News
Ad
Ad
Ad
Tag

Nature

Browsing

Pubblicati su Nature nuovi indizi nella ricerca di una cura per la sclerosi multipla (SM)

I ricercatori identificano il primo marcatore genetico per la gravità della SM, aprendo nuovi orizzonti ai trattamenti per la disabilità a lungo termine.

28 giugno 2023. Uno studio multicentrico internazionale, a cui hanno collaborato in Italia l’Università del Piemonte Orientale, l’IRCCS Ospedale San Raffaele di Milano, l’Università degli Studi di Milano, la Fondazione IRCCS Casa Sollievo della Sofferenza e l’ASST Santi Paolo e Carlo di Milano, condotto su oltre 22.000 persone con sclerosi multipla (SM) ha scoperto la prima variante genetica associata a una progressione più rapida della malattia, che nel tempo può privare i pazienti della loro mobilità e indipendenza.

La sclerosi multipla è il risultato dell’azione del sistema immunitario che attacca erroneamente il cervello e il midollo spinale provocando riacutizzazioni dei sintomi, note come ricadute, e degenerazione a lungo termine, nota come progressione, cioè un accumulo di disabilità. Nonostante lo sviluppo di trattamenti efficaci per le ricadute, nessuno può prevenire in modo affidabile l’accumulo di disabilità.

Nuovi indizi nella ricerca di una cura per la sclerosi multipla

I risultati di questo lavoro, pubblicati su Nature, puntano l’attenzione sull’identificazione di una variante genetica che aumenta la gravità della malattia, fornendo un’informazione fondamentale nella comprensione e quindi nella lotta a questo aspetto della SM.

«Ereditare questa variante genetica da entrambi i genitori accelera di quasi quattro anni il tempo per avere bisogno di un ausilio per la deambulazione», ha affermato Sergio Baranzini, PhD, professore di neurologia presso l’UCSF e co-autore senior dello studio.

Il lavoro è stato il risultato di un’ampia collaborazione internazionale di oltre 70 istituzioni di tutto il mondo, guidate da ricercatori dell’UCSF (USA) e dell’Università di Cambridge (Regno Unito).

«Capire come la variante esercita i suoi effetti sulla gravità della SM aprirà auspicabilmente la strada a una nuova generazione di trattamenti in grado di prevenire la progressione della malattia», ha affermato Stephen Sawcer, professore all’Università di Cambridge ed altro co-autore senior di lo studio.

Una rinnovata attenzione al sistema nervoso

Per affrontare il mistero della gravità della SM, due grandi consorzi di ricerca sulla SM hanno unito le loro forze: l’International Multiple Sclerosis Genetics Consortium (IMSGC) e il MultipleMS Consortium. Ciò ha consentito ai ricercatori della SM di tutto il mondo di mettere in comune le risorse necessarie per iniziare a identificare i fattori genetici che influenzano l’andamento clinico della SM.

In Italia la ricerca è stata coordinata dalla professoressa Sandra D’Alfonso, docente di Genetica medica presso il Dipartimento di Scienze della salute dell’Università del Piemonte Orientale, a Novara (che insieme al dottor Maurizio Leone della Fondazione IRCCS Casa Sollievo della Sofferenza di San Giovanni Rotondo (FG) coordina PROGEMUS, il network italiano di centri SM che ha partecipato allo studio e che comprende la Clinica Neurologica dell’AOU “Maggiore della Carità” di Novara), dal professor Filippo Martinelli Boneschi, docente di Neurologia del Dipartimento di Scienze della salute presso l’Università degli Studi di Milano e responsabile del centro Sclerosi Multipla presso l’ASST Santi Paolo e Carlo di Milano, entrambi all’interno del gruppo strategico dell’IMSGC, e dalla dottoressa Federica Esposito, responsabile del laboratorio di Genetica Umana delle Malattie Neurologiche presso l’IRCCS Ospedale San Raffaele di Milano e membro dell’IMSGC con il professor Massimo Filippi, primario dell’Unità di Neurologia, Neuroriabilitazione e Neurofisiologia e del centro SM dell’IRCCS Ospedale San Raffaele di Milano.

Precedenti studi avevano dimostrato che la suscettibilità o il rischio di SM deriva in gran parte da disfunzioni del sistema immunitario e alcune di queste disfunzioni possono essere trattate, rallentando la malattia. Ma

«questi fattori di rischio non spiegano perché, a dieci anni dalla diagnosi, alcune persone con la SM siano sulla sedia a rotelle mentre altri continuino a correre maratone», ha spiegato Baranzini.

I due consorzi hanno integrato i dati di oltre 12.000 persone con SM per completare uno studio di associazione su tutto il genoma (GWAS), che utilizza la statistica per associare accuratamente le varianti genetiche a tratti particolari. In questo caso, i tratti di interesse erano correlati alla gravità della SM, comprendendo, per esempio, gli anni necessari a ciascuna persona per passare dalla diagnosi a un certo livello di disabilità.

I ricercatori italiani, membri di entrambi i consorzi fin dalla loro istituzione, hanno contribuito attivamente a tutte le fasi dello studio, dal disegno originale alle fasi di analisi e di preparazione dell’articolo. Essi, inoltre, hanno contribuito con un’ampia casistica italiana di persone con SM caratterizzate accuratamente da un punto di vista clinico, che costituiscono circa il 20% dell’intera popolazione in studio. I centri di ricerca italiani hanno fornito allo studio dati di un’ampia componente di una popolazione del sud Europa, altrimenti non rappresentata nell’intera casistica, sottolineando il valore della variabilità genetica negli studi di malattie multifattoriali come la SM.

Dopo aver setacciato oltre sette milioni di varianti genetiche, i ricercatori ne hanno trovata una associata a una progressione più rapida della malattia. La variante si trova tra due geni senza precedente associazione alla SM, chiamati DYSF e ZNF638. Il primo è coinvolto nella riparazione delle cellule danneggiate, il secondo aiuta a controllare le infezioni virali. La vicinanza della variante a questi geni suggerisce che potrebbero essere coinvolti nella progressione della malattia.

«Questi geni sono normalmente attivi nel cervello e nel midollo spinale, e non nel sistema immunitario», ha affermato Adil Harroud, MD, primo autore dello studio. «I nostri risultati suggeriscono che la resilienza e la riparazione nel sistema nervoso determinano il corso della progressione della SM e che dovremmo concentrarci su queste parti della biologia umana per terapie più efficaci

I risultati di questo studio costituiscono i primi indizi per affrontare la componente del sistema nervoso della SM.

«Sebbene sembri ovvio che la resilienza del cervello alle lesioni determinerebbe la gravità di una malattia come la SM, questo nuovo studio ci ha indirizzato verso i processi chiave che sono alla base di questa resilienza», ha detto Sawcer.

Una coalizione in continua espansione per affrontare la gravità della SM

Per confermare le loro scoperte, i ricercatori hanno studiato la genetica di quasi 10.000 ulteriori persone affette da SM. Quelli con due copie della variante sviluppano disabilità più velocemente. Sarà necessario ulteriore lavoro per determinare esattamente come questa variante genetica influenzi DYSF, ZNF638 e il sistema nervoso più in generale. I ricercatori stanno anche raccogliendo una serie ancora più ampia di campioni di DNA da persone con SM, aspettandosi di trovare altre varianti che contribuiscono alla disabilità a lungo termine nella SM.

«Questo studio ci dà una nuova opportunità per sviluppare nuovi farmaci che possono aiutare a preservare la salute di tutti coloro che soffrono di SM», ha detto Harroud.

I ricercatori italiani coinvolti nello studio internazionale Sandra D’Alfonso, Filippo Martinelli Boneschi e Federica Esposito sottolineano come

«questo lavoro rappresenta un’importante svolta nell’ambito della medicina di precisione, in quanto potrebbe, per esempio, portare all’uso di terapie più aggressive sin dall’inizio in quei soggetti portatori di varianti genetiche sfavorevoli per la progressione. Inoltre, la conoscenza di questa variante e dei due geni in prossimità della variante potrebbe permettere di sviluppare nuovi farmaci che agiscano sul meccanismo d’azione di questi due geni e rallentino la progressione della malattia.»

Finanziamenti

Questo lavoro è stato sostenuto in parte dai finanziamenti del NIH/NINDS (R01NS099240), del programma di finanziamento della ricerca e dell’innovazione Horizon 2020 dell’Unione Europea e della Multiple Sclerosis Society of Canada. I ricercatori italiani hanno ricevuto finanziamenti che negli anni hanno permesso di poter contribuire a questo studio da parte di FISM (Fondazione Italiana Sclerosi Multipla) e Ministero della Salute (Ricerca finalizzata, RF-2016-02361294).

Altri collaboratori italiani allo Studio

Nadia Barizzone, Dipartimento Scienze della Salute UPO, Novara

Paola Cavalla: Dipartimento di Neuroscienze e salute Mentale AOU Citta della Salute e della Scienza di Torino

Ferdinando Clarelli, Elisabetta Mascia, Silvia Santoro, Melissa Sorosina IRCCS Istituto Scientifico San Raffaele, Milano

Domenico Caputo: IRCCS Fondazione Don Gnocchi ONLUS, Milano

Giancarlo Comi: Università Vita-Salute San Raffaele, Milano

Domizia Vecchio: Clinica Neurologica AOU Maggiore della Carità, Novara, UPO

Locus for severity implicates CNS resilience in progression of multiple sclerosis, Nature (2023), DOI: 10.1038/s41586-023-06250-x

 

Testo e foto dall’Ufficio Comunicazione e Attività Istituzionali Università del Piemonte Orientale

MESSIER 87: FINALMENTE OSSERVATO IL COLLEGAMENTO TRA LA MATERIA CHE CIRCONDA IL BUCO NERO E LA BASE DEL GETTO RELATIVISTICO 

Un team internazionale di scienziati, a cui partecipano anche i ricercatori dell’Istituto Nazionale di Astrofisica (INAF), ha utilizzato nuove osservazioni a lunghezze d’onda millimetriche per “fotografare” per la prima volta la struttura ad anello che rivela la materia che cade nel buco nero centrale, insieme al potente getto relativistico, nella prominente radiogalassia Messier 87 (M87). Le immagini mostrano l’origine del getto e il flusso di accrescimento vicino al buco nero supermassiccio centrale. Le nuove osservazioni sono state ottenute con il Global Millimeter VLBI Array (GMVA), integrato dall’Atacama Large Millimeter/submillimetre Array (ALMA) e dal Greenland Telescope (GLT). L’aggiunta di questi due osservatori ha notevolmente migliorato le capacità di imaging del GMVA. I risultati sono pubblicati sulla rivista scientifica Nature.

Rappresentazione artistica che mostra uno zoom sul flusso di accrescimento e sul getto che emerge dalla regione del buco nero in Messier 87. Crediti: Sophia Dagnello, NRAO/AUI/NSF

Gabriele Giovannini e Marcello Giroletti, dell’INAF di Bologna e tra gli autori dello studio, raccontano:

“Il buco nero al centro della galassia M87 è ben noto essendo il primo di cui è stata ottenuta una immagine (dal team dell’Event Horizon Telescope EHT). Noi lo abbiamo osservato con alta sensibilità ad una lunghezza d’onda leggermente più grande (3,5 mm) e quindi più adatta a rivelare le strutture più estese della sorgente. Le immagini hanno infatti mostrato che la struttura ad anello intorno al buco nero è più estesa di quanto si credeva e che questo anello è collegato al getto relativistico visto in M87. Per la prima volta vediamo quindi il collegamento tra la materia che circonda il buco nero e la base del getto relativistico”.

Immagine GMVA+ALMA della regione centrale del buco nero in Messier 87 ottenuta il 14-15 aprile 2018 a una lunghezza d’onda di 3,5 mm. L’immagine grande raffigura il getto e l’anello centrale ricostruiti con il metodo CLEAN standard. L’inserto mostra un ingrandimento della regione interna ottenuta con il metodo SMILI a super risoluzione, rivelando la forma ad anello con un diametro di 64 microarcosecondi

Rusen Lu, dell’Osservatorio astronomico di Shanghai e leader del Max Planck Institute di Bonn partner group presso l’Accademia cinese delle scienze, primo autore di questa scoperta, commenta:

“In precedenza, avevamo visto sia il buco nero che il getto in immagini separate. Ora  è come se avessimo scattato una foto panoramica del buco nero insieme al suo getto a una nuova lunghezza d’onda”.

Si pensa che il materiale circostante cada nel buco nero in un processo noto come accrescimento, da cui ha origine il getto ma nessuno aveva mai visto direttamente l’origine del getto.

Mappa dei radiotelescopi utilizzati per l’immagine di Messier 87 a 3,5 millimetri nella campagna 2018 Global Millimeter VLBI Array (GMVA). Crediti: Helge Rottmann, MPIfR

La partecipazione di ALMA e GLT alle osservazioni del GMVA e il conseguente aumento della risoluzione e della sensibilità di questa rete intercontinentale di telescopi ha reso possibile per la prima volta l’immagine della struttura ad anello in M87 alla lunghezza d’onda di 3,5 mm. Il diametro dell’anello misurato dal GMVA è di 64 microsecondi d’arco, corrispondenti alle dimensioni di un piccolo anello luminoso (13 cm) visto da un astronauta sulla Luna che guarda la Terra. Questo diametro è del 50% più grande di quanto osservato dall’Event Horizon Telescope alla lunghezza d’onda di 1,3 mm, in accordo con le previsioni per l’emissione del plasma relativistico in questa regione.

L’emissione da questa regione di M87 è prodotta dall’interazione tra elettroni altamente energetici e campi magnetici, un fenomeno chiamato radiazione di sincrotrone. Le nuove osservazioni, a una lunghezza d’onda di 3,5 millimetri, rivelano maggiori dettagli sulla presenza e l’energia di questi elettroni. Ci dicono anche qualcosa sulle proprietà del buco nero, in particolare che non è molto “affamato”. Cosa vuol dire? Consuma materia a bassa velocità, convertendo solo una piccola frazione di essa in radiazioni.

I buchi neri sono la miglior macchina che conosciamo in grado di trasformare materia (la materia dell’anello) in energia (il getto relativistico espulso). Gli studi per saperne di più su Messier 87 non finiscono qui: ulteriori osservazioni e una flotta di potenti telescopi continueranno a svelarne i segreti. I radiotelescopi INAF (Medicina, Noto, Sardinia Radio Telescope) una volta completato il loro potenziamento attualmente in corso, saranno in grado di collaborare a queste osservazioni a 3,5 mm aumentandone ulteriormente la qualità.

Immagine GMVA+ALMA della regione centrale del buco nero in Messier 87 ottenuta il 14-15 aprile 2018 a una lunghezza d’onda di 3,5 mm. L’immagine grande raffigura il getto e l’anello centrale ricostruiti con il metodo CLEAN standard. L’inserto mostra un ingrandimento della regione interna ottenuta con il metodo SMILI a super risoluzione, rivelando la forma ad anello con un diametro di 64 microarcosecondi

 

Per ulteriori informazioni:

L’articolo “A ring-like accretion structure in M87 connecting its black hole and jet”, di Ru-Sen Lu et al. pubblicato su Nature.

Testo e immagini dall’Ufficio stampa – Struttura per la Comunicazione Istituto Nazionale di Astrofisica (INAF).

CHEOPS E L’ANELLO DI DETRITI ATTORNO AL PIANETA NANO QUAOAR

L’anello che circonda il corpo transnettuniano si trova oltre il limite di Roche il che è particolarmente interessante: questo limite determina la distanza dopo la quale qualsiasi oggetto celeste in avvicinamento al pianeta verrebbe fatto a pezzi.

anello Quaoar limite di Roche
Rappresentazione artistica del pianeta nano Quaoar e del suo anello composto da piccoli detriti grigi. La luna di Quaoar, Weywot, è raffigurata a sinistra nell’immagine. L’anello di Quaoar è stato scoperto attraverso una serie di osservazioni avvenute tra il 2018 e il 2021 e si trova oltre il limite di Roche. Utilizzando numerosi di telescopi terrestri e il telescopio spaziale Cheops dell’ESA, gli astronomi hanno osservato Quaoar attraversare una successione di stelle lontane, bloccando brevemente la loro luce mentre passava, potendolo così studiare. La stella più luminosa in lontananza è il Sole. Crediti: ESA, CC BY-SA 3.0 IGO, Riconoscimenti: Work performed by ATG under contract for ESA

 

Avvistato per la prima volta nel 2002, il pianeta nano 50000 Quaoar è di nuovo protagonista di una scoperta realizzata grazie a diversi telescopi, tra cui anche quello della missione ESA CHaracterising ExOPlanet Satellite (Cheops), a cui partecipano in maniera importante anche l’Istituto Nazionale di Astrofisica (INAF) e l’Agenzia Spaziale Italiana (ASI). I ricercatori hanno rilevato la presenza di un denso anello di materiale attorno all’oggetto transnettuniano. L’anello di detriti è interessante soprattutto perché si trova a una distanza di quasi sette volte e mezzo il raggio di Quaoar, cioè oltre il limite di Roche. I dati delle osservazioni sono stati appena pubblicati in un articolo di Nature.

Quaoar è un planetoide relativamente freddo, si trova ai confini del Sistema solare nella Fascia di Kuiper (oltre l’orbita del pianeta Nettuno) e le sue dimensioni sono paragonabili approssimativamente ai due terzi di quelle di Plutone. L’oggetto fa parte di una raccolta di circa 3000 piccoli mondi distanti, noti come oggetti transnettuniani (TNO). I più grandi pianeti nani in questa categoria sono Plutone ed Eris. Con un raggio stimato di 555 km, Quaoar si colloca intorno al numero sette nella classifica ed è orbitato da una piccola luna chiamata (50000) Quaoar I Weywot, di circa 80 km di raggio.

L’anello è stato scoperto attraverso una serie di osservazioni avvenute tra il 2018 e il 2021. Usando una serie di telescopi terrestri e, in una occasione anche il telescopio spaziale Cheops, gli astronomi hanno osservato un certo numero di occultazioni di stelle lontane da parte di Quaoar. Durante l’evento di occultazione la stella sullo sfondo viene nascosta per un breve periodo di tempo e il modo in cui avviene la diminuzione di luce fornisce informazioni sulle dimensioni e sulla forma dell’oggetto occultante e può rivelare se l’oggetto intermedio ha o meno un’atmosfera. I pianeti nani, a causa delle loro dimensioni e dell’estrema distanza, sono oggetti particolarmente difficili da studiare. L’orbita di Quaoar attorno al Sole è pari a 44 volte la distanza Sole-Terra. Per rilevare l’occultamento è necessario che l’allineamento tra l’oggetto occultante, la stella e il telescopio osservatore sia estremamente preciso.

L’anello di Quaoar è molto più piccolo di quelli attorno a Saturno e non è l’unico sistema di anelli noto attorno a un pianeta nano. Altri due – intorno a Chariklo e Haumea – sono stati rilevati attraverso osservazioni da terra. Ciò che rende unico l’anello di Quaoar, tuttavia, è dove si trova rispetto a Quaoar stesso. Vale a dire il famoso limite di Roche. Di cosa parliamo? Qualsiasi oggetto celeste con un campo gravitazionale avrà un limite entro il quale un oggetto celeste in avvicinamento verrà fatto a pezzi. Si prevede che sistemi di anelli densi esistano all’interno del limite di Roche, come nel caso di Saturno, Chariklo e Haumea.

“Quindi, ciò che è così intrigante di questa scoperta intorno a Quaoar è che l’anello di materiale è molto più lontano del limite di Roche”,

spiega Giovanni Bruno, ricercatore dell’INAF di Catania, e collaboratore dello Science team di Cheops. Dov’è il vero mistero? Gli esperti ritengono che gli anelli oltre il limite di Roche si condensino per formare una piccola luna entro pochi decenni.

“Come risultato delle nostre osservazioni, la nozione classica che gli anelli densi sopravvivono solo all’interno del limite di Roche di un corpo planetario deve essere completamente rivista”, dice ancora.

Per studiare i corpi minori del Sistema solare analizzando le occultazioni stellari, è stato creato il progetto Lucky Star, coordinato da Bruno Sicardy, dell’Università La Sorbona & Paris Observatory – PSL (LESIA) e finanziato dal Consiglio Europeo per la Ricerca (ERC). Nell’ambito di Lucky Star vengono coordinate osservazioni di questi eventi con telescopi professionali e amatoriali in tutto il mondo.

Il satellite Cheops ha partecipato alla campagna osservativa organizzata in occasione di una occultazione prevista per l’11 giugno 2020. Le osservazioni Cheops sono state proposte, in collaborazione con il progetto Lucky Star, da Isabella Pagano, direttrice dell’INAF di Catania,  responsabile nazionale per la missione Cheops e membro del suo comitato scientifico.  La ricercatrice ricorda che

“tutto il team Cheops era abbastanza scettico sulla  possibilità di catturare un’occultazione dallo spazio, ma, dopo averne valutato la fattibilità, grazie anche alle accurate misure di posizione fornite dal satellite Gaia, abbiamo deciso di rischiare poiché il tempo speso dal satellite per osservare questo evento, sarebbe stato abbastanza breve da non danneggiare i programmi primari della missione”.

Il problema principale era che la traiettoria del satellite può essere leggermente modificata a causa della resistenza negli strati superiori dell’atmosfera terrestre, a causa dell’attività solare che può colpire il nostro pianeta e espandere la sua atmosfera.

“I dati di Cheops sono straordinari per rapporto segnale-rumore”,

afferma Pagano. Il rapporto segnale-rumore è una misura di quanto è forte il segnale rilevato rispetto al rumore casuale nel sistema. Cheops dà un ottimo rapporto segnale-rumore perché il telescopio non osserva attraverso gli effetti di distorsione della bassa atmosfera terrestre. Questa chiarezza si è rivelata decisiva nel riconoscere il sistema di anelli di Quaoar, perché ha permesso ai ricercatori di eliminare la possibilità che i cali di luce fossero causati da un effetto spurio nell’atmosfera terrestre. Combinando diversi rilevamenti secondari, effettuati con i telescopi sulla Terra, è stato possibile essere certi che fossero causati da un sistema di anelli che circondava Quaoar.

“Cheops riesce a raggiungere alte prestazioni in sensibilità del segnale anche grazie al particolare disegno e all’attenta realizzazione del suo telescopio che è stato ideato dai ricercatori italiani e prodotto, su incarico ASI e in collaborazione con la Svizzera, nei laboratori della Leonardo S.p.A., con la partecipazione di Thales Alenia Space e Media Lario”, aggiunge Elisabetta Tommasi, responsabile per ASI dell’accordo con INAF per le attività scientifiche di Cheops.

Bruno Morgado, Università federale di Rio de Janeiro, è il primo autore dello studio. Il ricercatore a capo del team ha combinato i dati di Cheops con quelli di grandi osservatori professionali in tutto il mondo e altri ottenuti da scienziati amatoriali, i quali avevano osservato Quaoar occultare varie stelle negli ultimi anni. “Quando abbiamo messo tutto insieme, abbiamo visto cali di luminosità che non erano causati da Quaoar, ma che indicavano la presenza di materiale in un’orbita circolare attorno ad esso: stiamo vedendo un anello attorno a Quaoar”.

Il progetto Lucky Star continuerà a scrutare Quaoar e anche altri TNO mentre occultano stelle lontane per misurare le loro caratteristiche fisiche e vedere quanti altri hanno anche sistemi di anelli. Cheops ha mostrato che osservare occultazioni dallo spazio è possibile, non era mai stato fatto prima, e quindi si è aperta una strada già seguita anche dal James Webb Space Telescope il quale ha osservato lo scorso ottobre l’occultazione di una stella da parte di Chariklo, uno degli asteroidi della classe dei Centauri.


 

 

Per ulteriori informazioni:

L’articolo “A dense ring of the trans-Neptunian object Quaoar outside its Roche limit”, di B.E. Morgado et al., è stato pubblicato sulla rivista Nature.

Testo e immagini dall’Ufficio stampa – Struttura per la Comunicazione Istituto Nazionale di Astrofisica – INAF

NON SOLO ACQUA AL CENTRO DELLA TERRA, CI SONO ANCHE METANO E IDROGENO MOLECOLARE

Lo studio pubblicato su «Nature» conferma per la prima volta che le placche tettoniche penetrano nel mantello seguendo talvolta percorsi non lineari.

La scoperta potrebbe contribuire anche a comprendere l’origine dei terremoti profondi e di grande magnitudine

I diamanti super profondi, quelli estremamente rari che si formano a profondità da 300 fino a 1000 km all’interno del mantello terrestre, sono vere e proprie capsule inerti capaci di trasportare “frammenti” di terra profonda fino alla superficie terrestre senza quasi alcuna alterazione chimica.

L’articolo dal titolo “Extreme redox variations in a superdeep diamond from a subducted slab“, che ha come prima firma Fabrizio Nestola del Dipartimento di Geoscienze dell’Università di Padova con il contributo di Luca Bindi del Dipartimento di Scienze della Terra dell’Università di Firenze e pubblicato su «Nature» dal team di ricerca internazionale – a cui hanno partecipato anche l’Università canadese di Alberta, la tedesca di Bayreuth, l’americana Northwestern University e l’inglese University of Glasgow – descrive la composizione di un diamante davvero unico e sensazionale.

Foto a – Microfotografia del diamante studiato – foto Margo Regier

Il diamante studiato (Foto a) incorpora particolari inclusioni che testimoniano una sequenza complessa di reazioni chimiche che avvengono su una placca tettonica in subduzione – cioè quella placca che scorre al di sotto di un’altra placca e che può sprofondare verso l’interno del mantello terrestre – al “confine” tra la zona di transizione, tra i 410 e i 660 km di profondità, e il mantello inferiore, settore che si estende da 660 km fino al nucleo terrestre esterno a 2900 km di profondità.

Il processo di subduzione è uno dei principali fenomeni geologici che stanno alla base della tettonica delle placche sul nostro pianeta, la teoria che indica come la litosfera, l’involucro solido più esterno della Terra dello spessore di 70-100 km, sia divisa in circa venti porzioni rigide, dette appunto placche.

Non solo acqua al centro della terra, anche metano e idrogeno molecolare
Foto b – Microfotografia del diamante studiato con in evidenza le inclusioni intrappolate al suo interno – foto Margo Regier

La tipologia di inclusioni analizzate (Foto b) come il ritrovamento di forsterite pura, un caso unico, che è un minerale del mantello terrestre con composizione Mg2SiO4 e le reazioni chimiche che sono avvenute all’interno del diamante studiato indicano e confermano la presenza di acqua a grandissime profondità (circa 660 km), in concomitanza a metano (CH4), idrogeno molecolare H2 e la presenza di settori, sempre a queste profondità, costituiti da ferro metallico ritenuto – fino allo studio pubblicato su «Nature» – essere presente solo nel nucleo terrestre.

Allo stesso tempo, la scoperta conferma empiricamente per la prima volta ciò che era stato solo simulato in geofisica da calcoli molto complessi: le placche tettoniche penetrano nel mantello talvolta seguendo percorsi non lineari.

Non solo acqua al centro della terra, anche metano e idrogeno molecolare
Figura c – Placca in subduzione che si muove in modo non lineare raggiungendo il mantello inferiore. Figura modificata da Fabrizio Nestola et al. 2023

«Non si può escludere che tali percorsi possano essere un’ulteriore complessità da considerare per i sismologi che studiano lo sviluppo di alcuni terremoti estremamente profondi che talvolta raggiungono magnitudo 7 e che si verificano a profondità superiori ai 600 km, come nelle Filippine (675 km di profondità), in Papua Nuova Guinea (735 km), nelle Ande e in Indonesia. Sismi così profondi si sono verificati anche in Spagna, al di sotto della città di Granada (630 km), e più raramente anche in Italia, nel Tirreno meridionale, dove si sono registrati terremoti anche al di sotto dei 600 km di profondità – dice Fabrizio Nestola del Dipartimento di Geoscienze dell’Università di Padova –. La letteratura scientifica ritiene che tali terremoti siano correlati alle placche in subduzione e il nostro articolo non fa che supportare questa ipotesi andando a rendere ancora più complesso lo scenario, come si vede nella Figura c, non solo con un andamento della placca non lineare – che si muove verso grandi profondità – ma causando una sequenza di idratazione e disidratazione delle rocce che stanno entrando nel mantello inferiore».

Fabrizio Nestola
Fabrizio Nestola

«L’effettiva presenza di acqua a grandissime profondità nella Terra era stata già scoperta nel 2014 grazie ad un altro diamante super profondo, tuttavia – conclude Luca Bindi del Dipartimento di Scienze della Terra dell’Università di Firenze – con questo nuovo studio non solo confermiamo che l’acqua deve essere assolutamente presente tra la zona di transizione e il mantello inferiore, ma che a quelle profondità dobbiamo anche avere altri fluidi come il metano e l’idrogeno molecolare».

Link alla ricerca: https://www.nature.com/articles/s41586-022-05392-8

Titolo: “Extreme redox variations in a superdeep diamond from a subducted slab” – «Nature» – 2023.

Autori: Fabrizio Nestola, Margo E. Regier, Robert W. Luth, D. Graham Pearson, Thomas Stachel, Catherine McCammon, Michelle D. Wenz, Steven D. Jacobsen, Chiara Anzolini, Luca Bindi & Jeffrey W. Harris.

Testo e immagini dall’Ufficio Stampa dell’Università degli Studi di Padova sullo studio che non rileva solo acqua al centro della terra, ma pure metano e idrogeno molecolare.

VELA, UNA PULSAR AL LIMITE (DELLA POLARIZZAZIONE)

Le pulsar, stelle di neutroni che ruotano rapidamente, emettono un vero e proprio vento, composto da particelle di alta energia e permeato da campi magnetici, che può scontrarsi con il gas che incontra sul suo cammino. Da questo scontro viene prodotta radiazione di sincrotrone che letteralmente “accende” le nebulose. Un’indagine sulle proprietà della luce proveniente da uno di questi oggetti celesti, la Vela Pulsar Wind Nebula (PWN), osservabile nella direzione della costellazione della Vela, nel cielo australe, mostra come essa risulti polarizzata.

Questo aspetto fornisce importanti indicazioni sulla distribuzione e sulla geometria dei campi magnetici che caratterizzano la pulsar, e dalle quali dipende la direzione di emissione del vento di particelle responsabile della radiazione di sincrotrone all’origine della luminosità della nebulosa circostante. Il risultato, pubblicato oggi, mercoledì 21 dicembre, sulla rivista Nature, è stato ottenuto dalla collaborazione internazionale dell’esperimento Imaging X-ray Polarimetry Explorer (IXPE), satellite, frutto di una collaborazione tra NASA e ASI, che è dotato di innovativi rivelatori sviluppati, realizzati e testati dall’INFN (Istituto Nazionale di Fisica Nucleare) e dall’INAF (Istituto Nazionale di Astrofisica). IXPE è stato in grado di osservare la polarizzazione della luce nella banda X dalla Vela PWN e di studiare il vento prodotto dalla sua pulsar.

pulsar Vela nebulosa
Immagine composita della pulsar Vela e della sua nebulosa, ottenuta con osservazioni degli osservatori spaziali IXPE,Chandra e Hubble Space Telescope. Crediti: NASA/CXC/SAO/IXPE

Prodotta circa 12000 anni fa a seguito dell’esplosione di una stella, la nebulosa della Vela, insieme a quella del  Granchio (risultato anch’essa di una supernova, talmente luminosa da essere visibile anche di giorno, come riportato da astronomi cinesi nel 1054), sono tra i più studiati oggetti celesti della loro tipologia. Ma le somiglianze tra le due sorgenti astrofisiche non terminano qui. Le radiazioni emesse da entrambe le nebulose risultano infatti polarizzate. Ciò significa che i campi elettromagnetici dei fotoni non sono distribuiti in modo casuale, ma risultano essere allineati lungo direzioni specifiche, che variano in base alla regione della nebulosa da cui sono stati emessi. L’allineamento dei fotoni implica che gli elettroni ad altissima energia che compongono il vento della pulsar alla base del meccanismo responsabile dell’emissione della luce di sincrotrone, e quindi dei fotoni stessi, si muovano lungo una spirale all’interno del campo magnetico delle PWN. Comportamento che suggerisce che i campi magnetici di Vela PWN siano disposti in una geometria molto ordinata.

“IXPE ha rivelato che i campi magnetici di Vela PWN sono ben allineati con l’immagine nei raggi X della nebulosa” dice Fei Xie, professoressa associata alla Guangxi University e già post-doc presso l’INAF di Roma, prima autrice dell’articolo pubblicato su Nature. “Questi campi formano delle strutture a forma di ciambella (dette tori) che circondano l’equatore della pulsar e i getti di emissione che partono dai poli della pulsar stessa. Ancora più sorprendentemente, il grado di polarizzazione misurato risulta essere molto elevato, superando il 60% in più regioni. Questo è il grado di polarizzazione più elevato mai misurato in una sorgente celeste nei raggi X ed è un valore prossimo al valore massimo permesso dalla fisica dell’emissione di sincrotrone”.

“L’alta polarizzazione vista da IXPE, assieme alla distribuzione energetica costante (nel blu), suggerisce che gli elettroni non sono accelerati da processi di shock turbolenti, che risultano svolgere un ruolo predominante in altre sorgenti di raggi X, quali i resti di Supernova con strutture a guscio. A produrre un tale risultato, invece, potrebbe essere un processo non turbolento come la riconnessione magnetica”, dice Roger W. Romani, astrofisico di Stanford coinvolto nell’analisi dei dati.

“Questa misura di polarizzazione in banda X, ottenuta da IXPE, aggiunge un pezzo finora mancante al puzzle di Vela PWN”, dichiara Alessandro Di Marco, ricercatore presso l’INAF di Roma che ha contribuito all’analisi dei dati. “IXPE ha svelato la struttura dei campi magnetici nella regione centrale, fornendoci una loro mappa con una risoluzione precedentemente mai ottenuta, mostrando come questa sia in accordo con le immagini ottenute in radio per la nebulosa esterna”.

“Il risultato è stato reso possibile dalle caratteristiche uniche degli strumenti, tutti Italiani, al piano focale dei tre telescopi di IXPE, che non solo forniscono una sensibilità alla polarizzazione senza precedenti in questa banda di energia, ma permettono anche di misurare, fotone per fotone, la direzione d’arrivo e l’energia”, commenta Luca Baldini, ricercatore dell’INFN e dell’Università di Pisa, Co-Principal Investigator italiano di IXPE.

“Le misure di polarizzazione della Vela PWN nei raggi X evidenziano quanto sia diversificata in sorgenti astrofisiche la struttura dei campi magnetici alla base dell’emissione X osservata. Quella della Vela PWN è di certo tra le meno complesse, dato l’elevato grado di polarizzazione vicino al limite teorico previsto” dice Immacolata Donnarumma, ASI Project Scientist.

IXPE sta continuando a osservare il cielo ai raggi X sondando più in profondità nelle strutture dei campi magnetici di diverse sorgenti celesti, fornendoci nuove informazioni sulla fisica estrema di questi acceleratori cosmici di particelle.

 

Testo e immagine dagli Uffici Stampa Agenzia Spaziale Italiana, Istituto Nazionale di Astrofisica, Istituto Nazionale di Fisica Nucleare.

IXPE RIVELA NUOVI INDIZI SUI MECCANISMI ALLA BASE DELLA LUMINOSITÀ DEI BLAZAR

A poco meno di un anno dal suo lancio, la missione Imaging X-Ray Polarimetry Explorer (IXPE), frutto della collaborazione tra NASA e Agenzia Spaziale Italiana, continua a fornire nuovi fondamentali contributi per la comprensione delle caratteristiche delle più esotiche sorgenti astrofisiche. Grazie ai dati raccolti dai suoi tre telescopi, che si avvalgono di particolari rivelatori per lo studio della polarizzazione della luce nella banda X sviluppati e realizzati dall’Istituto Nazionale di Fisica Nucleare – INFN e dall’Istituto Nazionale di Astrofisica – INAF, IXPE ha infatti consentito di appurare che dietro l’accelerazione – a velocità prossime a quelle della luce – delle particelle di cui sono composti i poderosi getti emessi dai blazar, oggetti appartenenti alla famiglia dei nuclei galattici attivi tra i più luminosi del cielo, potrebbero celarsi delle potenti onde d’urto. A rivelarlo, uno studio pubblicato oggi, 23 novembre, sul sito web della rivista Nature dal team internazionale di scienziati della collaborazione IXPE, di cui fanno parte ricercatrici e ricercatori di ASI, INFN, INAF e delle università di Siena, Torino, Pisa, Firenze, Roma Tre, Roma Tor Vergata e Padova, che ha preso in esame i dati relativi a Markarian 501, un blazar situato in direzione della costellazione di Ercole, confrontandoli con quelli ottenuti in altre lunghezze d’onda da alcuni telescopi da Terra e dallo spazio.

IXPE blazar
Schema dell’osservazione del blazar Markarian 501 da parte del satellite IXPE. Nel circolo sono evidenziate le particelle di alta energia presenti nel getto (in blu). Quando le particelle si scontrano con l’onda d’urto, indicata dalla barra bianca, acquistano energia ed emettono raggi X. Allontanandosi dalla zona d’impatto, emettono radiazione di energia più bassa: dapprima luce visibile, poi infrarossa e infine onde radio. A grande distanza dall’onda d’urto le linee del campo magnetico sono più aggrovigliate, provocando una maggiore turbolenza nel fascio di particelle. Crediti:Pablo Garcia (NASA/MSFC)

Costituiti da buchi neri supermassicci molto attivi di milioni o forse miliardi di masse solari, che attraggono continuamente nella loro orbita il materiale responsabile della formazione dei cosiddetti dischi di accrescimento, i blazar sono caratterizzati dall’emissione di due potenti getti di particelle, perpendicolari ai dischi stessi, uno dei quali indirizzato verso la Terra, rendendoli così particolarmente luminosi. Studiando nel dettaglio la polarizzazione della luce nella banda X proveniente da Markarian 501, ovvero la direzione in cui oscilla il campo elettrico a essa associato, IXPE ha consentito di mappare il campo magnetico all’interno del quale le particelle vengono accelerate emettendo fotoni, e di comprendere per la prima volta che la causa più probabile della loro energia così elevata è attribuibile al propagarsi di un’onda d’urto all’interno del getto.

“Abbiamo risolto un mistero che dura da 40 anni”, ha dichiarato Yannis Liodakis, autore principale dello studio e astronomo presso il FINCA, il centro astronomico finlandese dell’ESO. “Finalmente abbiamo completato il puzzle e il quadro che ne emerge è piuttosto chiaro”.

Le osservazioni effettuate da IXPE nel marzo 2022, insieme a quelle condotte nello stesso periodo in direzione dello stesso oggetto da altri telescopi, hanno quindi consentito di studiare la radiazione emessa in un’ampia gamma di lunghezze d’onda, tra cui quella radio, ottica e, per la prima volta, X, e di dimostrare come proprio la radiazione X emessa dal blazar fosse più polarizzata di quella ottica, che a sua volta è risultata più polarizzata di quella radio.

Dopo aver confrontato le informazioni con i modelli teorici, il team di astronomi si è reso conto che i dati corrispondevano maggiormente a uno scenario in cui un’onda d’urto accelera le particelle del getto. Un’onda d’urto si genera quando qualcosa si muove più velocemente della velocità del suono del materiale circostante, come quando un jet supersonico vola nell’atmosfera terrestre.

Le discrepanze riscontrante nel grado di polarizzazione della luce alle diverse frequenze possono perciò essere spiegate supponendo che, una volta superato il luogo di origine dell’onda d’urto, le particelle che compongono il getto dei blazar attraversino regioni caratterizzate da campi magnetici turbolenti, in maniera analoga a ciò che accade a un flusso d’acqua dopo aver superato una cascata. La turbolenza ha infatti l’effetto di ridurre la polarizzazione della luce. La radiazione X risulterebbe perciò più polarizzata poiché viene emessa da particelle più energetiche, appena accelerate nella zona dell’onda d’urto, al contrario della luce emessa nella banda ottica e in quella radio.

“Le prime misure di polarizzazione nei raggi X di questa classe di sorgenti hanno consentito, per la prima volta, un confronto diretto con i modelli elaborati nell’ambito del complesso quadro evidenziato dalle osservazioni multifrequenza, dalla banda radio fino alle altissime energie. Nuove evidenze verranno fornite da IXPE grazie all’analisi dei dati in corso e di quelli da acquisire in futuro”, commenta Immacolata Donnarummaproject scientist di IXPE per l’Agenzia Spaziale Italiana.

“IXPE è stato progettato per funzionare in una banda di energia, ‘i raggi X molli’, che permette, tra l’altro, di sondare la fisica di diverse classi di Blazar. Nel caso di Mrk 501 abbiamo potuto sondarne una in cui i raggi X sono emessi da elettroni che si muovono a velocità molto prossime a quelle della luce intorno al campo magnetico. Altri Blazar di diversa tipologia verranno studiati durante la prossima fase osservativa della missione”, osserva Paolo Soffitta, ricercatore INAF e principal investigator italiano di IXPE.

“Grazie ad un rivelatore innovativo, il Gas Pixel Detector, interamente sviluppato e realizzato in Italia, IXPE ha permesso finalmente di aggiungere uno dei tasselli mancanti alla comprensione dell’Universo ad alta energia, e questo studio dimostra appieno il potenziale scientifico di questa nuova finestra osservativa”, conclude Luca Baldini, dell’INFN di Pisa e co-principal investigator  italiano di IXPE.

Ulteriori campagne di osservazione si concentreranno nel prossimo futuro su Markarian 501, allo scopo di comprendere se il grado polarizzazione vari nel tempo. Indagini che vedranno impegnato anche IXPE, che durante i prossimi due anni, IXPE studierà inoltre altre sorgenti simili, fornendo un nuovo strumento capace di esplorare sempre più da vicino le proprietà delle regioni di spazio che ospitano sorgenti astrofiche esotiche quali buchi neri, stelle di neutroni e resti di supernovae.

 

Testo e immagine dall’Ufficio stampa – Struttura per la Comunicazione di Presidenza Istituto Nazionale di Astrofisica (INAF)

LOFAR SI SINTONIZZA SUI “MEGAHALO”, STERMINATE REGIONI DI SPAZIO CHE EMETTONO DEBOLI SEGNALI RADIO

Un gruppo internazionale di ricercatrici e ricercatori, tra cui alcuni dell’Istituto Nazionale di Astrofisica (INAF) e dell’Università di Bologna, ha individuato per la prima volta attorno a quattro ammassi di galassie delle gigantesche regioni che emettono onde radio e si estendono anche per 10 milioni di anni luce. Lo studio viene pubblicato oggi sulla rivista Nature.

Megahalo

Un gruppo di ricerca internazionale ha individuato quattro differenti ammassi di galassie interamente avvolti da una debole emissione radio che si estende fino alle loro estreme periferie. Queste sorgenti radio –  denominate “Megahalo” – raggiungono i 10 milioni di anni luce e coprono un volume 30 volte più grande rispetto alle sorgenti radio finora note rilevate in ambienti simili. La ricerca – pubblicata oggi sul sito web della rivista Nature – è stata realizzata utilizzando dati raccolti dal radiotelescopio LOFAR (LOw Frequency ARray), costituito da una rete di antenne distribuite in vari Paesi europei.

I risultati ottenuti suggeriscono che i “Megahalo”, alimentati dall’energia gravitazionale che modella la struttura dell’universo, potrebbero essere un fenomeno comune in molte parti dell’universo.

“Abbiamo scoperto un acceleratore di particelle di proporzioni cosmologiche e questo studio suggerisce che molti altri ammassi di galassie potrebbero mostrare emissioni su scale così grandi”,

commenta Virginia Cuciti, prima autrice dell’articolo, Alexander von Humboldt fellow all’Università di Amburgo e associata INAF. Virginia Cuciti ha ottenuto il dottorato in Astrofisica dall’Università di Bologna, lavorando presso l’Istituto Nazionale di Astrofisica (INAF).

“Questa scoperta potrebbe essere solo la punta dell’iceberg: con osservazioni più dettagliate, come quelle che potremo avere con il nuovo LOFAR 2.0 e con il radiotelescopio SKA, potremmo essere in grado di individuare un numero maggiore di ammassi di galassie che presentano queste caratteristiche”, aggiunge Francesco De Gasperin, ricercatore dell’INAF, secondo autore dello studio.

La materia nell’universo è distribuita lungo una complessa rete di filamenti che gli astronomi chiamano “ragnatela cosmica” (“cosmic web”). In corrispondenza dei nodi di questa ragnatela, si concentrano ammassi galattici formati da centinaia o anche migliaia di galassie.

Quando due di questi ammassi di galassie collidono per fondersi in un unico ammasso, si generano eventi tra i più potenti mai avvenuti nell’universo dopo il Big Bang, che rilasciano enormi quantità di energia. In questi casi, gli elettroni vengono accelerati a velocità prossime a quella della luce, ed emettono così onde radio che possono essere rilevate dai radiotelescopi.

LOFAR
LOFAR

Analizzando le emissioni registrate dal radiotelescopio LOFAR per 310 ammassi di galassie, gli studiosi hanno così individuato quattro ammassi completamente avvolti da una debole emissione radio, con dimensioni e caratteristiche uniche rispetto alle sorgenti radio conosciute finora, che hanno ribattezzato “Megahalo”.

I “Megahalo” mostrano come gli elettroni accelerati a velocità prossime a quella della luce e i campi magnetici possono estendersi ben oltre l’emissione radio osservata comunemente negli ammassi di galassie, e le loro proprietà indicano che le condizioni fisiche delle regioni più esterne degli ammassi di galassie sono molto differenti rispetto a quelle centrali.

 “I risultati ottenuti ci aiutano a capire in che modo l’energia viene dissipata durante la formazione di strutture cosmologiche su larga scala e come le particelle vengono accelerate nel plasma a bassa densità”,

aggiunge Franco Vazza, professore al Dipartimento di Fisica e Astronomia “Augusto Righi” dell’Università di Bologna e associato INAF, tra gli autori dello studio.

 

LOFAR è un telescopio realizzato per esplorare l’Universo alle basse frequenze radio (10-240 MHz). È composto da un network di antenne radio pan-europeo, guidato da ASTRON, l’Istituto di Radioastronomia dei Paesi Bassi. All’iniziativa partecipano Italia, Francia, Germania, Irlanda, Lettonia, Paesi Bassi, Polonia, Svezia, Regno Unito e Bulgaria. Dal 2018 l’Istituto Nazionale di Astrofisica guida un consorzio nazionale, partecipando con il suo personale anche allo sviluppo della nuova generazione di dispositivi elettronici allo stato dell’arte che equipaggeranno il radiotelescopio e al software che regola il funzionamento del telescopio. Lo studio degli ammassi di galassie è uno fra i campi di maggiore interesse della collaborazione LOFAR e vede un coinvolgimento molto importante del personale INAF.

 

Per ulteriori informazioni:

L’articolo “Galaxy clusters enveloped by vast volumes of relativistic electrons” di V. Cuciti, F. de Gasperin, M. Brüggen, F. Vazza, G. Brunetti, T. W. Shimwell, H. W. Edler, R. J. van Weeren, A. Botteon, R. Cassano, G. Di Gennaro, F. Gastaldello, A. Drabent, H. J. A. Röttgering, e C. Tasse è stato pubblicato online sulla rivista Nature.

Testo e foto dall’Ufficio stampa – Struttura per la Comunicazione di Presidenza Istituto Nazionale di Astrofisica (INAF)

LO STRANO CASO DEL BLAZAR BL LACERTAE, CON IL GETTO SINUOSO

A circa un miliardo di anni luce da noi il blazar BL Lacertae, con il suo buco nero supermassiccio al centro di una enorme galassia, sta ingurgitando una sterminata quantità di materia, che in parte viene espulsa a velocità prossime a quella della luce sotto forma di due getti, uno dei quali punta quasi esattamente verso di noi. Studiando questo mostro cosmico, Il Whole Earth Blazar Telescope (WEBT), una collaborazione di astronomi di tutto il mondo di cui fanno attivamente parte ricercatrici e ricercatori dell’Istituto Nazionale di Astrofisica, ha scoperto che la radiazione del suo getto orientato verso la Terra mostra delle forti oscillazioni cicliche di luminosità, che aumenta e diminuisce nell’arco di alcune ore. Secondo il team, questo comportamento assolutamente particolare è dovuto al fatto che il getto non sia esattamente rettilineo, ma si sia formata una piega (kink) prodotta da instabilità createsi nel getto ad una distanza di circa 16 anni luce dal buco nero che ha deviato ritmicamente il potentissimo flusso di radiazione verso di noi e ha prodotto così l’oscillazione di luminosità rilevata. Al lavoro, pubblicato sulla rivista Nature e guidato da Svetlana Jorstad dell’Università di Boston, hanno partecipato anche ricercatori di Università italiane e astrofili presso alcuni osservatori non professionali nel nostro Paese.

Rappresentazione artistica del getto prodotto dal blazar BL Lacertae. Crediti: Iris Nieh
Rappresentazione artistica del getto prodotto dal blazar BL Lacertae. Crediti: Iris Nieh

Il blazar è un particolare nucleo galattico attivo (AGN) alimentato da materiale che cade in un buco nero supermassiccio situato al centro di una galassia. Circa il 10% degli AGN presenta una coppia di getti che vengono proiettati nello spazio interstellare a velocità prossime a quella della luce. Si parla di blazar quando uno dei getti punta quasi direttamente verso la Terra, il che lo fa apparire molto più luminoso a causa di un effetto di focalizzazione relativistica. I getti producono radiazione che va dalle onde radio, al visibile, fino ai raggi X e gamma, la cui intensità varia rapidamente nel tempo. Queste variazioni sono di solito casuali, senza uno schema riconoscibile.

Il progetto WEBT, avviato 25 anni fa e coordinato da Claudia Maria Raiteri e Massimo Villata dell’Istituto Nazionale di Astrofisica (INAF), ha l’obiettivo di monitorare la variabilità della luce visibile, ma anche quella nelle bande radio e del vicino infrarosso, nei blazar osservati nei raggi gamma dai satelliti AGILE dell’Agenzia Spaziale Italiana e Fermi della NASA. “Le nostre osservazioni hanno portato alla scoperta di cicli di variazione della luminosità visibile, di quella nei raggi gamma, e nel grado di polarizzazione del blazar BL Lacertae (BL Lac in breve) su tempi scala di circa 13 ore. Questo durante un periodo di forte emissione registrata a varie lunghezze d’onda nella seconda metà del 2020” dice Claudia Raiteri, dell’INAF di Torino. BL Lac è alimentato da un buco nero con una massa di circa 170 milioni di volte quella del Sole ed è situato a circa 1 miliardo di anni luce dalla Terra. I cicli di variazioni di luminosità sono definiti “oscillazioni quasi-periodiche” o QPO. Le QPO si osservano più spesso in altri sistemi composti da coppie di buchi neri con masse comprese tra 10 e 50 volte quella del Sole che emettono raggi X.

Nel caso delle osservazioni della luminosità di BL Lacertae, il team ha proposto che nel getto si formi una piega che torce il campo magnetico del getto stesso, determinando così l’oscillazione della luminosità. Inoltre, un’altra caratteristica della radiazione osservata, ovvero la sua polarizzazione, cambia con un andamento nel tempo simile a quello della luminosità. La luce polarizzata proviene dal getto e la polarizzazione può variare solo se il campo magnetico cambia la sua configurazione nella regione che produce la luce. Il campo magnetico nel getto deve essere in torsione per provocare le oscillazioni. Le osservazioni di BL Lac mostrano anche una forte correlazione tra la luce visibile e le variazioni di raggi gamma senza alcun ritardo, il che colloca l’origine dei raggi gamma nella regione in cui cambia la luce visibile.

Se il campo magnetico di un getto ha una struttura a spirale, il getto e il campo possono diventare instabili e torcersi, creando una piega. Quando le particelle nel getto scorrono attraverso la piega, la quantità di radiazione emessa aumenta e diminuisce ritmicamente, producendo le QPO. Tuttavia, per migliorare ulteriormente l’accordo tra le osservazioni e la teoria, i ricercatori hanno inserito il contributo legato a processi di turbolenza nel codice che descrive il comportamento dinamico del getto di BL Lac, ottenendo ottimi risultati anche nel riprodurre l’andamento della polarizzazione rilevata. A sostegno di questo scenario, le immagini della radiazione del getto nelle onde radio di alta frequenza, ottenute dal team con i dati del Very Long Baseline Array (VLBA), mettono in evidenza una nuova macchia luminosa che risulta spostata rispetto all’asse del getto, con una direzione di polarizzazione che risulta favorevole allo sviluppo di una piega nel getto stesso.

“L’obiettivo del WEBT è individuare i meccanismi fisici che causano la variabilità dei blazar attraverso l’organizzazione di intense campagne osservative multifrequenza e la relativa analisi ed interpretazione dei dati. I risultati ottenuti su BL Lac sono stati possibili grazie all’eccezionale continuità temporale delle osservazioni che il WEBT riesce ad ottenere, dovuta alla collaborazione di decine di astronomi e astrofili che osservano a diverse longitudini, dandosi quindi il cambio nel compito osservativo durante le 24 ore di rotazione terrestre” dice Massimo Villata dell’INAF di Torino, Presidente del WEBT dal 2000.

Scoperto nel 1929 nella costellazione della Lucertola (in latino Lacerta) e classificato inizialmente come stella variabile, BL Lac è il “capostipite” di una classe di AGN dalle caratteristiche simili: gli oggetti di tipo BL Lacertae.

 

Per ulteriori informazioni:

L’articolo “Rapid quasi-periodic oscillations in the relativistic jet of BL Lacertae” di Svetlana Jorstad et al. è stato pubblicato oggi sulla rivista Nature.

Nel team internazionale di 86 ricercatori, per il contributo italiano hanno partecipato Claudia Maria Raiteri, Massimo Villata e Maria Isabel Carnerero Martin (INAF Torino), Antonio Frasca (INAF Catania), Giacomo Bonnoli (INAF Milano, Università di Siena, Instituto de Astrofisica de Andalucia), Daniele Carosati (INAF TNG, EPT Observatories), Alessandro Marchini (Università di Siena), Fabio Mortari e Davide Gabellini (Osservatorio Hypatia, Rimini), Pietro Aceti (Osservatorio Astronomico città di Seveso, Politecnico di Milano), Claudio Arena (Gruppo Astrofili Catanesi), Massimo Banfi (Osservatorio Astronomico città di Seveso), Fabio Salvaggio e Giuseppe Marino (Gruppo Astrofili Catanesi, Wild Boar Remote Observatory, Firenze), Riccardo Papini (Wild Boar Remote Observatory, Firenze), Simone Leonini (Osservatorio di Montarrenti, Siena).

Testo e foto dall’Ufficio stampa – Struttura per la Comunicazione di Presidenza Istituto Nazionale di Astrofisica (INAF)

LINFOMA B DEL CANE, STUDIO DI UNITO SCOPRE NUOVE MUTAZIONI GENETICHE E IDENTIFICA NUOVI TARGET TERAPEUTICI APRENDO A NUOVE POSSIBILITÀ DI CURA ANCHE PER L’UOMO

 

Il linfoma a grandi cellule B è uno dei tumori più frequenti nel cane ed è considerato un buon modello per lo studio della stessa patologia nell’uomo. Lo studio è stato pubblicato sulla prestigiosa rivista Nature, Lab Animal

Linfoma B del cane
Foto di Daniela Jakob

 

Ricercatori e ricercatrici di un team europeo coordinato dal Prof. Luca Aresu del Dipartimento di Scienze Veterinarie dell’Università di Torino, hanno identificato per la prima volta le mutazioni genetiche presenti nel Linfoma a grandi cellule B (DLBCL) del cane. Tale risultato rappresenta la prima descrizione del profilo genetico di questo tumore del cane.

Lo studio, pubblicato sulla prestigiosa rivista di Nature, Lab Animal (https://www.nature.com/articles/s41684-022-00998-x), in collaborazione con l’Università di Bologna (Prof.ssa Laura Marconato) e l’Institute of Oncology Research di Bellinzona (Prof. Francesco Bertoni) rappresenta un enorme passo avanti nella comprensione dei meccanismi patogenetici del DLBCL e identifica nuovi marker prognostici e terapeutici per il monitoraggio della malattia.

Il DLBCL infatti è uno dei tumori più frequenti nel cane, ma soprattutto da anni viene considerato anche come un buon modello per studiare la stessa patologia nell’uomo. Proprio in questo senso i risultati ottenuti dal team di ricerca potrebbero portare a vantaggi che riguardano sia il cane sia l’uomo.

Purtroppo, nonostante i grossi passi avanti nelle terapie del cane, tra cui la possibilità di usare un vaccino autologo in associazione al protocollo chemioterapico standard, il DLBCL rimane ancora troppo spesso non curabile. La malattia umana e quella canina sono molto simili e infatti diverse molecole, approvate da agenzie regolatorie per il trattamento dei linfomi umani, sono state provate prima in cani affetti da linfomi, dando ottimi risultati ma, fino ad oggi, mancava una analisi più approfondita dei meccanismi patogenetici alla base dello sviluppo del DLBCL del cane e un confronto con la controparte umana.

Da anni il Prof. Aresu dirige il “Canine Comparative Oncology Lab” al Dipartimento di Scienze Veterinarie conducendo studi nel campo della genetica, trascrittomica ed epigenetica dei tumori più frequenti e aggressivi nel cane. La ricerca si focalizza, in particolare, su caratteristiche istologiche, fenotipiche, molecolari e genetiche che sono alla base della predisposizione tumorale e patogenesi delle principali neoplasie del cane. Inoltre, i bersagli molecolari delle neoplasie più frequenti ed aggressive sono studiati per ricercare terapie target.

Nel suo studio il gruppo di ricerca ha applicato tecniche di Next Generation Sequencing per studiare la parte codificante del DNA dei cani con tumore. Tale approccio è alquanto nuovo in medicina veterinaria ed ha permesso di evidenziare come esistano delle similitudini con il DLBCL umano, tra cui alcuni pathway di attivazione di NFκ-B e B-cell receptor e del rimodellamento della cromatina. Ma sono state messe in evidenza anche delle differenze, tra cui le mutazioni più frequenti che caratterizzano questo tumore. Infatti, i geni più frequentemente mutati nel cane (TRAF3, SETD2, POT1, TP53, FBXW7) sono alterati meno frequentemente nel DLBCL umano, come evidenziato in diversi studi degli ultimi anni in medicina umana.

Attraverso la stretta collaborazione di ricercatori di fama internazionale nel campo della patologia comparata, del sequenziamento, dell’oncologia veterinaria e della medicina umana è stato possibile associare alcune mutazioni a caratteristiche biologiche e andamenti clinici diversi. Nello specifico le mutazioni del gene TP53 sono state associate ad una prognosi peggiore indipendentemente dal trattamento. Il gene TP53 viene definito “il guardiano del genoma” proprio per la sua funzione di identificare danni al DNA e successivamente impedire che i difetti vengano trasmessi nel processo di replicazione. Nel DLBCL del cane, le mutazioni del TP53 hanno un effetto deleterio tale da impedire la sua funzione protettiva e potenzialmente portare allo sviluppo di un tumore. Nello studio, tutti i cani erano stati trattati e seguiti dalla Prof.ssa Marconato.

Proprio la disponibilità dei dati clinici e di follow-up ha permesso lo sviluppo di un modello predittivo da parte del Prof. Piero Fariselli del Dipartimento di Scienze Mediche di UniTo che è oggi disponibile online (https://compbiomed.hpc4ai.unito.it/canine-dlbcl/). Tale modello permetterà in futuro a veterinari e proprietari di cani con DLBCL di indirizzare la scelta terapeutica e potenzialmente avere una predizione sulla prognosi. A partire dall’autunno, infatti, lo screening genetico del TP53 sarà disponibile a livello diagnostico e rappresenterà il primo test genetico disponibili in oncologia veterinaria in grado di predire prognosi e guidare la terapia.

Il gruppo del Prof. Bertoni a Bellinzona è attivo nello sviluppo di nuovi farmaci e combinazioni per pazienti affetti da linfomi. Già da anni, gli screenings, in collaborazione con il Prof. Aresu, comprendono un modello di DLBCL canino. I risultati dello studio appena pubblicato permetteranno di scegliere nel modo migliore quali nuovi approcci terapeutici siano più appropriati per studi sui cani.

 

Testo dall’Area Relazioni Esterne e con i Media dell’Università degli Studi di Torino

Un gruppo di ricerca internazionale rileva il precursore di un buco nero supermassiccio nei dati di archivio del telescopio Hubble

Una collaborazione internazionale, che ha visto la partecipazione di astrofisici della Sapienza e dell’Istituto nazionale di astrofisica – Inaf, ha scoperto un oggetto distante circa 13 miliardi di anni luce dalla Terra, estremamente compatto e arrossato dalla polvere stellare. La rilevazione, effettuata grazie all’utilizzo del telescopio spaziale Hubble, farà luce sul mistero della crescita dei buchi neri supermassicci nell’universo primordiale. I risultati del lavoro sono stati pubblicati su Nature.

il precursore di un buco nero supermassiccio
Il precursore di un buco nero supermassiccio nei dati di archivio di Hubble. Figura 1: GNz7q, un oggetto scoperto a circa 13,1 miliardi di anni luce dalla Terra che mostra segni di un buco nero in rapida crescita all’interno di una galassia in forte formazione stellare e ricca di polvere interstellare (starburst polverosa), colorato nell’immagine combinando i dati di tre osservazioni a colori del telescopio spaziale Hubble. Trovato nella regione GOODS-North[1], una delle regioni del cielo più studiate fino ad oggi, GNz7q è l’oggetto rosso al centro dell’immagine ingrandita (Credito: ESA/Hubble/Fujimoto et al.)

La scoperta di buchi neri supermassicci nell’universo primordiale, con masse fino a diverse centinaia di milioni di volte quella del sole, ha sollevato il problema di capire come oggetti di questa taglia siano stati in grado di formarsi e crescere nel breve periodo di tempo successivo alla nascita dell’Universo (meno di un miliardo di anni). Teoricamente, un buco nero inizia dapprima ad aumentare la sua massa accrescendo gas e polvere nel nucleo di una galassia ricca di polvere e caratterizzata da elevati tassi di formazione stellare (una cosiddetta galassia starburst polverosa). L’energia generata nel processo spazza via i materiali circostanti, trasformando il sistema in un quasar, una sorgente astrofisica molto luminosa e compatta.

Fino a oggi sono state scoperte galassie starburst polverose e quasar luminosi post-transizione ad appena 700-800 milioni di anni dopo il Big Bang, ma non è mai stato trovato un “giovane” quasar nella fase di transizione, la cui scoperta deterrebbe la chiave per la comprensione dei meccanismi di formazione dei buchi neri supermassicci nell’Universo primordiale.

Un gruppo di ricerca internazionale, coordinato dall’astronomo Seiji Fujimoto dell’Università di Copenaghen, con la partecipazione, fra gli altri, di ricercatori del Dipartimento di Fisica della Sapienza e dell’Istituto nazionale di astrofisica – Inaf, ha rianalizzato una grande quantità di dati d’archivio estratti dal telescopio spaziale Hubble e ha scoperto un oggetto, denominato poi GNz7q, che è proprio l’anello mancante tra le galassie starburst e i quasar luminosi nell’universo primordiale. I risultati del lavoro sono stati pubblicati sulla rivista Nature.

Le osservazioni spettroscopiche con i radiotelescopi hanno mostrato che il giovane quasar è nato solo 750 milioni di anni dopo il Big Bang. Tali osservazioni, sono state poi confrontate con i modelli teorici. Questa importante fase del lavoro è stata svolta da Rosa Valiante dell’Inaf e Raffaella Schneider della Sapienza e ha mostrato come le caratteristiche dello spettro elettromagnetico di questo oggetto, dai raggi X alle onde radio, non si discostano dalle previsioni delle simulazioni teoriche.

“Questo suggerisce che GNz7q sia il primo esempio di buco nero in rapida crescita nel centro di una galassia starburst polverosa – commentano Schneider e Valiante. “Pensiamo che GNz7q sia un precursore dei buchi neri supermassicci trovati nell’universo primordiale”.

La scoperta di GNz7q non solo rappresenta un elemento importante per comprendere l’origine dei buchi neri supermassicci, ma anche un motivo di sorpresa per i ricercatori: la rilevazione infatti è stata fatta in una delle regioni più osservate nel cielo notturno – denominata GOODS, Great Observatories Origins Deep Survey, oggetto d’indagine astronomica dei telescopi più potenti mai costruiti (ovvero quelli operativi nello spazio come Hubble, Herschel e XMM-Newton dell’ESA, il telescopio Spitzer della NASA e l’Osservatorio a raggi X Chandra, oltre a potenti telescopi terrestri, compreso il telescopio Subaru) – suggerendo quindi che sorgenti di questo tipo possano essere più frequenti di quanto si pensasse in precedenza.

Il gruppo di ricerca si propone di condurre una ricerca sistematica di sorgenti simili utilizzando campagne osservative ad alta risoluzione e di sfruttare gli strumenti spettroscopici del telescopio spaziale James Webb della NASA/ESA/CSA, una volta che sarà in regolare funzionamento, per studiare oggetti come GNz7q con una ricchezza di dettagli senza precedenti.

il precursore di un buco nero supermassiccio
Il precursore di un buco nero supermassiccio nei dati di archivio di Hubble. Figura 2: un’impressione artistica di un giovane buco nero in crescita che emerge dal centro di una galassia starburst polverosa, mentre i materiali densi circostanti di gas e polvere vengono spazzati via dalla potente energia generata quando il buco nero evolve rapidamente accrescendo la materia circostante. (Credito: ESA/Hubble)

Riferimenti:

A dusty compact object bridging galaxies and quasars at cosmic dawn – S. Fujimoto, G. B. Brammer, D. Watson, G. E. Magdis, V. Kokorev, T. R. Greve, S. Toft, F. Walter, R. Valiante, M. Ginolfi, R. Schneider, F. Valentino, L. Colina, M. Vestergaard, R. Marques-Chaves, J. P. U. Fynbo, M. Krips, C. L. Steinhardt, I. Cortzen, F. Rizzo & P. A. Oesch – Nature https://doi.org/10.1038/s41586-022-04454-1 

Testo e immagini dal Settore Ufficio stampa e comunicazione Sapienza Università di Roma