News
Ad
Ad
Ad
Tag

Nature

Browsing

Marte: uno studio rivela la struttura interna e l’età della sua calotta ghiacciata

Una ricerca internazionale, a cui ha contribuito la Sapienza, ha fornito nuove informazioni sulla composizione del sottosuolo marziano e ha definito le caratteristiche dei ghiacciai che ricoprono il polo nord del pianeta.  I risultati, pubblicati su Nature, si basano su un’analisi geofisica simile a quella utilizzata sulla Terra per studiare la deformazione della crosta sotto il peso delle masse glaciali.

La superficie della Terra e quella di Marte, come degli altri pianeti terrestri, è costituita perlopiù da roccia e metalli. Nonostante l’aspetto apparentemente inalterabile, la crosta di questi pianeti è soggetta a una serie di deformazioni. Ma rispetto al mantello terrestre, quello marziano risulta essere molto più resistente: a questa scoperta, recentemente pubblicata su Nature, ha contribuito il Dipartimento di Ingegneria meccanica e aerospaziale della Sapienza. Gli scienziati sono partiti dallo studio del polo nord di Marte per capire come la superficie del pianeta risponda alla pressione esercitata da una vasta calotta di ghiaccio, documentando per la prima volta in ambito planetario processi di isostasia post-glaciale.

La calotta polare di Marte, con uno spessore di circa 3 km e un’età relativamente giovane, deforma la crosta marziana in modo simile a quanto osservato sulla Terra, dove la crosta si solleva gradualmente dopo lo scioglimento delle calotte glaciali. Questo processo, noto come assestamento isostatico glaciale, è stato studiato sulla Terra per stimare la viscosità e la struttura del mantello. L’applicazione di questo metodo a Marte ha rappresentato una sfida significativa a causa della limitata disponibilità di dati.

Se sulla Terra si possono sfruttare sismometri distribuiti in una rete complessa per monitorare con precisione la risposta della crosta al carico glaciale, su Marte le opportunità di osservazione sono molto più limitate. Ad oggi, infatti, è stato posizionato solo un sismometro sul pianeta rosso, a bordo della missione InSight. Per superare questa difficoltà, il gruppo di ricerca ha combinato le misure provenienti dal sismometro con l’analisi delle variazioni temporali delle anomalie gravitazionali su Marte. A ciò si aggiungono modelli di evoluzione termica, che insieme hanno permesso di ottenere informazioni fondamentali sulla deformazione della crosta marziana, e quindi sulle caratteristiche della struttura interna.

“Grazie a questo approccio combinato, è stato possibile misurare il tasso di deformazione della crosta marziana, che risulta estremamente lento – spiega Antonio Genova della Sapienza – Le nostre stime indicano che il polo nord di Marte sta attualmente cedendo ad una velocità massima di 0,13 millimetri all’anno, un valore che riflette la viscosità del mantello superiore, compresa tra dieci a cento volte quella terrestre. Questo implica che l’interno di Marte è estremamente freddo e resistente alla deformazione”.

Lo studio fornisce informazioni importanti sulla struttura interna di Marte, un pianeta che potrebbe offrire ulteriori indizi sull’evoluzione dei pianeti rocciosi, compresa la Terra. Inoltre, i risultati indicano che la calotta polare marziana, con un’età stimata in questo studio tra 2 e 12 milioni di anni, è significativamente più giovane rispetto ad altre grandi strutture della superficie del pianeta. Questa scoperta apre nuove prospettive per le future missioni spaziali, come Oracle, proposta e concepita dal gruppo di Sapienza, e MaQuIs, che potranno approfondire la comprensione della storia geologica del pianeta, del suo passato climatico e della sua potenziale abitabilità.

Riferimenti bibliografici:

Broquet, A., Plesa, AC., Klemann, V. et al. Glacial isostatic adjustment reveals Mars’s interior viscosity structure, Nature (2025), DOI: https://doi.org/10.1038/s41586-024-08565-9

Marte Curiosity cratere
Immagine da Curiosity. Foto NASA/JPL-Caltech/MSSS in pubblico dominio

Testo dal Settore Ufficio stampa e comunicazione Sapienza Università di Roma

Prima evidenza sperimentale del ghiaccio VII plastico, una nuova forma di ghiaccio dal comportamento dinamico

Uno studio internazionale, coordinato dalla Sapienza Università di Roma, ha dimostrato sperimentalmente l‘esistenza del ghiaccio VII plastico, la cui presenza è ipotizzata all’interno di alcune lune del sistema solare. La scoperta, pubblicata su “Nature”, apre nuove opportunità di ricerca per la comprensione dell’evoluzione strutturale dei pianeti ghiacciati.

Una fase cristallina dell’acqua che si forma a pressioni superiori a 50000 atmosfere e 300 °C: il ghiaccio VII plastico che si differenzia dalle altre forme di ghiaccio per la sua natura ibrida tra un solido e un liquido. Le molecole dell’acqua in questa fase sono disposte in un reticolo cubico denso, ma, a differenza delle altre forme di ghiaccio, sono libere di ruotare attorno alle loro posizioni d’equilibrio in modo simile a un liquido. Questo comportamento dinamico conferisce alla fase una natura plastica, la cui esistenza è stata ipotizzata da simulazioni di dinamica molecolare ma mai osservata sperimentalmente.

Il gruppo internazionale di ricerca, guidato da Livia Eleonora Bove del Dipartimento di Fisica della Sapienza, è riuscito a ottenere l’osservazione diretta dell’esistenza del ghiaccio VII plastico. Per dimostrare sperimentalmente il comportamento esotico di questa fase dell’acqua, il team di ricercatori ha utilizzato lo scattering quasi-elastico da neutroni (QENS), una tecnica che consente di misurare direttamente le proprietà rotazionali e la dinamica diffusiva in sistemi molecolari. I dati sperimentali hanno fornito fin da subito la prova dell’esistenza della fase plastica. Tuttavia, per comprendere in dettaglio il meccanismo con cui le molecole ruotano, sono stati necessari ulteriori esperimenti e il confronto con simulazioni di dinamica molecolare. A queste attività di ricerca hanno contribuito in particolare John Russo e Francesco Sciortino del Dipartimento di Fisica della Sapienza.

“Combinando dati sperimentali e simulazioni, abbiamo scoperto che le rotazioni nel ghiaccio plastico non sono completamente libere, ma piuttosto avvengono attraverso salti tra posizioni preferenziali – spiega Maria Rescigno della Sapienza, prima autrice del lavoro – Questo comportamento conferisce al ghiaccio VII plastico proprietà uniche, che lo distinguono dalle altre fasi solide dell’acqua e ne influenzano significativamente le proprietà fisiche”.

Lo studio, non solo fornisce nuove informazioni sulla natura dei legami idrogeno in condizioni estreme – fondamentali per comprendere meglio le proprietà dell’acqua e di molti altri sostanze chimiche – ma apre nuove strade per la comprensione della struttura dei corpi celesti ghiacciati e la loro evoluzione.

Un caso particolarmente interessante è quello delle due lune di Giove, Ganimede e Callisto, la cui differenziazione interna rimane una questione aperta nella planetologia. Una possibile spiegazione di tale fenomeno potrebbe dipendere dalla presenza di ghiaccio plastico in una sola delle due lune. Questa circostanza avrebbe influenzato diversamente la loro evoluzione strutturale.

La ricerca, frutto di una collaborazione internazionale che ha coinvolto ben 9 istituzioni, rappresenta un importante avanzamento nella comprensione del complesso diagramma delle fasi dell’acqua in condizioni estreme e potrebbe aprire nuove prospettive di ricerca nel campo della planetologia.

Diagramma di fase. Immagine realizzata da Maria Rescigno del Dipartimento di Fisica della Sapienza
Diagramma di fase. Immagine realizzata da Maria Rescigno del Dipartimento di Fisica della Sapienza

Riferimenti bibliografici:

Rescigno, M., Toffano, A., Ranieri, U. et al. “Observation of Plastic Ice VII by Quasi-Elastic Neutron Scattering”, Nature (2025), DOI: https://doi.org/10.1038/s41586-025-08750-4

Al momento in cui si scrive, l’articolo su Nature è ancora in fase di editing.

Testo e immagine dal Settore Ufficio stampa e comunicazione Sapienza Università di Roma

IL BUCO NERO SUPERMASSICCIO 1ES 1927+654, CON LA CORONA OSCILLANTE

Grazie a una lunga campagna di osservazioni realizzate con il telescopio spaziale XMM-Newton dell’Agenzia Spaziale Europea (ESA), un gruppo internazionale di ricerca guidato dal Massachusetts Institute of Technology (MIT), di cui fa parte anche Ciro Pinto dell’Istituto Nazionale di Astrofisica, ha rilevato oscillazioni quasi periodiche dei segnali X provenienti dalla “corona” di particelle che circonda un buco nero supermassiccio situato nel cuore di una galassia vicina. L’evoluzione di queste oscillazioni non solo suggerisce la presenza di un altro oggetto celeste in orbita attorno al buco nero, ma indica inoltre che questi oggetti compatti divorano la materia in modi più complessi di quanto gli astronomi inizialmente pensassero.

I risultati dello studio, in uscita sulla rivista Nature, suggeriscono che a produrre tale variabilità possa essere una nana bianca attorno al buco nero, che viene divorata a piccoli “morsi” a ogni orbita. Il lavoro, basato su osservazioni del buco nero supermassiccio 1ES 1927+654, al centro dell’omonima galassia situata in direzione della costellazione del Dragone, è stato presentato oggi al 245mo meeting dell’American Astronomical Society in corso a National Harbor (Maryland, Stati Uniti). Durante il meeting sono stati presentati altri due studi, dedicati a osservazioni dello stesso buco nero, firmati tra gli altri da Gabriele Bruni, Francesca Panessa e Susanna Bisogni dell’INAF.

I buchi neri supermassicci sono mostri cosmici che imprigionano qualsiasi cosa varchi il loro “confine”, una regione dello spaziotempo nota come orizzonte degli eventi. Previsti dalla teoria della relatività generale di Albert Einstein, si distinguono per la loro capacità di accrescere massa attraverso un disco di accrescimento riscaldato dall’attrito, emettendo luce visibile, ultravioletta e raggi X. Intorno al disco si sviluppa una corona di particelle caldissime che emette raggi X ad alta energia, la cui intensità varia in base alla quantità di materia che fluisce verso il buco nero.

Le emissioni descritte nell’articolo di Nature sono segnali a raggi X variabili nel tempo e in frequenza, chiamate oscillazioni quasi periodiche, o QPO (dall’inglese Quasi Periodic Oscillations). Le osservazioni hanno rivelato picchi di emissione X che variano su tempi scala brevissimi, dell’ordine di 500 secondi.

Gli autori dello studio, guidato da Megan Masterson del Massachusetts Institute of Technology, negli Stati Uniti, osservano 1ES 1927+654 con XMM-Newton fin dal 2011. All’inizio il buco nero si trovava in una fase di basso accrescimento, una sorta di “regime alimentare dietetico”. Le cose sono cambiate nel 2018, quando è entrato in una fase di accrescimento estremo, caratterizzata da una potente esplosione (outburst in inglese) associata all’emissione da parte del disco di accrescimento di luce visibile e ultravioletta, come pure di potenti venti relativistici: il segno tangibile di un “pasto abbondante”. In quell’occasione, i ricercatori hanno anche osservato la scomparsa dell’emissione X ad alta energia della corona – precedentemente osservata -, sinonimo di distruzione della corona stessa.

Dopo il ripristino del flusso di raggi X emessi dalla corona nel 2021, nuove osservazioni condotte sempre con XMM-Newton a luglio del 2022 hanno però mostrato rapide variazioni di questo flusso, con periodi compresi tra 400 e 1000 secondi. Il profilo di emissione presentava picchi che si alternavano a bruschi cali del segnale: le oscillazioni quasi periodiche (QPO), fluttuazioni dell’emissione X notoriamente difficili da rilevare nei buchi neri supermassicci, e che, a distanza di anni dalla loro scoperta, non si sa ancora per certo che cosa li produca fisicamente.

“A marzo del 2024, abbiamo osservato nuovamente il buco nero con XMM-Newton e le oscillazioni erano ancora presenti” sottolinea Ciro Pinto, ricercatore INAF, tra i firmatari dello studio. “L’oggetto orbitava a quasi la metà della velocità della luce, completando un’orbita ogni sette minuti”.

Per spiegare una tale curva di luce, il team ha proposto due ipotesi alternative. La prima ipotesi è che nei pressi del buco nero si sia verificato un evento di distruzione mareale, ossia la disintegrazione di un corpo celeste, ad esempio una stella, da parte delle forze di marea del buco nero. Un tale evento potrebbe spiegare la perturbazione della nube di particelle della corona. L’altra ipotesi prevede che a determinare il profilo di emissione di 1ES 1927+654 possa essere stata invece una nana bianca, un “cadavere stellare” catturato dalla immane forza di gravità del buco nero che, orbitando rapidamente attorno a esso, avrebbe spazzato via a ogni orbita il gas della corona responsabile delle emissioni.

I calcoli effettuati dai ricercatori sembravano avallare la seconda ipotesi. Le fluttuazioni dell’emissione X erano molto probabilmente determinate da una nana bianca dieci volte meno massiccia del Sole, che completa un’orbita attorno al buco nero, a una distanza di circa cento milioni di chilometri, ogni diciotto minuti circa.

Le nuove osservazioni hanno tuttavia messo in discussione entrambe le ipotesi. Lo studio dell’evoluzione della frequenza delle emissioni nel tempo ha infatti mostrato che le oscillazioni aumentavano la loro frequenza: un simile comportamento esclude che a produrre la curva di luce possa essere stato un evento di distruzione mareale, che avrebbe causato la scomparsa dei picchi di emissione X nell’arco di alcuni mesi. In questo caso, invece, le oscillazioni sono state osservate per almeno due anni. I dati di XMM-Newton del 2024 hanno mostrato inoltre che, su tempi scala ancora più lunghi, i picchi di emissione X coronali si sono stabilizzati, il che esclude anche l’ipotesi della nana bianca, o quanto meno che la distruzione sia avvenuta in un colpo solo. Si potrebbe però considerare una nana bianca alla quale il buco nero strappa materia “a piccoli bocconi”: questa non sarebbe stata consumata in un solo pasto, dunque, ma poco a poco.

A discriminare tra i vari scenari potrebbe essere un’altra osservazione, quella di onde gravitazionali. Quando due oggetti compatti, come nane bianche o buchi neri, ruotano l’uno attorno all’altro, vengono infatti prodotte queste increspature nello spazio tempo che si propagano nel cosmo. Se l’ipotesi della nana bianca fatta a pezzi “a piccoli morsi” dal buco nero fosse vera, si dovrebbero captare questi segnali: non con gli osservatori terrestri, che osservano onde gravitazionali ad alte frequenze, ma con osservatori spaziali come la futura missione LISA, il primo osservatorio spaziale di onde gravitazionali, che l’ESA lancerà nel 2035. Progettato per rilevare onde gravitazionali esattamente nella gamma di frequenze che 1ES 1927+654 sta emettendo, LISA potrebbe confutare o confermare l’ipotesi dei ricercatori.

“A partire dagli anni 2030 per questo tipo di astrofisica si apriranno nuove frontiere”, conclude Ciro Pinto. “Il primo grande passo verso nuove scoperte sarà il lancio della missione LISA, che permetterà la rilevazione di onde gravitazionali da buchi neri supermassicci. A questo obiettivo si aggiungerà la missione NewAthena che, dotata di ottiche più potenti dei precedenti osservatori a raggi X, fornirà misurazioni di oscillazioni quasi periodiche più accurate e per più sorgenti. Tale combinazione di strumenti è indispensabile per valutare quale tra le varie interpretazioni o modelli finora disponibili circa l’origine delle oscillazioni quasi periodiche sia corretta. Tutto ciò è rilevante per comprendere i meccanismi di formazione dei buchi neri supermassicci, ancora oggi in discussione”.

Illustrazione artistica che mostra una nana bianca in orbita attorno a un buco nero supermassiccio in accrescimento. Crediti: NASA/Sonoma State University, Aurore Simonnet
Illustrazione artistica che mostra una nana bianca in orbita attorno a un buco nero supermassiccio in accrescimento. Crediti: NASA/Sonoma State University, Aurore Simonnet

Riferimenti bibliografici:

L’articolo “Millihertz Oscillations Near the Innermost Orbit of a Supermassive Black Hole”, di Megan Masterson et al., in uscita su Nature.

Testo e immagine dall’Ufficio Stampa Istituto Nazionale di Astrofisica – INAF.

LE CAPSULE CHE “CATTURANO” GLI INQUINANTI: poliedri supramolecolari artificiali con la geometria del cubo simo, capsule in grado di immagazzinare sostanze (anche inquinanti)

Pubblicato su «Nature» lo studio di un team internazionale di ricercatori delle Università di Padova e Hong-Kong che svela un nuovo materiale “intelligente” di dimensioni nanoscopiche per immagazzinare e rilasciare sostanze in modo controllato

 Studiare materiali innovativi che individuino e catturino sostanze inquinanti per aria e acqua è oggi di fondamentale importanza: un aiuto nella preparazione di questi nuovi materiali arriva dalle capsule proteiche artificiali. In biologia le capsule proteiche svolgono funzioni essenziali in diversi processi, tra cui il trasporto e l’immagazzinamento di sostanze che spaziano dal fragile materiale genetico dei virus al ferro contenuto nelle ferritine.

Luka Ðorđević

Un team internazionale di ricercatori delle Università di Padova e Hong-Kong, con la collaborazione di università statunitensi (Duke, Northwestern, South Florida, California Institute of Technology) e cinesi (Tianjin, Anhui, Zhejiang), ha scoperto un nuovo materiale con caratteristiche simili alle capsule biologiche: lo studio, dal titolo Dynamic supramolecular snub cubes e pubblicato sulla rivista scientifica «Nature», è stato coordinato da Sir James Fraser Stoddart, premio Nobel per la chimica nel 2016 venuto a mancare il 30 dicembre 2024.

Le capsule biologiche sono dei poliedri supramolecolari, cioè subunità proteiche che si auto-assemblano attraverso numerosi legami deboli per creare delle strutture ben definite e simmetriche. Gli scienziati hanno provato a lungo a replicare queste strutture naturali e dopo molti tentativi sono riusciti a preparare poliedri supramolecolari artificiali e produrre capsule con caratteristiche simili a quelle biologiche che possano immagazzinare sostanze e rilasciarle in modo intelligente e controllato.

La scoperta del processo che porta dal riconoscimento delle molecole alla preparazione di capsule artificiali ha reso possibile lo studio di due caratteristiche fondamentali di questi nuovi materiali, che trovano una similitudine con le proprietà delle capsule biologiche: le proprietà dinamiche e la capacità di incapsulare altre sostanze, doti essenziali per lo sviluppo di questa classe di sistemi altamente “intelligenti” dal momento che consentono una cattura e un rilascio controllato delle sostanze utilizzando la luce come stimolo. Tra le numerose applicazioni possibili c’è, ad esempio, la purificazione dell’aria o dell’acqua attraverso l’immagazzinamento di idrocarburi.

«Per la preparazione di questo nuovo materiale è stato fondamentale sfruttare delle molecole chirali – spiega Luka Ðorđević, autore della ricerca e docente al Dipartimento di Scienze Chimiche dell’Università di Padova –. La chiralità è una proprietà di oggetti che sono immagini speculari l’uno dell’altro ma non sono sovrapponibili, come le nostre mani destra e sinistra. Questa proprietà è universale in natura e si manifesta ovunque, dal DNA alle proteine. Nel nostro studio abbiamo osservato come delle molecole chirali possano riconoscersi e auto-assemblarsi in capsule sintetiche dalle dimensioni di solo un paio di nanometri. La dimensione della capsula determina ciò che questa riesce a immagazzinare: creare poliedri da oggetti macroscopici risulta molto facile, ma produrne di dimensioni nanoscopiche è estremamente complicato. Il nostro studio dimostra che le dimensioni di un paio di nanometri sono sufficienti per consentire di immagazzinare idrocarburi come il benzene e il cicloesano, inquinanti di aria e acqua».

Luka Ðorđević
Luka Ðorđević

La geometria di un materiale ne influenza le proprietà e quindi le sue possibili applicazioni: questo nuovo poliedro sintetico è interessante perché riproduce la geometria del cubo simo (snub cube), uno dei 15 poliedri archimedei con 60 spigoli, 24 vertici e 38 facce. Inoltre, anche il cubo simo è chirale e quindi si presenta in due forme speculari.

Riferimenti bibliografici: Huang Wu, Yu Wang, Luka Đorđević, Pramita Kundu, Surojit Bhunia, Aspen X.-Y. Chen, Liang Feng, Dengke Shen, Wenqi Liu, Long Zhang, Bo Song, Guangcheng Wu, Bai-Tong Liu, Moon Young Yang, Yong Yang, Charlotte L. Stern, Samuel I. Stupp, William A. Goddard III, Wenping Hu & J. Fraser Stoddart, Dynamic supramolecular snub cubes – «Nature» – 2025, link: https://www.nature.com/articles/s41586-024-08266-3

Luka Ðorđević
Poliedri supramolecolari artificiali con la geometria del cubo simo, capsule in grado di immagazzinare sostanze (anche inquinanti)

Testo e foto dall’Ufficio Stampa dell’Università di Padova

JWST OSSERVA UN ANTICHISSIMO BUCO NERO SUPERMASSICCIO DORMIENTE, A ‘RIPOSO’ DOPO UN’ABBUFFATA COSMICA, NELLA GALASSIA GN-1001830

È uno dei più grandi buchi neri supermassicci non attivi mai osservati nell’universo primordiale e il primo individuato durante l’epoca della reionizzazione. La scoperta, pubblicata sulla rivista Nature, è stata possibile grazie alle rilevazioni del telescopio spaziale James Webb. Allo studio hanno partecipato anche INAF, Scuola Normale Superiore di Pisa e Sapienza Università di Roma.

JWST buco nero dormiente GN-1001830 Illustrazione artistica che rappresenta l'aspetto potenziale del buco nero supermassiccio scoperto dal team di ricerca durante la sua fase di intensa attività super-Eddington. Crediti: Jiarong Gu
Illustrazione artistica che rappresenta l’aspetto potenziale del buco nero supermassiccio scoperto dal team di ricerca durante la sua fase di intensa attività super-Eddington. Crediti: Jiarong Gu

Anche i buchi neri schiacciano un sonnellino tra una mangiata e l’altra. Un team internazionale di scienziati, guidato dall’Università di Cambridge, ha scoperto un antichissimo buco nero supermassiccio “dormiente” in una galassia compatta, relativamente quiescente e che vediamo come era quasi 13 miliardi di anni fa. La galassia è GN-1001830. Il buco nero, descritto in un articolo pubblicato oggi sulla rivista Nature, ha una massa pari a 400 milioni di volte quella del Sole e risale a meno di 800 milioni di anni dopo il Big Bang, rendendolo uno degli oggetti più antichi e massicci mai rilevati.

Questo mastodontico oggetto è inoltre il primo buco nero supermassiccio non attivo, in termini di accrescimento di materia, osservato durante l’epoca della reionizzazione, una fase di transizione nell’universo primordiale durante la quale il gas intergalattico è stato ionizzato dalla radiazione delle prime sorgenti cosmiche. Probabilmente rappresenta solo la punta dell’iceberg di una intera popolazione di buchi neri “a riposo” ancora da osservare in questa epoca lontana. La scoperta, a cui partecipano ricercatrici e ricercatori anche dell’Istituto Nazionale di Astrofisica (INAF), della Scuola Normale Superiore di Pisa e della Sapienza Università di Roma, si basa sui dati raccolti telescopio spaziale James Webb (JWST), nell’ambito del programma JADES (JWST Advanced Extragalactic Survey).

In che senso il buco nero è “dormiente”? Grazie a questi dati, il gruppo di ricerca ha stabilito che, nonostante la sua dimensione colossale, questo buco nero sta accrescendo la materia circostante a un ritmo molto basso a differenza di quelli di massa simile osservati nella stessa epoca (i cosiddetti quasar) – circa 100 volte inferiore al limite teorico massimo – rendendolo praticamente inattivo.

JWST buco nero dormiente GN-1001830 Immagine in falsi colori ottenuta dal telescopio spaziale JWST, che mostra una piccola frazione del campo GOODS-North. La galassia evidenziata nel riquadro ospita un antichissimo buco nero supermassiccio 'dormiente'. Crediti: JADES Collaboration
Immagine in falsi colori ottenuta dal telescopio spaziale JWST, che mostra una piccola frazione del campo GOODS-North. La galassia evidenziata nel riquadro ospita un antichissimo buco nero supermassiccio ‘dormiente’. Crediti: JADES Collaboration

Un’altra peculiarità di questo buco nero ad alto redshift (ossia collocato nell’universo primordiale) è il suo rapporto con la galassia ospite: la sua massa rappresenta il 40 per cento della massa stellare totale, un valore mille volte superiore a quello dei buchi neri normalmente osservati nell’universo vicino. Alessandro Trinca, ricercatore post-doc oggi in forza all’Università degli studi dell’Insubria ma già post-doc presso l’INAF di Roma per un anno, spiega:

“Questo squilibrio suggerisce che il buco nero abbia avuto una fase di crescita rapidissima, sottraendo gas alla formazione stellare della galassia. Ha rubato tutto il gas che aveva a disposizione prima di diventare dormiente lasciando la componente stellare a bocca asciutta”.

Alessandro Trinca, ricercatore post-doc presso l’Università degli studi dell’Insubria
Alessandro Trinca, ricercatore post-doc presso l’Università degli studi dell’Insubria

Rosa Valiante, ricercatrice dell’INAF di Roma coinvolta nel team internazionale e coautrice dell’articolo, aggiunge:

“Comprendere la natura dei buchi neri è da sempre un argomento che affascina l’immaginario collettivo: sono oggetti apparentemente misteriosi che mettono alla prova ‘famose’ teorie scientifiche come quelle di Einstein e Hawking. La necessità di osservare e capire i buchi neri, da quando si formano a quando diventano massicci fino a miliardi di volte il nostro Sole, spinge non solo la ricerca scientifica a progredire, ma anche l’avanzamento tecnologico”.

Rosa Valiante, ricercatrice presso l’INAF di Roma
Rosa Valiante, ricercatrice presso l’INAF di Roma

I buchi neri supermassicci così antichi, come quello descritto nell’articolo su Nature, rappresentano un mistero in astrofisica. La rapidità con cui questi oggetti sono cresciuti nelle prime fasi della storia dell’Universo sfida i modelli tradizionali, che non sono in grado di spiegare la formazione di buchi neri di tale portata. In condizioni normali, i buchi neri accrescono materia fino a un limite teorico, chiamato “limite di Eddington”, oltre il quale la pressione della radiazione generata dall’accrescimento contrasta ulteriori flussi di materiale verso il buco nero. La scoperta di questo buco nero primordiale supporta l’ipotesi che fasi brevi ma intense di accrescimento dette “super-Eddington” siano essenziali per spiegare l’esistenza di questi “giganti cosmici” nell’universo primordiale. Si tratta di fasi durante le quali i buchi neri riuscirebbero a inglobare materia a un ritmo molto superiore, sfuggendo temporaneamente a questa limitazione, intervallate da periodi di dormienza.

“Se la crescita avvenisse a un ritmo inferiore al limite di Eddington, il buco nero dovrebbe accrescere il gas in modo continuativo nel tempo per sperare di raggiungere la massa osservata. Sarebbe quindi molto improbabile osservarlo in una fase dormiente”, spiega Raffaella Schneider, professoressa del Dipartimento di Fisica della Sapienza.

Raffaella Schneider, professoressa del Dipartimento di Fisica della Sapienza
Raffaella Schneider, professoressa del Dipartimento di Fisica della Sapienza

Gli scienziati ipotizzano che buchi neri simili siano molto più comuni di quanto si pensi, ma oggetti in un tale stato dormiente emettono pochissima luce, il che li rende particolarmente difficili da individuare, persino con strumenti estremamente avanzati come il telescopio spaziale Webb. E allora come scovarli? Sebbene non possano essere osservati direttamente, la loro presenza viene svelata dal bagliore di un disco di accrescimento che si forma intorno a loro. Con il JWST, telescopio delle agenzie spaziali americana (NASA), europea (ESA) e canadese (CSA) progettato per osservare oggetti estremamente poco luminosi e distanti, sarà possibile esplorare nuove frontiere nello studio delle prime strutture galattiche.

Stefano Carniani, ricercatore della Scuola Normale Superiore di Pisa e membro del team JADES commenta:

“Questa scoperta apre un nuovo capitolo nello studio dei buchi neri distanti. Grazie alle  immagini del James Webb, potremo indagare le proprietà dei buchi neri dormienti, rimasti finora invisibili. Queste osservazioni offrono i pezzi mancanti per completare il puzzle della formazione e dell’evoluzione delle galassie nell’universo primordiale”.

Stefano Carniani, ricercatore presso la Scuola Normale Superiore di Pisa
Stefano Carniani, ricercatore presso la Scuola Normale Superiore di Pisa

La scoperta rappresenta solo l’inizio di una nuova fase di indagine. Il JWST sarà ora utilizzato per individuare altri buchi neri dormienti simili, contribuendo a svelare nuovi misteri sull’evoluzione delle strutture cosmiche nell’universo primordiale.Le osservazioni utilizzate in questo lavoro sono state ottenute nell’ambito della collaborazione JADES tra i team di sviluppo degli strumenti Near-Infrared Camera (NIRCam) e Near-Infrared Spectrograph (NIRSpec), con un contributo anche dal team statunitense del Mid-Infrared Instrument (MIRI).

JWST buco nero dormiente GN-1001830 Un’immagine in tre colori del nucleo galattico attivo e della galassia ospite JADES GN 1146115. L’immagine è stata creata con diversi filtri (rosso F444W, verde F277W e blu F115W) utilizzando gli strumenti dal James Webb Space Telescope NIRCam e NIRSpec in modalità multi-oggetto, come parte del programma JADES (JWST Advanced Extragalactic Survey). La galassia si trova a un redshift di 6.68, che corrisponde a un’epoca di meno di 800 milioni di anni dopo il Big Bang. Crediti: I. Juodzbalis et al. / Nature (2024)
Un’immagine in tre colori del nucleo galattico attivo e della galassia ospite JADES GN 1146115. L’immagine è stata creata con diversi filtri (rosso F444W, verde F277W e blu F115W) utilizzando gli strumenti dal James Webb Space Telescope NIRCam e NIRSpec in modalità multi-oggetto, come parte del programma JADES (JWST Advanced Extragalactic Survey). La galassia si trova a un redshift di 6.68, che corrisponde a un’epoca di meno di 800 milioni di anni dopo il Big Bang. Crediti: I. Juodzbalis et al. / Nature (2024)

 

Riferimenti bibliografici:

L’articolo “A dormant, overmassive black hole in the early Universe”, di Ignas Juodžbalis, Roberto Maiolino, William M. Baker, Sandro Tacchella, Jan Scholtz, Francesco D’Eugenio, Raffaella Schneider, Alessandro Trinca, Rosa Valiante, Christa DeCoursey, Mirko Curti, Stefano Carniani, Jacopo Chevallard, Anna de Graaff, Santiago Arribas, Jake S. Bennett, Martin A. Bourne, Andrew J. Bunker, Stephane Charlot, Brian Jiang, Sophie Koudmani, Michele Perna, Brant Robertson, Debora Sijacki, Hannah Ubler, Christina C. Williams, Chris Willott, Joris Witstok, è stato pubblicato sulla rivista Nature.

Testo e immagini dagli Uffici Stampa INAF, Scuola Normale Superiore Pisa, Ufficio Stampa e Comunicazione Sapienza Università di Roma

Scoperti i più antichi antenati del bue domestico: i resti di uro nella valle dell’Indo e in Mesopotamia risalgono a 10mila anni fa

La ricerca, pubblicata sulla rivista Nature, ha coinvolto il paleontologo dell’Università di Pisa, Luca Pandolfi

I più antichi antenati del bue domestico sono stati scoperti nella valle dell’Indo e nella mezzaluna fertile in Mesopotamia: si tratta di resti di uro (Bos primigenius) risalenti a circa 10mila anni fa. La ricerca pubblicata sulla rivista Nature e condotta dal Trinity College di Dublino e dall’Università di Copenaghen, ha coinvolto Luca Pandolfi, paleontologo del Dipartimento di Scienze della Terra dell’Università di Pisa, che da tempo si occupa dell’evoluzione e dell’estinzione dei grandi mammiferi continentali anche in relazione ai cambiamenti climatici.

Cranio di uro conservato al Museo di Storia Naturale dell'Università di Breslavia, Polonia (foto Luca Pandolfi)
Cranio di uro conservato al Museo di Storia Naturale dell’Università di Breslavia, Polonia (foto Luca Pandolfi)

Gli uri addomesticati erano animali abbastanza simili a quelli selvatici, ma un po’ più piccoli, soprattutto con corna meno sviluppate ad indicare una maggiore mansuetudine. Giulio Cesare nel De Bello Gallico (De Bello Gallico, 6-28) descrive infatti l’uro selvatico come un animale di dimensioni di poco inferiori all’elefante, veloce e di natura particolarmente aggressiva. Dai resti fossili emerge che gli uri selvatici potevano raggiungere un’altezza di poco meno di due metri, i 1000 kg di peso ed avere corna lunghe più di un metro. La loro presenza ha dominato le faune dell’Eurasia e del Nord Africa a partire da circa 650 mila anni fa, per poi subire un forte declino dalla fine del Pleistocene, circa 11mila anni fa, fino alla sua estinzione in età moderna. L’ultimo esemplare di cui si ha notizia fu abbattuto il Polonia nel 1627.

“Lo studio su Nature ha analizzato per la prima volta questa specie per comprenderne la storia evolutiva e genetica attraverso resti fossili rinvenuti in diversi di siti in Eurasia, Italia inclusa, e Nord Africa”, dice Luca Pandolfi.

Dai reperti, che includono scheletri completi e crani ben conservati, sono stati estratti campioni di DNA antico. La loro analisi ha quindi permesso di individuare quattro popolazioni ancestrali distinte che hanno risposto in modo diverso ai cambiamenti climatici e all’interazione con l’uomo. Gli uri europei, in particolare, subirono una diminuzione drastica sia in termini di popolazione che di diversità genetica durante l’ultima era glaciale, circa 20 mila anni fa. La diminuzione delle temperature ridusse infatti il loro habitat spingendoli verso la Penisola Italiana e quella Iberica da cui successivamente ricolonizzarono l’intera Europa.

“Nel corso del Quaternario, epoca che va da 2 milioni e mezzo di anni fa sino ad oggi, l’uro è stato protagonista degli ecosistemi del passato, contraendo ed espandendo il proprio habitat in relazione alle vicissitudine climatiche che hanno caratterizzato questo periodo di tempo – conclude Pandolfi – le ossa di questi maestosi animali raccontano ai paleontologi la storia del successo, adattamento e declino, di una specie di cui noi stessi abbiamo concorso all’estinzione e rivelano la complessità e fragilità delle relazioni che legano gli organismi viventi al clima del nostro Pianeta”.

Pitture rupestri di Lascaux (Francia) con raffigurazioni di uro. Crediti per l'immagine: Prof. Saxx, CC BY-SA 3.0
Pitture rupestri di Lascaux (Francia) con raffigurazioni di uro. Crediti per l’immagine: Prof. Saxx, CC BY-SA 3.0

Journal reference: The genomic natural history of the aurochs, Nature, 2024; DOI: 10.1038/s41586-024-08112-6

 

Testo e immagine dall’Ufficio Stampa dell’Università di Pisa

Ophiuroid Optimum: grazie alle stelle serpentine antartiche è stata identificata un nuovo periodo climatico della Terra

Pubblicato su Scientific Reports lo studio del dipartimento di Scienze della Terra dell’Università di Pisa su una carota di sedimento marino dell’Antartide

Un gruppo di ricercatori e ricercatrici del Dipartimento di Scienze della Terra dell’Università di Pisa ha identificato un nuovo periodo climatico del nostro pianeta denominato “Ophiuroid Optimum” che va dal 50 al 450 d.C.

Lo studio pubblicato sulla rivista Scientific Reports è stato condotto in collaborazione con l’Università Ca’ Foscari di Venezia e il Museo Nazionale di Storia Naturale del Lussemburgo. Ricercatori e ricercatrici hanno analizzato una carota di sedimento marino raccolta ad una profondità di 462 m sotto il livello del mare nell’Edisto Inlet, un fiordo nel Mare di Ross occidentale in Antartide.

Lo studio della carota ha consentito di ricostruire la storia climatica della Terra negli ultimi 3600 anni evidenziando anche periodi già noti come il caldo medievale, fra il 950 e il 1250 d.C., e la piccola età glaciale, dal 1300 sino al 1850 d.C.. Durante l’intervallo di tempo denominato “Ophiuroid Optimum”, nell’area antartica dell’Edisto Inlet, si sono susseguite estati australi caratterizzate dall’assenza di ghiaccio marino ed importanti fioriture algali. Il persistere di queste condizioni ambientale ha permesso lo sviluppo di un’ampia comunità “bentonica”, ossia di organismi acquatici, animali e vegetali che vivono vicino ai fondali, ricca in stelle serpentine.

Questa carota di sedimento ci ha consentito di effettuare degli studi paleoecologici e paleoclimatici ad altissima risoluzione – spiega Giacomo Galli dottorando fra gli Atenei di Pisa e Ca’ Foscari Venezia – questo perché è in gran parte fatta di fango costituito principalmente da diatomee, cioè piccole alghe unicellulari con guscio siliceo, a cui si aggiungono foraminiferi che sono organismi unicellulari con guscio che può fossilizzare, e resti di ofiure, cioè animali noti con il nome di stelle serpentine, echinodermi simili alle stelle marine. In particolare, gli abbondanti resti fossili delle stelle serpentine hanno permesso di identificare e caratterizzare il nuovo periodo climatico”.

La nostra comprensione del clima presente, nonché la possibilità di modellare quello futuro, è possibile solo grazie ai dati che derivano dalle informazioni sul clima del passato – conclude la professoressa Morigi dell’Università di Pisa – ogni tassello che ci aiuta a comprendere meglio la storia climatica del nostro Pianeta ha enormi implicazione nell’aiutarci a capire come questa si evolverà nel prossimo futuro”.

Hanno partecipato alla ricerca per il dipartimento della di Scienze della terra dell’Università di Pisa Giacomo Galli, la professoressa Caterina Morigi, responsabile di vari progetti per la ricerca in Antartide (Programma Nazionale di Ricerche in Antartide, PNRA) ed in Artide (Programma di Ricerca in Artico, PRA) e Karen Gariboldi, ricercatrice esperta di diatomee. Fra gli altri autori Ben Thuy, ricercatore presso il Museo Nazionale di Storia Naturale del Lussemburgo, uno dei maggiori esperti di ofiuroidi fossili al mondo.

Riferimenti bibliografici:

Galli, G., Morigi, C., Thuy, B. et al. Late Holocene echinoderm assemblages can serve as paleoenvironmental tracers in an Antarctic fjord, Sci Rep 14, 15300 (2024), DOI: https://doi.org/10.1038/s41598-024-66151-5

Nella foto, la bivalve Adamussium colbecki, il riccio Sterechinus neumayeri, la spugna Homaxinella balfourensis, la stella serpentina Ophionotus victoriae, ragni di mare Colossendeis. Foto NSF/USAP, di Steve Clabuesch, in pubblico dominio
L’immagine ha lo scopo di mostrare una specie di stelle serpentine, Ophionotus victoriae, i cui fossili sono stati centrali in questa ricerca che ha individuato il nuovo periodo climatico Ophiuroid Optimum. Nella foto, la bivalve Adamussium colbecki, il riccio Sterechinus neumayeri, la spugna Homaxinella balfourensis, la stella serpentina Ophionotus victoriae, ragni di mare Colossendeis. Foto NSF/USAP, di Steve Clabuesch, in pubblico dominio

Testo dal Polo Comunicazione CIDIC – Centro per l’innovazione e la diffusione della cultura dell’Università di Pisa.

PORFIRIONE: DA UN BUCO NERO, LA COPPIA DI GETTI RECORD, LUNGA 23 MILIONI DI ANNI LUCE

Scoperta la più grande coppia di getti emessi da un buco nero mai osservata: si estende per 23 milioni di anni luce, una distanza equivalente a 140 galassie come la Via Lattea, allineate una dopo l’altra. A individuarle è stato il radiotelescopio europeo LOFAR. Nel team che ha scoperto queste megastrutture e che ha firmato un articolo apparso oggi sulla rivista Nature ci sono due ricercatori INAF.

Rappresentazione artistica del più esteso sistema di getti emessi da buchi neri mai osservato. Denominato Porfirione, dal nome di un gigante mitologico greco, questi getti si estendono per circa 7 megaparsec, ovvero 23 milioni di anni luce. La stessa distanza che coprirebbero 140 galassie come la Via Lattea allineate una dietro l'altra. Crediti: E. Wernquist / D. Nelson (IllustrisTNG Collaboration) / M. Oei
Rappresentazione artistica del più esteso sistema di getti emessi da buchi neri mai osservato. Denominato Porfirione, dal nome di un gigante mitologico greco, questi getti si estendono per circa 7 megaparsec, ovvero 23 milioni di anni luce. La stessa distanza che coprirebbero 140 galassie come la Via Lattea allineate una dietro l’altra. Crediti: E. Wernquist / D. Nelson (IllustrisTNG Collaboration) / M. Oei

Scoperti da un team internazionale di ricerca due giganteschi getti di gas e particelle prodotti da un remoto buco nero supermassiccio, che si estendono per una distanza di 23 milioni di anni luce, ovvero quanto il diametro di 140 galassie come la Via Lattea. La megastruttura, la più grande di questo tipo finora nota, è stata soprannominata Porfirione in onore di un gigante della mitologia greca. Questi getti risalgono a un’epoca in cui il nostro universo aveva 6,3 miliardi di anni, ovvero meno della metà della sua attuale età, pari a 13,8 miliardi di anni. Si stima che l’energia che alimenta i getti sia equivalente a quella di migliaia di miliardi di soli.

Prima di questa scoperta, il più grande sistema di getti mai osservato era Alcioneo, individuato nel 2022, con una estensione di circa 100 volte la grandezza della Via Lattea. Ma la scoperta di Porfirione suggerisce che questi giganteschi sistemi di getti potrebbero aver influenzato la formazione delle galassie nell’universo giovane più di quanto si pensasse in precedenza.

“La scoperta di Porfirione rappresenta un passo molto importante nella comprensione dell’evoluzione dei buchi neri e delle galassie, con implicazioni potenzialmente rilevanti anche per le proprietà dell’universo su grandissima scala”, commenta Andrea Botteon, ricercatore INAF coinvolto nello studio. “Questo risultato è stato possibile grazie all’utilizzo della vasta rete di antenne che compongono LOFAR, la quale ci ha permesso per la prima volta di individuare Porfirione e quindi di condurre osservazioni di follow-up con altri telescopi per determinarne le proprietà fisiche”.

Questa immagine, ottenuta dal radiotelescopio europeo LOFAR (LOw Frequency ARray), mostra la più estesa coppia di getti di buchi neri ad oggi conosciuta. Soprannominato Porfirione dal nome di un mitologico gigante greco, il sistema di getti si estende per 23 milioni di anni luce. La galassia che ospita il buco nero supermassiccio, distante 7,5 miliardi di anni luce, è il punto al centro dell'immagine. La struttura luminosa più grande, vicina al centro, è un altro getto più piccolo
Questa immagine, ottenuta dal radiotelescopio europeo LOFAR (LOw Frequency ARray), mostra la più estesa coppia di getti di buchi neri ad oggi conosciuta. Soprannominato Porfirione dal nome di un mitologico gigante greco, il sistema di getti si estende per 23 milioni di anni luce. La galassia che ospita il buco nero supermassiccio, distante 7,5 miliardi di anni luce, è il punto al centro dell’immagine. La struttura luminosa più grande, vicina al centro, è un altro getto più piccolo

Grazie al telescopio radio Europeo LOFAR (LOw Frequency ARray), oltre a Porfirione, sono state scoperte oltre 10.000 megastrutture poco visibili. Sebbene centinaia di grandi sistemi di getti fossero già noti prima delle osservazioni del LOFAR, si pensava fossero rari e in media di dimensioni più piccole rispetto ai migliaia di sistemi scoperti.

“Questa coppia non è solo delle dimensioni di un sistema solare o di una Via Lattea; stiamo parlando di 140 diametri della Via Lattea in totale,” afferma Martijn Oei, ricercatore post-dottorato al Caltech e autore principale di un nuovo articolo pubblicato su Nature. “La Via Lattea sarebbe un piccolo punto in queste due gigantesche eruzioni”.

Per localizzare la galassia da cui proviene Porfirione, il team ha utilizzato il Giant Metrewave Radio Telescope (GMRT) in India insieme ai dati provenienti da un progetto chiamato Dark Energy Spectroscopic Instrument (DESI), che opera dal Kitt Peak National Observatory in Arizona. Le osservazioni hanno individuato l’origine dei getti: una galassia circa dieci volte più massiccia della nostra Via Lattea.

Il team ha poi utilizzato l’Osservatorio W. M. Keck alle Hawaii per mostrare che Porfirione si trova a 7,5 miliardi di anni luce dalla Terra. Questo risultato suggerisce che se i getti distanti come questi possono raggiungere la scala della rete cosmica, allora ogni luogo nell’universo potrebbe essere stato influenzato dall’attività dei buchi neri a un certo punto nella storia cosmica.

Le osservazioni dal telescopio Keck hanno anche rivelato che Porfirione proviene da quello che è chiamato un buco nero attivo in modalità radiativa, piuttosto che in modalità getto. In questo particolare stato, il buco nero supermassiccio emette energia sotto forma di radiazioni e getti quando attira a sé e riscalda il materiale circostante: una sorpresa per i ricercatori, che non ritenevano possibile l’emissione di getti così potenti da un buco nero in questa modalità. La scoperta suggerisce quindi che nell’universo distante, dove abbondano i buchi neri in modalità radiativa, potrebbero esserci molti altri getti così potenti ancora da scoprire.

Come possano i getti estendersi così lontano oltre le loro galassie ospitanti senza destabilizzarsi è ancora poco chiaro. L’ipotesi più plausibile è che nella galassia ospite avvenga un evento di accrescimento insolitamente duraturo e stabile attorno al buco nero supermassiccio centrale per consentirgli di rimanere attivo così a lungo – circa un miliardo di anni – e garantire che i getti continuino a puntare nella stessa direzione durante tutto quel tempo.

“Le osservazioni a bassa frequenza continuano a mostrare il loro incredibile potenziale”, afferma Francesco de Gasperin, co-autore dello studio e ricercatore INAF. “Riuscire a osservare ed elaborare correttamente questi dati è estremamente complesso, ma negli ultimi anni sono stati fatti grossi passi avanti che hanno permesso un elevato numero di scoperte importanti tra cui molte sulla fisica dei buchi neri supermassicci e sul loro impatto nel modificare la vita delle galassie ospitanti”.

Il prossimo passo per i ricercatori sarà quello di approfondire come queste megastrutture influenzano il loro ambiente e, in particolare, come i getti diffondono raggi cosmici, calore, atomi pesanti e campi magnetici nello spazio intergalattico. Altro obiettivo degli scienziati è anche comprendere i meccanismi che sono legati alla propagazione dei campi magnetici associati a questi enormi getti, il modo in cui essi influenzano la distribuzione dei campi magnetici nella grande rete cosmica e il ruolo che i campi magnetici possono avere sulla formazione e il mantenimento delle condizioni favorevoli alla vita, così come accade sul nostro pianeta.

Per ulteriori informazioni:

L’articolo “Black hole jets on the scale of the cosmic web”, di Martijn S. S. L. Oei, Martin J. Hardcastle, Roland Timmerman, Aivin R. D. J. G. I. B. Gast, Andrea Botteon, Antonio C. Rodriguez, Daniel Stern, Gabriela Calistro Rivera, Reinout J. van Weeren, Huub J. A. Röttgering, Huib T. Intema, Francesco de Gasperin, S. G. Djorgovski è stato pubblicato online sulla rivista Nature. DOI: https://www.nature.com/articles/s41586-024-07879-y

Testo e immagini dall’Ufficio Stampa Istituto Nazionale di Astrofisica – INAF

L’origine dell’emissione persistente osservata in alcuni lampi radio veloci: sarebbe una bolla di plasma a generare questa radiazione

Un nuovo studio internazionale guidato dall’Istituto Nazionale di Astrofisica (INAF), con la partecipazione di diversi atenei italiani, ha scoperto l’origine dell’emissione persistente osservata in alcuni lampi radio veloci: sarebbe una bolla di plasma a generare questa radiazione. Questi dati permettono anche di circoscrivere la natura del “motore” alla base di queste misteriose sorgenti. I risultati pubblicati oggi su Nature.

Illustrazione artistica di una magnetar, circondata dalla bolla di plasma responsabile dell’emissione persistente osservata in alcuni lampi radio veloci.Crediti: NSF/AUI/NRAO/S. Dagnello
Illustrazione artistica di una magnetar, circondata dalla bolla di plasma responsabile dell’emissione persistente osservata in alcuni lampi radio veloci.
Crediti: NSF/AUI/NRAO/S. Dagnello

I Fast Radio Burst (FRB), o lampi radio veloci, sono uno dei misteri aperti più recenti dell’astrofisica moderna: in pochi millisecondi rilasciano una quantità di energia tra le più alte osservabili nei fenomeni cosmici. Scoperti poco più di dieci anni fa, questi forti lampi in banda radio provengono da sorgenti per lo più extragalattiche, ma la loro origine è ancora incerta e molti sono gli sforzi della comunità astrofisica di tutto il mondo per cercare di comprendere i processi fisici alla loro origine.

In pochissimi casi, il rapido lampo che caratterizza i fast radio burst coincide con un’emissione persistente, sempre in banda radio. Una nuova ricerca guidata dall’Istituto Nazionale di Astrofisica (INAF) ha registrato l’emissione radio persistente più debole mai rilevata finora per un FRB. Si tratta di FRB20201124A, un lampo radio veloce scoperto nel 2020, la cui sorgente si trova a circa 1,3 miliardi di anni luce da noi. Oltre al lavoro di ricercatori e ricercatrici INAF, lo studio vede la collaborazione delle Università di Bologna, Trieste e della Calabria, e la partecipazione internazionale di istituti di ricerca e università in Cina, Stati Uniti, Spagna e Germania.

Le osservazioni – rese possibili dal radiotelescopio più sensibile al mondo, il Very Large Array (VLA) negli Stati Uniti – hanno permesso di verificare la predizione teorica che prevede una bolla di plasma all’origine dell’emissione radio persistente dei lampi radio veloci. I risultati sono pubblicati oggi sulla rivista Nature.

“Siamo riusciti a verificare tramite osservazioni che l’emissione persistente che accompagna alcuni fast radio burst si comporta come previsto dal modello di emissione nebulare, ovvero una ‘bolla’ di gas ionizzato che circonda il motore centrale” spiega Gabriele Bruni, ricercatore INAF a Roma e primo autore dell’articolo. “In particolare, tramite l’osservazione in banda radio di uno dei lampi più vicini, siamo riusciti a misurare la debole emissione persistente proveniente dalla stessa posizione del FRB, estendendo di due ordini di grandezza l’intervallo di flusso radio esplorato finora per questi oggetti”.

Il nuovo lavoro aiuta anche a circoscrivere la natura del motore di questi misteriosi lampi. Secondo i nuovi dati, alla base del fenomeno risiederebbe una magnetar (stella di neutroni fortemente magnetizzata) oppure una binaria a raggi X con regime di accrescimento molto alto, ovvero un sistema binario formato da una stella di neutroni o da un buco nero che accresce materiale da una stella compagna a ritmi molto intensi. Sarebbero infatti i venti prodotti dalla magnetar, oppure dal sistema binario X, a “gonfiare” la bolla di plasma che dà origine all’emissione radio persistente. C’è quindi una relazione fisica diretta tra il “motore” del FRB e la bolla, che si trova nelle sue immediate vicinanze.

La campagna osservativa è stata condotta a seguito di un altro lavoro guidato da Luigi Piro dell’INAF, coautore del nuovo articolo, nel quale era stata individuata l’emissione persistente nella galassia ospite di questo FRB, ma non ancora con una determinazione della posizione sufficientemente precisa da permettere di associare tra loro i due fenomeni.

“In questo nuovo lavoro, abbiamo condotto una campagna a risoluzione spaziale più elevata con il VLA, accompagnata anche da osservazioni in diverse bande con l’interferometro NOEMA e il Gran Telescopio Canarias (GranTeCan), che ci hanno permesso di ricostruire il quadro generale della galassia e scoprire la presenza di una sorgente radio compatta – la bolla di plasma del FRB –  immersa nella regione di formazione stellare” aggiunge Piro. “Nel frattempo, è stato pubblicato anche il modello teorico sulla nebulosa, permettendoci di testarne la validità e, infine, di confermare il modello stesso”.

Gran parte del lavoro è stato dedicato a escludere che l’emissione radio persistente provenisse proprio da una regione di formazione stellare, e che quindi non fosse legata fisicamente alla sorgente del FRB. A questo scopo, le osservazioni fatte con NOEMA in banda millimetrica hanno misurato la quantità di polveri, che tracciano le regioni di formazione stellare “oscurate”, e quelle fatte con il GranTeCan in banda ottica hanno misurato l’emissione da idrogeno ionizzato, anch’esso un tracciante del tasso di formazione di stelle.

“Le osservazioni ottiche sono state un elemento importante per studiare la regione del FRB a una risoluzione spaziale simile al radio” nota la coautrice Eliana Palazzi dell’INAF di Bologna. “Poter mappare l’emissione dell’idrogeno con questo dettaglio ci ha permesso di derivare un tasso di formazione locale di stelle che è risultato essere troppo basso per giustificare l’emissione radio continua”.

La maggior parte dei fast radio burst non presenta emissione persistente. Finora, questo tipo di emissione era stata associata soltanto a due FRB, ma a un regime di luminosità che non permetteva di verificare il modello proposto. Nel caso di FRB20201124A, invece, la sua distanza sì grande ma non eccessiva ha permesso di misurare l’emissione persistente nonostante la bassa luminosità. Capire la natura dell’emissione persistente permette di aggiungere una tessera al puzzle sulla natura di queste misteriose sorgenti cosmiche.

 


 

Per ulteriori informazioni:

L’articolo “A nebular origin for the persistent radio emission of fast radio bursts”, di Gabriele Bruni, Luigi Piro, Yuan-Pei Yang, Salvatore Quai, Bing Zhang, Eliana Palazzi, Luciano Nicastro, Chiara Feruglio, Roberta Tripodi, Brendan O’Connor, Angela Gardini, Sandra Savaglio, Andrea Rossi, A. M. Nicuesa Guelbenzu, Rosita Paladino, è stato pubblicato online sulla rivista Nature.

Testo e immagine dall’Ufficio stampa Struttura per la Comunicazione di Presidenza dell’Istituto Nazionale di Astrofisica (INAF).

IL BUCO NERO DI MASSA INTERMEDIA DELL’AMMASSO STELLARE  OMEGA CENTAURI: L’ANELLO MANCANTE NELL’EVOLUZIONE DEI BUCHI NERI MASSICCI

Sette nuove stelle in rapido movimento identificate al centro dell’ammasso stellare Omega Centauri forniscono una solida prova dell’esistenza di un buco nero centrale nell’ammasso stesso. Con una massa di almeno 8200 masse solari, questo buco nero è il miglior candidato per appartenere alla classe di buchi neri chiamata di massa intermedia. Gli astronomi credono che questo tipo di buchi neri si formi nelle prime fasi dell’evoluzione delle galassie. Questa scoperta, a cui partecipa anche l’INAF, rafforza l’ipotesi che Omega Centauri sia la regione centrale di una galassia inglobata nella Via Lattea miliardi di anni fa. Spogliato delle sue stelle esterne, il nucleo galattico da allora è rimasto “congelato nel tempo”.

Osservando Omega Centauri con un piccolo telescopio, non appare diversa dagli altri cosiddetti ammassi globulari: una spettacolare collezione sferica di stelle, così densa verso il centro che diventa impossibile distinguere le singole stelle. Questo nuovo studio, guidato da Maximilian Häberle (Istituto Max Planck per l’astronomia di Heidelberg, MPIA) e a cui partecipa anche Mattia Libralato dell’INAF  – Istituto Nazionale di Astrofisica (e precedentemente in forza all’AURA per l’Agenzia Spaziale Europea presso lo Space Telescope Science Institute), porta nuova luce su questo oggetto celeste, confermando ciò che gli astronomi ipotizzavano da tempo: Omega Centauri ospita un buco nero centrale. Il buco nero sembra essere l'”anello mancante” tra i suoi simili di taglia stellare, che hanno masse comprese tra una e alcune decine di masse solari, e quelli supermassicci, con masse di milioni o miliardi di volte quelle del Sole, situati al centro delle galassie. Omega Centauri sembra essere il nucleo di una piccola galassia separata la cui evoluzione è stata interrotta quando è stata inglobata dalla Via Lattea.

This image presents three panels. The first image shows the global cluster Omega Centauri, appearing as a highly dense and numerous collection of shining stars. The second image shows the details of the central region of this cluster, with a closer view of the individual stars. The third image shows the location of the IMBH candidate in the cluster.
Una immagine che mostra, da sinistra, progressivi ingrandimenti  sull’ammasso stellare Omega Centauri. Nel pannello di destra, la zona circolare indica la regione dove dovrebbe essere situato il buco nero di massa intermedia. La barretta orizzontale in basso a destra del riquadro indica una lunghezza in scala di 0,1 anni luce. Crediti: ESA/Hubble & NASA, M. Häberle (MPIA)

Mattia Libralato, coautore dell’articolo appena pubblicato sulla rivista Nature che descrive la scoperta, commenta:

“L’esistenza di buchi neri di massa intermedia al centro degli ammassi globulari è un argomento molto controverso perché questi oggetti sono elusivi ed è difficile dedurre la loro presenza. In questa analisi sono state trovate sette stelle vicino al centro di Omega Centauri la cui velocità molto elevata e posizione sono compatibili con la presenza di un buco nero con una massa di almeno 8.200 volte quella del Sole al centro dell’ammasso. La scoperta di queste stelle è una delle prove più solide che sia stata raccolta dell’esistenza di un buco nero di massa intermedia”.

L’attuale teoria dell’evoluzione delle galassie ipotizza che le prime galassie dovessero avere buchi neri centrali di dimensioni intermedie, che sarebbero poi cresciuti nel tempo man mano che quelle galassie si evolvevano, inglobando galassie più piccole (come ha fatto la nostra Via Lattea) o fondendosi con galassie più grandi. Tali buchi neri di medie dimensioni sono notoriamente difficili da trovare: le galassie come la nostra Via Lattea hanno superato quella fase, contenendo ora buchi neri centrali molto più grandi, mentre le galassie nane invece sono difficili da osservare e rendono estremamente complicato rilevare i loro buchi neri centrali con la tecnologia attuale. Sebbene esistano candidati promettenti, fino ad ora non è mai stato rilevato un buco nero di massa intermedia.

Nadine Neumayer, capo gruppo al MPIA, e Anil Seth, dell’Università dello Utah, nel 2019 hanno dato vita ad un progetto di ricerca mirato a migliorare la comprensione della storia della formazione di Omega Centauri: identificare le stelle in rapido movimento attorno al buco nero centrale per poi misurarne la massa. Maximilian Häberle, uno studente di dottorato al MPIA, ha guidato il lavoro creando un enorme catalogo con i movimenti delle stelle in Omega Centauri e misurando le velocità di 1,4 milioni di stelle. Per questo lavoro, sono state utilizzate oltre 500 immagini di Hubble dell’ammasso, prodotte con lo scopo di calibrare gli strumenti del satellite, ma che con le loro visualizzazioni ripetute di Omega Centauri, si sono rivelate il set ideale di dati.

The central region of a globular cluster is shown, appearing as a highly dense and numerous collection of shining stars. Some stars show blue and orange glowing features around them.
Credit: ESA/Hubble & NASA, M. Häberle (MPIA)

“Cercare stelle in rapido movimento e documentarne il movimento era come cercare il proverbiale ago in un pagliaio”

 dice Häberle, che ha trovato ben sette stelle in rapido movimento in una piccola regione al centro di Omega Centauri dove non vi è nessun oggetto visibile. Tali stelle, con diverse velocità e direzioni di movimento, hanno permesso a Häberle e ai suoi colleghi di determinare la presenza di una massa centrale in Omega Centauri, di almeno 8.200 masse solari.

A una distanza di circa 18.000 anni luce, questo è l’esempio del più vicino buco nero massiccio ad oggi conosciuto. Infatti il buco nero supermassiccio nel centro della Via Lattea è a una distanza di circa 27.000 anni luce da noi. Questa rilevazione non solo promette di risolvere il dibattito decennale sul buco nero di massa intermedia in Omega Centauri, ma fornisce, in generale, anche il miglior candidato, fino ad ora, della rilevazione di un buco nero di massa intermedia.

“Negli ultimi 10 anni, l’astrometria, e in particolare lo studio della cinematica interna degli ammassi globulari, ha vissuto un vero e proprio “Rinascimento” grazie alla missione Gaia” ricorda Libralato. “Tuttavia, regioni affollate come il centro degli ammassi globulari sono difficili, e in alcuni casi impossibili, da studiare anche con Gaia, lasciando Hubble come unica risorsa. Il lavoro di Maximilian dimostra che anche dopo più di 30 anni dal suo lancio, il telescopio Hubble è uno dei migliori strumenti per ottenere astrometria di alta precisione in regioni estremamente affollate come il centro degli ammassi globulari”.

Neumayer, Häberle e i loro colleghi ora intendono studiare il centro di Omega Centauri con ancora maggiore dettaglio. Hanno già ottenuto l’approvazione per misurare il movimento delle stelle in rapido movimento utilizzando il Telescopio spaziale James Webb. L’utilizzo successivo di strumenti attualmente in costruzione, come GRAVITY+ al VLT dell’ESO e MICADO all’Extremely Large Telescope, potrebbe portare a misure più accurate delle posizioni delle stelle di quelle ottenute con le immagini di Hubble. L’obiettivo a lungo termine è determinare come le stelle accelerano e come curvano le loro orbite. Seguire le orbite intere delle stelle, come per le osservazioni del buco nero al centro della Via Lattea che hanno portato al premio Nobel, è un progetto per le future generazioni di astronomi. Infatti, la piccola massa del buco nero per Omega Centauri si traduce in tempi scala dieci volte più grandi rispetto a quelli utilizzati per lo studio del centro della Via Lattea, ovvero periodi orbitali di più di cento anni.

Per ulteriori informazioni:

L’articolo “Fast-moving stars around an intermediate-mass black hole in ω Centauri”, di Häberle M., Anil Seth, Andrea Bellini, Mattia Libralato, Holger Baumgardt, Matthew Whitaker, Mayte Alfaro Cuello, Jay Anderson, Nikolay Kacharov, Sebastian Kamann, Antonino Milone, Renuka Pechetti e Glenn van de Ven è stato pubblicato online sulla rivista Nature.

 

Testo e immagini dall’Ufficio stampa – Struttura per la Comunicazione di Presidenza
Istituto Nazionale di Astrofisica – INAF.