilità genetica esistente tra gli uccelli elefante del Madagascar settentrionale, suggerendo l’esistenza di una nuova linea evolutiva.

“Questo lavoro – dichiara Beatrice Demarchi, docente del Dipartimento di Scienze della Vita e Biologia dei Sistemi UniTo che ha partecipato allo studio con il suo team – conferma l’importanza di sviluppare nuove metodiche in grado di estrarre informazioni molecolari a partire da substrati poco studiati, come i gusci d’uovo. I gusci d’uovo detengono il record per la longevità delle biomolecole antiche, con proteine preservate fino all’epoca Miocenica (come abbiamo appena dimostrato in un altro recente articolo), e possono quindi rivelare le storie e le relazioni tra le comunità umane ed animali a partire dalle epoche più antiche”.

Testo e immagini dall’Area Relazioni Esterne e con i Media dell’Università degli Studi di Torino

 

DA ATACAMA A MARTE IN CERCA DI VITA

Identificare segni inequivocabili di vita su Marte è uno degli obiettivi che spinge gli scienziati a inviare missioni spaziali sul Pianeta Rosso. Studi effettuati in uno dei luoghi più aridi del nostro pianeta – Piedra Roja, in Cile – suggeriscono che scoprire le tracce di vita su Marte sarà più difficile del previsto. Da quanto è emerso, gli attuali strumenti di rilevamento di tracce biologiche già presenti sulla superficie di Marte o in fase di progettazione, potrebbero non essere abbastanza sensibili per mettere in evidenza tracce di vita estinta. Questo è quanto mette in luce sostanzialmente uno studio appena pubblicato sulla rivista Nature Communications firmato da un team internazionale di ricercatori di istituti sparsi in tutto il mondo, tra cui l’Istituto Nazionale di Astrofisica (INAF).

deserto di Atacama vita Piedras Rojas. Crediti: Armando Azua-Bustos
Da Piedras Rojas, nel deserto di Atacama, a Marte, in cerca di vita. Crediti: Armando Azua-Bustos

Piedra Roja è una regione estremamente inospitale per la vita: si tratta del delta di un ventaglio alluvionale formatosi in condizioni aride nel deserto di Atacama in un periodo che si estende dal Cretaceo inferiore al Giurassico superiore (163-100 milioni di anni).  Il sito è caratterizzato da rocce sedimentarie ricche di ossidi di ferro, ematite e fanghi contenenti argille come vermiculite e smectiti, e quindi geologicamente analogo a Marte.  I campioni prelevati presentano un numero importante di microrganismi con un insolito alto tasso di indeterminazione filogenetica – ciò che viene definito microbioma oscuro – e un mix di “firme biologiche” di microrganismi esistenti e antichi che sono a malapena rilevati con le più moderne attrezzature di laboratorio.

Questi risultati sottolineano l’importanza di riportare a Terra i campioni provenienti da Marte, al fine di utilizzare le più potenti tecniche di rilevamento a oggi disponibili nei laboratori.

Le analisi condotte con strumenti di prova che si trovano o saranno inviati su Marte rivelano che, sebbene la mineralogia di Piedra Roja corrisponda a quella rilevata dagli strumenti a terra sul Pianeta Rosso, livelli altrettanto bassi di sostanze organiche saranno difficili, se non impossibili, da rilevare nelle rocce marziane, a seconda dello strumento e della tecnica utilizzati. I risultati di questo studio sottolineano quindi l’importanza del ritorno dei campioni sulla Terra per stabilire con certezza se la vita sia mai esistita su Marte.

Dall’analisi del DNA dei microrganismi presenti in queste rocce è emerso un dato particolarmente interessante: circa il 9% è risultato non classificabile, mentre a circa il 41% è stato possibile assegnare solo il dominio o al massimo l’ordine, mettendo in evidenza che non sono chiare le relazioni di parentela evolutiva rispetto agli organismi terrestri noti. Si ritiene possano essere specie viventi che non sono ancora state individuate altrove sulla Terra, o in alternativa comunità superstiti di specie microbiche che un tempo abitavano il delta del fiume, delle quali però non sono conosciute specie parenti attualmente esistenti.

Inoltre, sono state rivelate biofirme molecolari di vita estinta e presente che potrebbero provenire da solfobatteri e fototrofi come i cianobatteri, ma che sono in concentrazioni ai limiti della sensibilità di strumentazione d’avanguardia presente nei nostri laboratori terrestri, difficilmente rilevabili con strumenti miniaturizzati come quelli a bordo dei rover marziani.

John Brucato, astrobiologo dell’INAF di Arcetri e tra i firmatari dell’articolo, osserva: “Questo è il classico esempio di come si lavora nell’ambito dell’astrobiologia, perché si tratta di un lavoro corale, che comprende la collaborazione di molteplici istituti di ricerca sparsi in tutto il mondo, in ognuno dei quali c’è una particolare expertise. Sono stati messi insieme risultati che riguardano la geologia, la petrologia, la mineralogia, la chimica, la biologia e la planetologia proprio perché questo tipo di lavori saranno utili per lo studio di Marte. Il lavoro congiunto dei diversi gruppi di ricerca è stato coordinato in maniera tale da raggiungere nuove conoscenze attraverso diverse tecniche, per capire la natura di questi microrganismi che vivono in un ambiente completamente arido. La regione in cui sono stati fatti questi prelievi è infatti il deserto più arido in assoluto che si possa trovare sulla Terra e questi microorganismi sembrano essere davvero peculiari e molto diversi da tutti gli altri conosciuti finora, se consideriamo che la quantità di microorganismi è talmente elevata che se ne scoprono continuamente di diversi. In questo caso, si tratta di una classe veramente nuova che ha permesso di capire la loro adattabilità in condizioni estreme che le può far considerare simili a quelle marziane”.

Teresa Fornaro, ricercatrice dell’INAF di Firenze, sottolinea: “Ci siamo occupati in particolare dell’analisi dei campioni utilizzando la tecnica di spettroscopia infrarossa a trasformata di Fourier di riflettanza diffusa (Drifts). Questo ci ha permesso di analizzare i campioni in modo analogo a strumenti a bordo di missioni marziane, come lo strumento SuperCam a bordo del rover Perseverance della missione della NASA Mars 2020 e lo strumento MicrOmega che volerà sulla futura missione dell’ESA ExoMars /Rosalind Franklin. Le nostre analisi hanno confermato la composizione mineralogica di queste rocce, ma la rivelazione di composti organici è stata possibile principalmente nella regione spettrale del medio infrarosso che non corrisponde a quella investigata dagli strumenti SuperCam e MicrOmega. Nella regione spettrale di SuperCam e MicrOmega abbiamo rivelato solo una banda a 1.36 μm che potrebbe essere dovuta a vibrazioni non fondamentali degli organici. La capacità quindi di questi strumenti di rivelare organici su Marte in concentrazioni basse come quelle di Piedra Roja è limitata”.


 

Per saperne di più:

L’articolo “Dark microbiome and extremely low organics in Atacama fossil delta unveil Mars life detection limits” di Armando Azua-Bustos, Alberto G. Fairén, Carlos González-Silva, Olga Prieto-Ballesteros, Daniel Carrizo, Laura Sánchez-García, Victor Parro, Miguel Ángel Fernández-Martínez, Cristina Escudero, Victoria Muñoz-Iglesias, Maite Fernández-Sampedro, Antonio Molina, Miriam García Villadangos, Mercedes Moreno-Paz, Jacek Wierzchos, Carmen Ascaso, Teresa Fornaro, John Robert Brucato, Giovanni Poggiali, Jose Antonio Manrique, Marco Veneranda, Guillermo López-Reyes, Aurelio Sanz-Arranz, Fernando Rull, Ann M. Ollila, Roger C.Wiens, Adriana Reyes-Newell, Samuel M. Clegg, Maëva Millan, Sarah Stewar Johnson, Ophélie McIntosh, Cyril Szopa, Caroline Freissinet, Yasuhito Sekine, Keisuke Fukushi, Koki Morida, Kosuke Inoue, Hiroshi Sakuma, Elizabeth Rampe, è stato pubblicato su Nature Communications.

Testo dall’Ufficio stampa – Struttura per la Comunicazione Istituto Nazionale di Astrofisica – INAF

NUOVE SCOPERTE SUI MECCANISMI MOLECOLARI ALLA BASE DELLE MALATTIE NEURODEGENERATIVE

Due ricerche del laboratorio di Maria Pennuto (UNIPD-VIMM) e Manuela Basso (UNITRENTO) pubblicati su «Nature Communications»

Gli studi del team di ricerca guidato dalla Prof.ssa Maria Pennuto (Università di Padova e VIMM) e dalla Prof.ssa Manuela Basso (Università di Trento) sulla malattia di Kennedy hanno portato a nuove scoperte ed evidenze sui meccanismi molecolari alla base della malattia.

Nuovi risultati per il team di ricerca guidato dalla Prof.ssa Maria Pennuto – Principal Investigator del VIMM e Professore Associato dell’Università degli Studi di Padova – che da diversi anni sta investigando il coinvolgimento del muscolo scheletrico nella malattia neurodegenerativa nota come malattia di Kennedy.

Se è stato dimostrato e provato da molti studi internazionali che questa malattia – causata da una mutazione del recettore degli ormoni (androgeni) – parte da processi patologici che iniziano nel muscolo scheletrico e che causano la perdita dei neuroni che regolano il movimento volontario, sono emerse nuove evidenze da una prima ricerca dal titolo “Defective excitation-contraction coupling and mitochondrial respiration precede mitochondrial Ca2+ accumulation in spinobulbar muscular atrophy skeletal muscle”, pubblicata sulla rivista «Nature Communications».

Realizzata e condotta dal team della Prof.ssa Pennuto con Caterina Marchioretti, Giulia Zanetti e Marco Pirazzini, la ricerca dimostra che nella malattia di Kennedy ci sono alterazioni precoci della capacità dei muscoli di contrarsi e di produrre energia, che si traduce in una progressiva alterazione della capacità dei muscoli di produrre la forza necessaria ad effettuare un movimento senza stancarsi precocemente.

L’altro risultato, pubblicato sempre su «Nature Communications», emerge dallo studio con titolo “LSD1/PRMT6-targeting gene therapy to attenuate androgen receptor toxic gain-of-function ameliorates spinobulbar muscular atrophy phenotypes in flies and mice” – frutto del lavoro del team della Prof. Pennuto con Ramachandram Prakasam e Roberta Andreotti e di Manuela Basso con Angela Bonadiman dell’Università di Trento) – in cui si spiega che questi fenomeni sono dovuti alla presenza nel muscolo di fattori che interagiscono con la proteina mutata.

A partire da questa evidenza, il gruppo di ricerca ha generato delle piccole molecole capaci di ridurre l’espressione di quei fattori che interagiscono con la proteina mutata, dimostrando che così facendo si migliora lo stato di salute dei muscoli e dei neuroni da loro contattati.

«Le malattie neurodegenerative sono una vasta categoria di condizioni patologiche che va da disordini cognitivi a motori, e dove i sintomi clinici sono dovuti al malfunzionamento di specifiche popolazioni del sistema nervoso centrale. Ciò che è attualmente oggetto di indagine è il meccanismo, o meglio i meccanismi molecolari alla base di queste malattie – sottolinea Maria Pennuto. Un concetto che è emerso negli ultimi anni è che molto spesso le malattie neurodegenerative sono multi-sistemiche e non coinvolgono solo i neuroni, ma diversi tipi di cellule e organi oltre al sistema nervoso. Queste due ricerche ci portano un passo avanti verso la comprensione di questi meccanismi, andando a identificare nuovi target terapeutici che verranno sviluppati dai gruppi coinvolti nei prossimi anni».

«In questi anni ci siamo chieste come poter preservare la funzione fisiologica del recettore degli androgeni, eliminando quella tossica legata alla mutazione. In questo studio siamo riuscite a realizzare questo nostro obiettivo e siamo pronte a investire i prossimi anni per traslare questo nostro approccio dalla ricerca di base alla clinica» afferma Manuela Basso.

Il progetto di ricerca della prof.ssa Maria Pennuto sulla malattia di Kennedy è iniziato nel 2013, quando ha ricevuto un finanziamento di oltre 500.000 euro da parte della Provincia Autonoma di Trento, nell’ambito del programma per le carriere dell’Istituto Telethon-Dulbecco (DTI), che le ha permesso di creare un gruppo di ricerca indipendente per lo studio di questa patologia.

LINK AI PAPER SU NATURE COMMUNICATIONS:

https://www.nature.com/articles/s41467-023-36185-w

https://www.nature.com/articles/s41467-023-36186-9

malattie neurodegenerative malattia di Kennedy
Nuove scoperte sui meccanismi molecolari alla base delle malattie neurodegenerative

MARIA PENNUTO

Maria Pennuto si è laureata con lode in Scienze Biologiche nel 1996 all’Università “La Sapienza” di Roma. Nel 2000 ha ottenuto il diploma di dottore di ricerca in “Biologia cellulare (Cellulare e Molecolare)” (XIII ciclo) all’Università degli Studi di Milano. Dal 2001 al 2004, ha svolto un post-dottorato nel laboratorio del Dr Lawrence Wrabetz (San Raffaele, Milano), dove ha investigato i meccanismi molecolari alla base della malattia della mielina periferica Charcot-Marie-Tooth tipo 1B. Nel 2005 si è recata al National Institute of Neurological Disorders and Stroke (National Institutes of Health, NIH, Bethesda, MD) negli USA, dove ha svolto attività di ricerca come visiting post-dottorato nel laboratorio del Dr Kenneth Fischbeck, investigando i meccanismi molecolari alla base delle malattie del motoneurone. Nel 2008 ha ottenuto la posizione di Staff Scientist al Dipartimento di Neurologia della University of Pennsylvania (UPenn, Philadelphia, PA USA), dove ha continuato la propria attività di ricerca sulle malattie neurodegenerative.

Nel 2009 la Professoressa Pennuto è rientrata in Italia con una posizione di ricercatore indipendente al Dipartimento di “Neuroscience and Brain Technologies” dell’Istituto Italiano di Tecnologia di Genova. Qui ha diretto l’unità di ricerca sulle basi molecolari delle malattie neuromuscolari degenerative quali SBMA e SLA. Nel 2013 ha vinto il premio alla carriera Dulbecco Telethon (DTI) e ha ottenuto una posizione di Ricercatore di tipo B al Centro di Biologia Integrata dell’Università di Trento. Nel 2017 Maria ha ottenuto una posizione di Professore Associato all’Università degli Studi di Padova. A partire dal 2018 è capo unità nell’Istituto Veneto di Medicina Molecolare (VIMM), Padova.

Maria Pennuto
Maria Pennuto

MANUELA BASSO

Manuela Basso si è laureata con lode e dignità di Stampa in Biotecnologie Mediche presso l’Università degli Studi di Torino nel 2002 con una tesi realizzata presso il Bioindustry Park del Canavese. Nel 2008 ha ottenuto il diploma di dottore di ricerca in Life Science presso l’università inglese The Open University e l’Istituto di Ricerche Farmacologiche Mario Negri lavorando sulla Sclerosi Laterale Amiotrofica. Dal 2008 al 2012 ha svolto un post-dottorato nel laboratorio del Dr Rajiv Ratan, presso il Burke Neurological Institute e il Weill Medical College, Cornell University, New York. Dal 2012 al 2013 è stata promossa alla posizione di Instructor alla Cornell University dove ha studiato i meccanismi molecolari coinvolti nella morte neuronale.

Nel novembre 2013 è rientrata in Italia con chiamata diretta dall’Università di Trento e ha iniziato a dirigere il suo gruppo di ricerca. Ad oggi Manuela Basso è professore Associato presso il Dipartimento di Biologia Cellulare, Computazionale e Integrata (Dipartimento CIBIO).

Manuela Basso. Foto © UniTrento, di Federico Nardelli

Testo e foto dagli Uffici Stampa dell’Università degli Studi di Padova, di Trento e VIMM sulla scoperta dei meccanismi molecolari alla base delle malattie neurodegenerative.