News
Ad
Ad
Ad
Tag

Marco Potenza

Browsing

SOLARIS: LE PRIME IMMAGINI IN BANDA RADIO DEL SOLE DAL NUOVO OSSERVATORIO ITALIANO IN ANTARTIDE

Da oggi, l’osservazione del Sole alle alte frequenze radio si arricchisce dei dati di Solaris, progetto scientifico coordinato dall’Istituto Nazionale di Astrofisica nell’ambito del Piano Nazionale di Ricerca in Antartide (PNRA). Partendo dal Polo Sud, Solaris punta a espandersi anche nell’emisfero settentrionale, creando una rete globale per un monitoraggio continuo del Sole, con importanti applicazioni per la meteorologia dello spazio.

Prima immagine del Sole in banda radio, osservato alla frequenza di 95 GHz in Antartide il 27 dicembre 2024. Crediti: Team Solaris
Prima immagine del Sole in banda radio, osservato alla frequenza di 95 GHz in Antartide il 27 dicembre 2024. Crediti: Team Solaris

Milano, 3 marzo 2025 – L’osservatorio Solaris è un innovativo progetto scientifico e tecnologico – frutto di una collaborazione tra diverse istituzioni scientifiche nazionali coordinate dall’Istituto Nazionale di Astrofisica (INAF), dall’Università degli Studi di Milano e dall’Università di Milano-Bicocca nell’ambito del PNRA (Piano Nazionale di Ricerca in Antartide) – finalizzato allo sviluppo di un sistema di monitoraggio continuo del Sole alle alte frequenze radio, per studi di fisica fondamentale, climatologia spaziale e interazioni Terra-Sole.

Nonostante sia attivo da pochissimo tempo e ancora nelle fasi iniziali di sviluppo (è infatti passato poco più di un anno dalla sua costituzione), Solaris ha già prodotto dati interessanti dal punto di vista scientifico per applicazioni di climatologia spaziale, in particolare mappe solari che consentono di studiare in banda radio a 95 gigahertz l’evoluzione della regione attiva che ha prodotto le tempeste solari responsabili dell’aurora di capodanno, visibile anche alle nostre latitudini. Le immagini sono state ottenute nelle scorse settimane, e sono tuttora in fase di analisi e interpretazione da parte di un team multidisciplinare di esperti.

“La possibilità di monitorare, comprendere e prevedere la mutevole fenomenologia solare e il suo notevole impatto con l’ambiente spaziale e il nostro pianeta è una sfida che acquista sempre più importanza” dice Alberto Pellizzoni, astrofisico INAF e responsabile scientifico del progetto Solaris, che prosegue: “Per affrontare questa sfida è necessario investire per trasformare e potenziare strumenti già esistenti o crearne di nuovi in una efficiente rete solare internazionale, anche nel contesto degli accordi in essere tra diversi Enti in Italia (INAF, INGV, ASI, Aeronautica Militare e varie Università) per sviluppare servizi dedicati allo Space Weather, e capire come il Sole influisca sulle nostre tecnologie e la nostra vita sulla Terra”.

Il progetto Solaris prevede l’implementazione di ricevitori radioastronomici dedicati e intercambiabili su piccoli radiotelescopi della classe di 2.6 metri di diametro, già presenti in Antartide nelle basi italiane Mario Zucchelli e Concordia e adattati per osservazioni solari ad alta frequenza, dell’ordine delle decine di giga hertz (Ghz). Ciò consente di ricevere onde radio emesse dal Sole, la cui lunghezza d’onda varia da qualche centimetro a qualche millimetro. Con questo tipo di osservazioni è possibile avere una nuova “finestra” in cui studiare il Sole e i suoi fenomeni, rilevando con precisione la temperatura e i brillamenti della corona solare e fare previsioni sulle possibili tempeste geomagnetiche. Al progetto, oltre alle sedi INAF di Cagliari, Bologna, Trieste, Milano e alle Università degli Studi di Milano e Milano-Bicocca, partecipano le Università di Roma Sapienza, Tor Vergata e Roma Tre, l’Agenzia Spaziale Italiana, l’Aeronautica Militare Italiana, l’Università Cà Foscari di Venezia, il Consiglio Nazionale delle Ricerche.

Francesco Cavaliere e Marco Potenza, del Dipartimento di Fisica dell’Università di Milano, affermano: “Vediamo finalmente venire alla luce i primi risultati di un lungo progetto a cui abbiamo lavorato per quasi dieci anni, dopo che il PNRA ci aveva chiesto di prenderci carico delle infrastrutture nelle due basi. Il lavoro da fare è ancora moltissimo, ma i primi risultati sono di grande soddisfazione anche in funzione delle scarsissime risorse che abbiamo avuto a disposizione. La riuscita di questa prima fase è anche una valorizzazione delle attività svolte proprio a Milano, dove abbiamo un telescopio prototipo con cui validare tutte le procedure e risolvere gran parte dei problemi prima di arrivare a lavorare al Polo”.

“Solaris rappresenta uno dei progetti di punta del PNRA in campo astrofisico ed uno tra i più promettenti programmi astrofisici che operano nelle aree polari a livello internazionale – sostiene Massimo Gervasi, docente dell’Università di Milano-Bicocca e membro del Physical Science Group dello SCAR (Scientific Committee on Antarctic Research) -. L’analisi delle immagini di Solaris, correlata con le immagini fornite dai satelliti a più alte energie da un lato e i dati sulle particelle energetiche solari dall’altro, aiuterà a comprendere meglio i fenomeni fisici che stanno alla base delle emissioni solari energetiche”.

Gallery, crediti per le foto: Luca Teruzzi – Università di Milano

In presenza di condizioni di visibilità del cielo ottimali come quelle antartiche, Solaris sarà l’unica installazione a offrire un monitoraggio continuo del Sole ad alte frequenze radio permettendo di osservare le variazioni che avvengono nella cromosfera solare, uno strato dell’atmosfera della nostra stella in cui si formano fenomeni altamente energetici come brillamenti ed espulsioni di massa coronale. Monitorare le variazioni in questa banda radio permette di identificare segnali precursori di tempeste geomagnetiche, che potrebbero interferire con le nostre tecnologie nello spazio e a terra.

Gallery, crediti per le foto: Francesco Cavaliere – Università di Milano

La scelta di posizionare a una latitudine così meridionale Solaris non è dovuta solo alla limpidezza dell’atmosfera, garantita dalla bassa umidità che altrimenti assorbirebbe i segnali radio ad alta frequenza, ma anche e soprattutto alla lunga persistenza del Sole nel cielo durante l’estate antartica (che corrisponde al nostro periodo invernale), seppure molto basso rispetto all’orizzonte. Nei pressi dei poli terrestri, infatti, è possibile – durante i rispettivi periodi estivi – osservare la nostra stella per oltre 20 ore al giorno.

Per poter offrire un monitoraggio solare costante durante tutto l’anno, il progetto Solaris sarà dunque implementato anche nell’emisfero settentrionale con lo sviluppo di una stazione sulle Alpi (presso l’Osservatorio climatico Testa Grigia del CNR, a 3500 metri s.l.m., in Valle D’Aosta) e altre in Scandinavia e regioni Artiche, grazie all’interesse internazionale destato da queste prospettive.

Il Sito web del progetto Solaris: https://sites.google.com/inaf.it/solaris

Testo e immagini dall’Ufficio Stampa Direzione Comunicazione ed Eventi istituzionali Università Statale di Milano e dagli Uffici Stampa dell’Istituto Nazionale di Astrofisica e dell’Università degli Studi di Milano-Bicocca

I contenitori di plastica per alimenti riscaldati al microonde possono rilasciare microplastiche

Uno studio, condotto dall’Università degli Studi di Milano in collaborazione con l’azienda Eos e l’Università di Milano-Bicocca, ha rilevato microplastiche nei contenitori alimentari riscaldati al microonde, che possono disperdersi nell’ambiente quando non utilizzati secondo le indicazioni. La ricerca è stata pubblicata sulla rivista internazionale Particles and Particle Systems Characterization.

Milano, 23 maggio 2024 – Portarsi in ufficio il pranzo nella cosiddetta “schiscetta” e scaldarlo al microonde in maniera non appropriata può contribuire al rilascio di microplastiche nell’ambiente. È quanto emerso da uno studio coordinato dall’Università Statale di Milano, in collaborazione con l’Università di Milano-Bicocca e svolto presso EOS, un’azienda che sviluppa una tecnologia per la caratterizzazione ottica di polveri ideata nei laboratori di Fisica dell’Università Statale di Milano, chiamata “SPES” (Single Particle Extinction and Scattering).

L’idea di verificare se i contenitori alimentari in plastica scaldati al microonde rilasciassero micro e nanoplastiche è partita da EOS, che ha utilizzato la tecnologia “SPES” evidenziando la formazione sistematica di nano e micro-sfere di plastica durante il riscaldamento di acqua pura, un esperimento controllato volto a simulare quanto avviene durante il riscaldamento del cibo.

“SPES” è un metodo innovativo che permette di classificare nano e micro particelle in maniera molto precisa e completaspiega Marco Pallavera, Direttore Ricerca e sviluppo della EOS, ideatore del protocollo di misura utilizzato nello studio e primo autore dell’articolo. “Lo studio, iniziato quasi per curiosità, ha subito mostrato l’adeguatezza del nostro metodo a costruire un protocollo solido e affidabile per il problema in studio”, continua Tiziano Sanvito che amministra l’azienda fin dalla sua fondazione nel 2014.

“I dati presi da EOS hanno mostrato subito una forte solidità, fondamentale per approcciare un problema delicato come questo” 

aggiunge Marco Potenza, docente di Ottica del Dipartimento di Fisica dell’Università Statale di Milano, inventore della tecnica utilizzata nello studio e commercializzata da EOS, oltre che responsabile del Laboratorio di Strumentazione Ottica e Direttore del Centro di Eccellenza CIMAINA (Centro Interdipartimentale Materiali e Interfacce Nanostrutturati).

Dopo molti controlli incrociati sulle procedure sperimentali, i ricercatori sono arrivati alla conclusione che, in effetti, riscaldando acqua pura nei contenitori alimentari si liberano nano e microsfere composte del materiale di cui è costituito il contenitore stesso: il polipropilene, un materiale biocompatibile che ha la caratteristica di fondere tra i 90 e i 110 gradiPortando l’acqua a ebollizione, quindi, una piccola parte di polipropilene si fonde per poi solidificare nuovamente in acqua. Lo stesso processo, d’altra parte, che si utilizza per produrre industrialmente nanosfere di materiali polimerici, utilizzate in molti settori industriali dalla cosmetica allo sviluppo di materiali innovativi.

I risultati sono stati analizzati e studiati in dettaglio anche da Llorenç Cremonesi e Claudio Artoni del laboratorio EuroCold, presso il Dipartimento di Scienze dell’Ambiente e della Terra dell’Università Milano-Bicocca e corredati di immagini al microscopio elettronico prese da Andrea Falqui, docente del Dipartimento di Fisica dell’Università Statale di Milano.

Sottolinea Sanvito: “È interessante notare che diversi produttori specificano di non portare i contenitori oltre i 90 °C, oppure di non riscaldarli per troppo tempo nel microonde, oppure ancora di non usare l’apparecchio alla massima potenza. Quindi, seguendo queste indicazioni, l’effetto non si verifica”. “Viceversa, le nano e micro-particelle prodotte andranno a contribuire alla dispersione di plastica in ambiente che caratterizza il mondo moderno”, conclude Potenza.

contenitori di plastica per alimenti riscaldati al microonde possono rilasciare microplastiche

Testo e immagini dagli Uffici Stampa dell’Università Statale di Milano e dell’Università di Milano-Bicocca.