Ad
Ad
Ad
Tag

meccanica quantistica

Browsing

Conversazioni crittografate: quando le leggi della fisica proteggono i dati sensibili

Un nuovo studio Sapienza, frutto della collaborazione tra due gruppi sperimentali del Dipartimento di Fisica, dimostra come, attraverso l’impiego di un nuovo tipo di emettitori di fotoni, i quantum dots, sia possibile garantire un ulteriore livello di sicurezza per i dati trasmessi in un canale di comunicazione, sia che si tratti di una conversazione telefonica che una transazione bancaria. La ricerca, pubblicata su Science Advances, ha previsto lo sviluppo sperimentale del primo canale di comunicazione quantistica tra due edifici all’interno del campus Sapienza.

Comunicare a distanza è diventata la regola nella vita di tutti i giorni sia per contattare privatamente amici o conoscenti, che per inviare dati sensibili, come ad esempio nelle transazioni bancarie.

Diventa quindi di fondamentale importanza creare un apparato di protezione che renda sicuro lo scambio di dati, salvaguardandoli da potenziali intrusi. Infatti gli attuali mezzi di comunicazione sono intrinsecamente vulnerabili e il loro livello di sicurezza dipende esclusivamente dalle capacità tecnologiche dell’intruso.

conversazioni crittografate fisica quantistica dati sensibili
Conversazioni crittografate: quando le leggi della fisica proteggono i dati sensibili, con lo sviluppo sperimentale del primo canale di comunicazione quantistica tra due edifici

Una soluzione a questo problema è stata individuata nella meccanica quantistica, che fornisce sistemi oggi conosciuti con la denominazione di “distribuzione a chiave quantistica”, in cui la sicurezza della comunicazione è garantita dalle leggi della fisica stessa: in una comunicazione crittografata, due utenti usano una chiave segreta per codificare un qualsiasi messaggio che diventa incomprensibile all’esterno. Questa chiave viene trasmessa, come suggerisce il nome, utilizzando segnali quantistici.

La sicurezza di tali protocolli è garantita dalla impossibilità di duplicare esattamente uno stato quantistico sconosciuto, una peculiare proprietà che rende visibile la presenza di un eventuale intruso nel canale di comunicazione. Nonostante questo tipo di soluzione sia già stata studiata e implementata sperimentalmente negli ultimi anni grazie all’aiuto delle tecnologie ottiche, una delle sfide più difficili da affrontare è quella di ottimizzare la generazione dei portatori di informazione quantistica per tale scopo, ovvero i singoli fotoni, e la loro peculiare proprietà di correlazione a distanza, l’entanglement quantistico.

Foto del gruppo Nanophotonics

Oggi un nuovo studio della Sapienza Università di Roma, frutto della collaborazione sinergica tra due gruppi sperimentali del Dipartimento di Fisica, il gruppo Nanophotonics coordinato da Rinaldo Trotta e il gruppo Quantum Lab coordinato da Fabio Sciarrino, dimostra come sia possibile garantire un ulteriore livello di sicurezza per i dati trasmessi in un canale di comunicazione attraverso l’impiego di un nuovo tipo di emettitori di fotoni, i quantum dots.

Foto del gruppo Quantum Lab

I quantum dots, o punti quantici, sono nanostrutture le cui dimensioni sono migliaia di volte più piccole di un capello umano ed è stato dimostrato che, sotto opportune condizioni, sono in grado di generare coppie di fotoni entangled di altissima qualità.

conversazioni crittografate fisica quantistica dati sensibili
Conversazioni crittografate: quando le leggi della fisica proteggono i dati sensibili, con lo sviluppo sperimentale del primo canale di comunicazione quantistica tra due edifici

Per raggiungere i risultati pubblicati sulla rivista Science Advances, i giovani ricercatori hanno realizzato il primo canale di comunicazione quantistica sviluppato all’interno del campus della Sapienza, un’infrastruttura per la distribuzione in aria di una chiave crittografata tra due strutture del Dipartimento di Fisica, l’edificio Marconi e l’edificio Fermi, distanti oltre 250 metri: il “mittente Marconi”, con un dispositivo a quantum dot, produce coppie di fotoni entangled, usate per creare a distanza due copie uniche di una chiave segreta e il “destinatario Fermi” che riceve una sequenza di fotoni singoli da cui estrae la sua copia della chiave segreta. Questa può essere utilizzata per inviare messaggi privati, come avviene nelle comuni conversazioni sul sistema di messaggistica WhatsApp.

Schema di network quantistico

La realizzazione di un tale canale in aria ha comportato la necessità di contrastare gli effetti ambientali di disallineamento. Difficoltà risolta con successo attraverso l’applicazione di un metodo di stabilizzazione attiva della luce.

“Uno degli aspetti più affascinanti di questo esperimento – commenta Francesco Basso Basset, assegnista di ricerca del gruppo Nanophotonics – è stata la realizzazione del sistema trasmissione-ricezione in aria tra i due edifici, cosa nuova per noi, abituati a portare avanti la ricerca solitamente nella stessa stanza di laboratorio”.

Conversazioni crittografate: quando le leggi della fisica proteggono i dati sensibili, con lo sviluppo sperimentale del primo canale di comunicazione quantistica tra due edifici

Durante l’esperimento, una coppia di singoli fotoni entangled è stata infatti separata e mandata alle due estremità del canale, permettendo così la condivisione di una chiave segreta grazie alla correlazione quantistica.

“In questo protocollo, è possibile condividere una stringa di bit, che forma la chiave segreta, sfruttando l’entanglement quantistico che è presente nei due singoli fotoni – spiega Mauro Valeri, dottorando del gruppo QuantumLab. “Un altro aspetto rilevante sta nel fatto che la meccanica quantistica ci fornisce gli strumenti per capire se ci sono eventuali intrusi nel canale: se un intruso vuole appropriarsi dei segnali inviati, possiamo immediatamente identificarlo misurando nei nostri laboratori l’avvenuta perdita dell’entanglement”.

conversazioni crittografate fisica quantistica dati sensibili
Conversazioni crittografate: quando le leggi della fisica proteggono i dati sensibili, con lo sviluppo sperimentale del primo canale di comunicazione quantistica tra due edifici

“La novità di questo studio – aggiunge Fabio Sciarrino – è costituita dall’introduzione dei punti quantici nel campo della comunicazione quantistica; infatti, a differenza delle soluzioni del passato, questi dispositivi non si basano su un processo fisico probabilistico e possono ambire a fornire fotoni “on demand”, fattore di rilevanza fondamentale per la realizzazione sperimentale di molti protocolli di comunicazione quantistica a distanza.”

conversazioni crittografate fisica quantistica dati sensibili
Conversazioni crittografate: quando le leggi della fisica proteggono i dati sensibili, con lo sviluppo sperimentale del primo canale di comunicazione quantistica tra due edifici

“Il quantum dot – conclude Rinaldo Trotta – ha tutti i requisiti per essere tra i più promettenti emettitori di segnali ottici nel campo della comunicazione quantistica, e questo esperimento dimostra che un suo utilizzo nei network quantistici del futuro è possibile. Siamo convinti che questa sia solamente la punta dell’iceberg e molte altre scoperte verranno fatte partendo da questo studio; il prossimo passo da fare sarà l’aumento della velocità di trasmissione, realizzando quantum dot con una efficienza di emissione sempre più alta. L’obiettivo è di condurre questa tecnologia ad una implementazione su scala globale.”

Conversazioni crittografate: quando le leggi della fisica proteggono i dati sensibili, con lo sviluppo sperimentale del primo canale di comunicazione quantistica tra due edifici

Riferimenti:

Quantum key distribution with entangled photons generated on-demand by a quantum dot – Francesco Basso Basset, Mauro Valeri, Emanuele Roccia, Valerio Muredda, Davide Poderini, Julia Neuwirth, Nicolò Spagnolo, Michele B. Rota, Gonzalo Carvacho, Fabio Sciarrino and Rinaldo Trotta – Science Advances (2021) DOI: 10.1126/sciadv.abe6379

Testo e foto dal Settore Ufficio stampa e comunicazione Sapienza Università di Roma

Articolo a cura di Silvia Giomi e Piero Paduano

L’Universo in cui viviamo ci è in gran parte ignoto. La materia di cui siamo fatti noi, i pianeti, le stelle e tutti gli oggetti che osserviamo – e quindi conosciamo – ne costituisce meno del 5%. La restante parte dell’Universo è energia oscura (70%) e materia oscura (25%). Quest’ultima è detta “oscura” poiché, non emettendo radiazione elettromagnetica, rimane invisibile ai nostri strumenti, ma la sua presenza si rivela per via degli effetti gravitazionali osservati.

La ricerca delle particelle di materia oscura è una sfida che coinvolge da anni la comunità scientifica che si cimenta in esperimenti di osservazione diretta (in laboratori sotterranei come CERN, LNGS) e indiretta (nello spazio).

Tra i metodi indiretti vi è quello che sfrutta il fenomeno della superradianza dei buchi neri, esplorato approfonditamente nell’articolo Black hole superradiant instability from ultralight spin-2 fields, pubblicato sulla rivista Physical Review Letters.

Tale metodo è estremamente interessante anche perché si inserisce nel contesto della LGQ (Loop Quantum Gravity), teoria che cerca di unificare la meccanica quantistica e la relatività generale.

Abbiamo il piacere e l’onore di parlarne con il professor Paolo Pani, associato in Fisica Teorica presso il Dipartimento di Fisica della Sapienza Università di Roma, tra i protagonisti dello studio.

instabilità per superradianza Paolo Pani buchi neri materia oscura
Il buco nero supermassiccio nel nucleo della galassia ellittica Messier 87 nella costellazione della Vergine. Si tratta della prima foto diretta di un buco nero, realizzata dal progetto internazionale Event Horizon Telescope. Foto modificata Event Horizon TelescopeCC BY 4.0

 

In cosa consiste l’instabilità per superradianza, e in che modo la sfruttate per la vostra indagine?

La superradianza è un fenomeno che avviene in molti sistemi fisici quando un’onda riflessa da un oggetto viene amplificata a scapito dell’energia dell’oggetto stesso. Questo avviene anche per un buco nero, che può amplificare le onde elettromagnetiche o gravitazionali che “sbattono” su di esso. L’energia in eccesso viene presa dalla velocità di rotazione dell’oggetto, che diminuisce.

L’instabilità per superradianza è un fenomeno collegato: se le particelle del campo elettromagnetico (fotoni) o del campo gravitazionale (gravitoni) avessero una seppur minuscola massa, la radiazione amplificata per superradianza rimarrebbe intrappolata vicino al buco nero, generando un effetto a cascata che rallenta il buco nero fino quasi a fermare completamente la sua rotazione.

In questo caso l’energia in eccesso viene emessa in onde gravitazionali la cui frequenza è direttamente collegata all’ipotetica massa del campo. Se queste particelle ultraleggere esistessero, quindi, non dovremmo osservare buchi neri rotanti e ciascun buco nero si comporterebbe come un “faro” di onde gravitazionali.

 

Il fenomeno della superradianza ha qualche connessione con la radiazione di Hawking?

Sì, si può dire che la superradianza è la controparte “classica” della radiazione di Hawking, che è invece un effetto “quantistico”. La superradianza richiede che il buco nero ruoti, mentre nel caso della radiazione di Hawking il buco nero può rimanere statico. In questo caso la radiazione viene emessa spontaneamente, a scapito della massa del buco nero.

 

Può spiegarci quali sono i vantaggi di aver esteso il fenomeno al caso di campo tensoriale rispetto allo scalare e al vettoriale?

Il caso di campo tensoriale è strettamente collegato ad alcune teorie che prevedono una massa minuscola per il gravitone, una proprietà che potrebbe risolvere il problema della costante cosmologica e dell’energia oscura responsabile dell’espansione accelerata dell’universo.

Inoltre, campi tensoriali ultraleggeri sono ottimi candidati per spiegare la materia oscura che sembra permeare il cosmo ma che finora non si è riusciti a misurare in laboratorio. Il nostro studio mostra che i segnali di onde gravitazionali presenti e futuri permettono di ricercare queste particelle anche quando la loro massa è troppo piccola per essere vista in esperimenti terrestri, come negli acceleratori di particelle.

 

I vostri risultati sono condizionati dalla scelta della metrica di Kerr?

Nella teoria della gravitazione di Einstein, la relatività generale, la metrica di Kerr è l’unica possibile per descrivere un buco nero astrofisico. Nelle teorie che menzionavo sopra, tuttavia, possono esistere altre soluzioni che descrivono buchi neri differenti.

Nel nostro studio abbiamo fatto l’ipotesi standard che i buchi neri siano descritti dalla metrica di Kerr. Scelte differenti renderebbero i calcoli più laboriosi ma ci aspettiamo che non modifichino sostanzialmente il risultato: in presenza di campi ultraleggeri tutti i buchi neri rotanti sono instabili per superradianza ed emettono onde gravitazionali.

 

Quali porte si stanno aprendo e/o quali si stanno chiudendo sulla ricerca della materia oscura?

Il problema della materia oscura è che sappiamo davvero poco su di essa, e quindi svariate speculazioni teoriche sono possibili. Nel corso dei decessi alcuni modelli teorici sono divenuti più popolari di altri, ma l’ultima parola ce l’ha sempre l’esperimento: finché non scopriremo tracce di materia oscura oltre quelle ben note, non sarà possibile distinguere diversi modelli.

Gli esperimenti attuali atti a ricercare uno dei candidati più promettenti (le cosidette WIMPS, weakly interacting massive particles) hanno raggiunto precisioni tali che possono quasi escludere questa ipotesi. Un altro candidato molto promettente sono gli assioni, che sono appunto particelle ultraleggere che producono l’instabilita’ di superradianza dei buchi neri.

Penso che la risposta al problema della materia oscura arriverà da esperimenti innovativi, o magari proprio dai buchi neri, tramite segnali inaspettati di onde gravitazionali.

 

 

Riferimenti allo studio su instabilità per superradianza, buchi neri, materia oscura:

Black Hole Superradiant Instability from Ultralight Spin-2 Fields – Richard Brito, Sara Grillo, and Paolo Pani – Phys. Rev. Lett. 124, 211101 – Published 27 May 2020 DOI:https://doi.org/10.1103/PhysRevLett.124.211101

I giovani ricercatori del QuantumLab della Sapienza, coordinato da Fabio Sciarrino, hanno realizzato la prima rete quantistica in grado di generare correlazioni non-locali tra cinque laboratori distinti. L’articolo è stato pubblicato su Nature Communications

rete quantistica Quantum Lab

Dodici giovanissimi ricercatori, cinque laboratori da coordinare e una rete da formare.

Così l’esperienza interdisciplinare del gruppo del Quantum Information Lab della Sapienza, guidato da Fabio Sciarrino e composto da un laureando magistrale, sei studenti di dottorato, un tecnico elettronico, un assegnista e un ricercatore, con il supporto del fisico brasiliano Rafael Chaves, ha portato alla realizzazione di una rete quantistica formata da cinque diversi nodi, che ha permesso di mostrare correlazioni quantistiche condivise da più di tre parti distinte, il massimo mai raggiunto finora.

Le tecnologie basate sulle leggi della meccanica quantistica sono sempre più diffuse ed i potenziali vantaggi legati al loro utilizzo sono ormai riconosciuti in tutti i campi, dalla comunicazione alla protezione dei dati. “Ciononostante – commenta Gonzalo Carvacho, assegnista senior del QuantumLab – test di non-località multipartita sono stati limitati ai casi più semplici. Qui andiamo oltre, verso la realizzazione di reti quantistiche più grandi”.

Nello studio pubblicato su Nature Communications, il team ha scelto infatti una configurazione “a stella”, in cui si ha un nodo centrale che condivide uno stato quantistico correlato con quattro nodi periferici, tutti collocati in laboratori diversi, muniti di una sorgente di stati quantistici e da una stazione di misura.

Qui ogni nodo genera uno stato formato da due sottosistemi correlati e, attraverso una fibra lunga 30 metri, ne manda uno a quello centrale. A questo punto, sia il nodo centrale sia quelli periferici effettuano misure sul loro sistema, sincronizzandosi attraverso un sofisticato software realizzato ad hoc per l’esperimento.

“Infine – spiega Davide Poderini, studente di dottorato – abbiamo verificato che tra le sorgenti degli stati quantistici non ci fosse una comunicazione “classica”, bensì solo correlazioni quantistiche (o non classiche). Usando dei dispositivi totalmente diversi e scorrelati nei vari laboratori, possiamo assicurare, con un elevato livello di confidenza, la loro indipendenza”.

“Questo risultato – aggiunge Iris Agresti, da poco assegnista junior del QuantumLab – è un passo avanti significativo verso la realizzazione di una rete quantistica di grandi dimensioni, perché offre un prototipo scalabile, che va oltre gli scenari più semplici realizzati finora”.

I risultati dell’esperimento, per sua natura versatile, costituiscono un elemento chiave per nuovi studi su topologie diverse di rete capaci di generare correlazioni non-classiche di vari tipi, aprendo scenari inesplorati. Inoltre, l’apparato progettato potrà anche essere utilizzato per la realizzazione di nuovi protocolli di comunicazione e di crittografia.

“Il prossimo passo – conclude Fabio Sciarrino – sarà combinare le aree di esperienza del gruppo nella fotonica integrata e nella realizzazione di stati quantistici condivisi da più parti, per nuove applicazioni che si trovino all’intersezione tra la comunicazione e la computazione quantistica”.

Referimenti:

 

Experimental violation of n-locality in a star quantum network – Davide Poderini, Iris Agresti, Guglielmo Marchese, Emanuele Polino, Taira Giordani, Alessia Suprano, Mauro Valeri, Giorgio Milani, Nicolò Spagnolo, Gonzalo Carvacho, Rafael Chaves and Fabio Sciarrino – Nature Communications volume 11, Article number: 2467 (2020) DOI 10.1038/s41467-020-16189-6

rete quantistica Quantum Lab

Testo e immagini dall’Ufficio Stampa Università La Sapienza Roma