News
Ad
Ad
Ad
Tag

metalli

Browsing

DA CA’ FOSCARI UN ALGORITMO PER SOSTITUIRE LE TERRE RARE CON MATERIALI SOSTENIBILI

Stefano Bonetti, fisico a Ca’ Foscari, ha presentato l’attività della Fondazione Rara in audizione alla Commissione Esteri della Camera:

Non c’è un modo pulito di estrarre terre rare, ma con la ricerca possiamo trovare nuovi materiali, generando un forte impatto economico”.

VENEZIA – Lantanio, cerio, praseodimio, neodimio. Sono solo le prime delle diciassette ‘terre rare’ presenti nella tavola periodica degli elementi. Si chiamano terre, ma sono sostanzialmente dei metalli, tutti con colore simile, indispensabili per l’economia del presente e del futuro, per la transizione ecologica, e per gli interessi di molti Paesi.

Le terre rare fanno parte di un più ampio gruppo di “materiali rari” o “materiali critici”, per esempio nichel o cobalto, che sono alla base di tutti i dispositivi elettronici di ultima generazione, come batterie ricaricabili, motori elettrici, schermi TV e LCD. Sono anche elementi fondamentali per lo sviluppo delle tecnologie più avanzate in campo aerospaziale, medico, della difesa e delle energie rinnovabili. Il controllo e il primato sull’export di questi materiali, la cui domanda è destinata a crescere in modo rapido ed esponenziale in tutto il mondo, è attualmente in mano alla Cina.

Norme e strategie per superare il ‘monopolio’ cinese e regolamentare il procedimento complesso e poco sostenibile di estrazione e lavorazione delle terre rare e dei materiali critici, sono in discussione anche a livello di Unione Europea e di singoli Stati, tra i quali l’Italia, dove sono coinvolti il ministero delle Imprese e del Made in Italy e quello dall’Ambiente.

Stefano Bonetti, Ordinario di Fisica della Materia a Ca’ Foscari, è rappresentante di Fondazione Rara ETS, no profit nata per promuovere ed effettuare ricerca su tecnologie e materiali sostenibili, offrendo soluzioni ‘pulite’ e percorribili in qualunque strategia geopolitica legata ai materiali rari. Insieme a lui, i docenti di Ca’ Foscari Guido Caldarelli, Ordinario di Fisica Teorica, Michele Bugliesi, Ordinario di Informatica e precedente Rettore, insieme ad Alberto Baban, Presidente di VeNetWork ed ex Presidente Nazionale di Piccola e Media Impresa di Confindustria, e Anna Soatto, di Cortellazzo&Soatto.

Nei giorni scorsi Bonetti è stato invitato per un’audizione alla Commissione Esteri della Camera dei deputati, dove ha spiegato le criticità e possibili sviluppi nel campo delle terre e dei materiali rari, e ha presentato l’attività della Fondazione.

“Al momento stiamo sviluppando e brevettando un algoritmo che permetta di sostituire completamente le terre rare con materiali sostenibili e abbondanti, cercando e combinando materiali con proprietà simili – spiega Bonetti. – La realtà è che non c’è un modo pulito di estrarre terre rare, che significa che i processi per evitare di inquinare richiedono costosi processi di bonifica, che di ritorno aumenterebbero i prezzi dei materiali e porterebbero probabilmente fuori mercato le terre rare estratte in Europa. Consideriamo poi il costo sociale: qualsiasi dispositivo elettronico di uso quotidiano ha una batteria che contiene cobalto, e l’estrazione di cobalto avviene quasi totalmente in Congo, senza regole ambientali e sfruttando in maniera tragica lavoro minorile. Il paradosso è evidente: per effettuare una transizione ecologica che mira a salvare il pianeta, ci procuriamo materiali distruggendo alcune aree del pianeta stesso, e le persone che ci vivono. Anche le attuali alternative in discussione, ovvero recuperare e riciclare le terre rare da vecchi dispositivi elettronici, o di trovare nuovi giacimenti, hanno ancora altissimi costi energetici, ambientali e sociali”.

Stefano Bonetti sostituire terre rare
Stefano Bonetti

L’approccio proposto dal gruppo di ricerca offre una soluzione completamente nuova al problema. L’idea non è di trovare terre rare o materiali rari, riciclandoli o cercando nuovi giacimenti, ma di sostituirli completamente con materiali abbondanti e sostenibili.

“Ci sono elementi come il sodio, il potassio, il ferro, il titanio, e diversi altri, che sono molto più abbondanti, e distribuiti su tutto il pianeta – continua Bonetti. – Con questi elementi comuni, si possono creare dei materiali compositi, delle leghe, che possono avere le proprietà delle terre rare. In questo modo, potremmo continuare a sviluppare tecnologia necessaria alla transizione ecologica, con materiali a basso impatto ambientale. Inoltre, anche gli altri problemi di diritti umani, di concentrazione di potere in mano a pochi attori si risolverebbero, perché questi materiali si trovano distribuiti su tutto il pianeta”.

L’idea è semplice, ed è quella di provare tante combinazioni di materiali, testarli e trovare quelli simili. La difficoltà sta nell’altissimo numero di combinazioni possibili, paragonabile a quanti sono gli atomi nell’universo.

“Quello che abbiamo fatto all’interno della Fondazione Rara, grazie ad una combinazione di competenze unica in fisica della materia, in fisica teorica e in informatica, è lo sviluppo di un algoritmo in grado di ottimizzare la ricerca di questi materiali in maniera molto più efficiente di quanto fatto fino ad ora, creando un’elaborazione dei materiali. Dopo l’algoritmo, l’obiettivo successivo è quello di creare un database di materiali mirati a sostituire le terre rare.”

Le ricadute di un’impresa di questo tipo sull’intero sistema nazionale sono destinate ad avere un forte impatto dal punto di vista economico, perché l’Italia diventerebbe leader di materiali sostenibili per le nuove tecnologie (il solo settore microelettronica ha un valore stimato di 700 miliardi nel 2027); strategico e geopolitico, perché diventerebbe punto di riferimento per le industrie che operano nell’ambito della transizione ecologica; e infine politico, con un ruolo leader in Europa nelle politiche per i materiali sostenibili.

Tra le raccomandazioni di breve-medio periodo che Fondazione Rara ha presentato nel corso dell’audizione, spiccano: un impegno della politica a livello internazionale per inserire la ricerca di materiali sostenibili tra le priorità dei prossimi anni, lo stanziamento di fondi europei mirati alla sostituzione dei materiali critici con materiali sostenibili e l’utilizzo di e fondi PNRR per la ricerca sui materiali sostenibili.

Video dell’audizione di Stefano Bonetti alla Commissione Esteri: https://webtv.camera.it/evento/22978

 

Testo e foto dall’Ufficio Comunicazione e Promozione di Ateneo Università Ca’ Foscari Venezia sull’algoritmo per sostituire le terre rare con materiali sostenibili.

Come la vita e il nostro Pianeta sono evoluti insieme

Parte il progetto CoEvolve: indaga la coevoluzione della vita con la Terra

CoEvolve indaga la coevoluzione della vita con la Terra

CoEvolve, il progetto finanziato dal Consiglio Europeo delle Ricerche, guidato dal microbiologo della Federico II di Napoli, Donato Giovannelli, è ufficialmente decollato. Il progetto condurrà il team del Giovannelli-Lab dall’Artico ai deserti delle Ande cilene, e poi dal Costa Rica all’Islanda, alla ricerca di microrganismi che verranno raccolti negli ambienti estremi del nostro pianeta per capire come la Terra e la vita si sono mutualmente influenzati, in una sorta di coevoluzione tra la geosfera e la biosfera terrestre.

‘Quando guardiamo il nostro pianeta tendiamo a pensare che la geologia sia una forza inarrestabile che modella i continenti e gli oceani, e che la vita si adatti a questi cambiamenti ed evolva per tenere il passo. Questo è vero per la maggior parte del tempo, ma ci sono state diverse occasioni durante la storia della Terra in cui l’evoluzione di alcuni processi biologici hanno influenzato notevolmente la geologia, la mineralogia e quindi la traiettoria evolutiva della Terra’ – spiega il coordinator Donato Giovannelli. La realtà è che il nostro pianeta e la vita si sono coevoluti nel tempo, influenzandosi a vicenda per oltre 4 miliardi di anni. ‘È come una delicata danza in cui la vita e il pianeta Terra lavorano insieme per mantenere l’abitabilità del pianeta e sostenere la vita stessa’, dice Donato Giovannelli. Nonostante questo, l’estensione della coevoluzione e le sue forze motrici sono in gran parte sconosciute’.

Il progetto CoEvolve mira a capire come la vita, in particolare i microrganismi, e il pianeta si sono coevoluti nel tempo, concentrandosi sul ruolo dei metalli. Il progetto è finanziato con una sovvenzione di 2,1 milioni di euro dal Consiglio Europeo della Ricerca (ERC Starting Grant 2020).

I microrganismi sono fondamentali per il funzionamento del pianeta e sono stati la forza trainante nel ciclo dei nutrienti e degli elementi dall’origine della vita su questo pianeta. Per controllare il ciclo dei nutrienti e degli elementi, i microrganismi utilizzano un insieme di proteine che contengono metalli nel loro nucleo, utilizzati per controllare efficacemente le reazioni chimiche. A causa di questa relazione, il ruolo dei metalli è importante per la vita (basti pensare solo a cosa comporta un calo di ferro nel sangue).

‘Le conoscenze degli ultimi decenni sulla evoluzione della vita terrestre ci ha fatto comprendere che la disponibilità di metalli è cambiato drammaticamente nel tempo, in gran parte a causa del cambiamento delle concentrazioni di ossigeno nell’atmosfera – sottolinea Giovannelli -. In sintesi, metalli potrebbero aver controllato in una certa misura l’evoluzione della vita microbica stessa’.

Il progetto CoEvolve utilizza microrganismi raccolti in ambienti estremi, dai poli ai deserti, che sono una sorta di modello di antichi tempi geologici, per capire la relazione tra disponibilità di metallo e metabolismo microbico. Una selezione di ambienti diversi, da sorgenti termali negli altipiani del Cile all’Artico norvegese, saranno campionati nei prossimi 5 anni in una serie di missioni la cui delicata logistica richiede una lunga e attenta pianificazione.

CoEvolve coevoluzione
CoEvolve indaga la coevoluzione della vita con la Terra

Donato Giovannelli, dunque, sta raccogliendo nel Giovannelli-Lab un team di scienziati e scienziate con diversi background per affrontare la natura multidisciplinare del progetto CoEvolve, che richiede competenze in microbiologia, biologia molecolare, geochimica, geologia, astrobiologia e big data. La prima fase del progetto è attualmente in corso, con l’allestimento di un nuovo laboratorio geo-bio presso l’Università di Napoli Federico II, e a partire dal 20 febbraio 2022, il team comincia con la prima tappa delle missioni: presso la base artica Dirigibile Italia del CNR (Isole Svalbard, Norvegia) a Ny-Ålesund  (78°55′ N, 11°56′ E). La prima spedizione, i cui dati contribuiranno al CoEvolve, è finanziata con un Progetto di Ricerca in Artico del MUR.

“La mia speranza è che il progetto cambierà il modo in cui comprendiamo e interagiamo con il mondo microbico, aprendo nuove strade in diversi campi come la bioremediation, le biotecnologie e la ricerca sul microbioma umano e potrebbe anche cambiare il modo in cui cerchiamo la vita nell’Universo”, conclude Donato Giovannelli.

 

CoEvolve in breve:

–        Al via il progetto CoEvolve del Dipartimento di Biologia della Federico II di Napoli. Durerà 5 anni, beneficia di un finanziamento ERC europeo di 2.1 milioni di euro. Alla sua guida il microbiologo Donato Giovannelli.

–        Studierà organismi di ambienti estremi, raccolti in Cile, Islanda, Norvegia, Russia, Italia, Costa Rica, per comprendere come la geologia terrestre ha influenzato la vita, e come la vita, a modo suo, abbia a sua volta influenzato la geologia.

–        La prima tappa, in atto in questo momento, alle Isole Svalbard, in Norvegia, presso la base artica del CNR Dirigibile Italia. Il team di microbiologi raccoglierà microorganismi adattati ad un ambiente estremamente freddo.

 

Testo e foto dall’Ufficio Stampa Università Federico II di Napoli.

I cuprati: metalli strani e promettenti per la tecnologia del futuro

Un team internazionale di ricerca, che ha visto la partecipazione del Dipartimento di Fisica di Sapienza, ha pubblicato su Science una ricerca che aggiunge un importante tassello al complicato puzzle dei cuprati, famiglia di composti che diventano superconduttori ad alta temperatura critica.

cuprati
Il cuprato di ittrio e bario, il cristallo nella foto è stato sviluppato presso la University of British Columbia, Vancouver. Foto di  Shreyas Patankar (SPat), CC BY-SA 3.0

I superconduttori sono materiali che rappresentano una delle sfide ancora aperte della ricerca scientifica. Diverse, infatti, sono le loro possibili applicazioni per la proprietà di cui sono dotati di sostenere il passaggio di corrente elettrica senza scaldarsi e dissipare energia: questa caratteristica può essere sfruttata, per esempio, per ridurre gli sprechi nel trasporto di energia elettrica dalle centrali alle case, per la diagnostica avanzata della risonanza magnetica nucleare.

Tuttavia, affinché un materiale manifesti tale proprietà e diventi effettivamente superconduttivo, bisogna scendere a temperature bassissime. Al momento, l’uso dei superconduttori su larga scala è antieconomico per gli alti costi di gestione, principalmente rispetto al raffreddamento. Temperatura, dunque, è la parola chiave e, a livello globale, la soluzione è nei nuovi materiali che si comportino da superconduttori anche a temperature più elevate

In questa cornice si studiano con crescente attenzione i cuprati, composti a base di rame e ossigeno che, se opportunamente drogati” (ovvero con l’aggiunta di piccole quantità di impurità), diventano superconduttori ad alta temperatura, aprendo la prospettiva di promettenti applicazioni future.

In particolare i cuprati sono caratterizzati da un complesso diagramma di fase nel piano temperatura-drogaggio, in cui diverse fasi appaiono in competizione tra loro. Alcune di queste fasi competitive sono elusive ed è fondamentale osservarle e caratterizzarle. È il caso della fase dell’onda di densità di carica (fase nella quale gli elettroni, al di sotto di una temperatura caratteristica del materiale considerato, si dispongono a formare una struttura ordinata nello spazio), che era stata predetta dal gruppo teorico di Roma fin dal 1995 ed è stata osservata solo recentemente in tutti i materiali della famiglia dei cuprati, grazie allo sviluppo di tecniche di diffusione anelastica risonante di raggi X.

Un’altra importante caratteristica dei cuprati è costituita dalle anomalie delle proprietà della fase metallica: in particolare, nella cosiddetta fase del “metallo strano”, la resistività elettrica aumenta linearmente con la temperatura in un intervallo sorprendentemente ampio, che può estendersi dalle temperature più alte osservate fino alla temperatura di transizione alla fase superconduttiva, e anche a temperature più basse, se la superconduttività viene soppressa da un campo magnetico. Tale comportamento non è mai osservato nei metalli ordinari. Nei cuprati, il comportamento anomalo scompare nella fase dell’onda di densità di carica.

In un nuovo studio pubblicato su Science, che ha visto la partecipazione del Dipartimento di Fisica di Sapienza in un team di ricerca internazionale insieme alle Università di Chalmers e Cottbus, al Politecnico di Milano e allo European Synchrotron Radiation Facility di Grenoble, è stata osservata nel cuprato di ittrio e bario, ovvero un materiale ceramico che in condizioni normali (cioè, quando non è “drogato”) è un isolante, una profonda connessione tra la comparsa dell’onda di densità di carica e la deviazione da questo comportamento anomalo della fase metallica a bassa temperatura.

“Incrociando le misure di resistività e di diffusione anelastica risonante di raggi X su film sottili di questo superconduttore, comunemente chiamato YBCO – spiega Sergio Caprara del Dipartimento di Fisica della Sapienza – abbiamo dimostrato che, al diminuire dello spessore del film, nella regione del diagramma di fase in cui sono presenti onde di densità di carica, a una loro progressiva soppressione si associa un recupero della dipendenza lineare della resistività dalla temperatura, caratteristica di questi metalli strani”.

Il risultato suggerisce, tra l’altro, la possibilità di manipolare lo stato fondamentale di materiali quantistici utilizzando come parametro di controllo lo sforzo elastico, che nell’esperimento è introdotto dalla crescita dei film sottili su un substrato.

Questo studio apre dunque a una ulteriore conoscenza dei cuprati, materiali sempre più promettenti per future applicazioni tecnologiche.

Riferimenti:

Restored strange metal phase through suppression of charge density waves in underdoped YBa2Cu3O7-δ – Eric Wahlberg, Riccardo Arpaia, Götz Seibold, Matteo Rossi, Roberto Fumagalli, Edoardo Trabaldo, Nicholas B. Brookes, Lucio Braicovich, Sergio Caprara, Ulf Gran, Giacomo Ghiringhelli, Thilo Bauch, Floriana Lombardi – Science, 2021. DOI: https://doi.org/10.1126/science.abc8372

 

Testo dal Settore Ufficio stampa e comunicazione Sapienza Università di Roma