News
Ad
Ad
Ad
Tag

mantello

Browsing

NON SOLO ACQUA AL CENTRO DELLA TERRA, CI SONO ANCHE METANO E IDROGENO MOLECOLARE

Lo studio pubblicato su «Nature» conferma per la prima volta che le placche tettoniche penetrano nel mantello seguendo talvolta percorsi non lineari.

La scoperta potrebbe contribuire anche a comprendere l’origine dei terremoti profondi e di grande magnitudine

I diamanti super profondi, quelli estremamente rari che si formano a profondità da 300 fino a 1000 km all’interno del mantello terrestre, sono vere e proprie capsule inerti capaci di trasportare “frammenti” di terra profonda fino alla superficie terrestre senza quasi alcuna alterazione chimica.

L’articolo dal titolo “Extreme redox variations in a superdeep diamond from a subducted slab“, che ha come prima firma Fabrizio Nestola del Dipartimento di Geoscienze dell’Università di Padova con il contributo di Luca Bindi del Dipartimento di Scienze della Terra dell’Università di Firenze e pubblicato su «Nature» dal team di ricerca internazionale – a cui hanno partecipato anche l’Università canadese di Alberta, la tedesca di Bayreuth, l’americana Northwestern University e l’inglese University of Glasgow – descrive la composizione di un diamante davvero unico e sensazionale.

Foto a – Microfotografia del diamante studiato – foto Margo Regier

Il diamante studiato (Foto a) incorpora particolari inclusioni che testimoniano una sequenza complessa di reazioni chimiche che avvengono su una placca tettonica in subduzione – cioè quella placca che scorre al di sotto di un’altra placca e che può sprofondare verso l’interno del mantello terrestre – al “confine” tra la zona di transizione, tra i 410 e i 660 km di profondità, e il mantello inferiore, settore che si estende da 660 km fino al nucleo terrestre esterno a 2900 km di profondità.

Il processo di subduzione è uno dei principali fenomeni geologici che stanno alla base della tettonica delle placche sul nostro pianeta, la teoria che indica come la litosfera, l’involucro solido più esterno della Terra dello spessore di 70-100 km, sia divisa in circa venti porzioni rigide, dette appunto placche.

Non solo acqua al centro della terra, anche metano e idrogeno molecolare
Foto b – Microfotografia del diamante studiato con in evidenza le inclusioni intrappolate al suo interno – foto Margo Regier

La tipologia di inclusioni analizzate (Foto b) come il ritrovamento di forsterite pura, un caso unico, che è un minerale del mantello terrestre con composizione Mg2SiO4 e le reazioni chimiche che sono avvenute all’interno del diamante studiato indicano e confermano la presenza di acqua a grandissime profondità (circa 660 km), in concomitanza a metano (CH4), idrogeno molecolare H2 e la presenza di settori, sempre a queste profondità, costituiti da ferro metallico ritenuto – fino allo studio pubblicato su «Nature» – essere presente solo nel nucleo terrestre.

Allo stesso tempo, la scoperta conferma empiricamente per la prima volta ciò che era stato solo simulato in geofisica da calcoli molto complessi: le placche tettoniche penetrano nel mantello talvolta seguendo percorsi non lineari.

Non solo acqua al centro della terra, anche metano e idrogeno molecolare
Figura c – Placca in subduzione che si muove in modo non lineare raggiungendo il mantello inferiore. Figura modificata da Fabrizio Nestola et al. 2023

«Non si può escludere che tali percorsi possano essere un’ulteriore complessità da considerare per i sismologi che studiano lo sviluppo di alcuni terremoti estremamente profondi che talvolta raggiungono magnitudo 7 e che si verificano a profondità superiori ai 600 km, come nelle Filippine (675 km di profondità), in Papua Nuova Guinea (735 km), nelle Ande e in Indonesia. Sismi così profondi si sono verificati anche in Spagna, al di sotto della città di Granada (630 km), e più raramente anche in Italia, nel Tirreno meridionale, dove si sono registrati terremoti anche al di sotto dei 600 km di profondità – dice Fabrizio Nestola del Dipartimento di Geoscienze dell’Università di Padova –. La letteratura scientifica ritiene che tali terremoti siano correlati alle placche in subduzione e il nostro articolo non fa che supportare questa ipotesi andando a rendere ancora più complesso lo scenario, come si vede nella Figura c, non solo con un andamento della placca non lineare – che si muove verso grandi profondità – ma causando una sequenza di idratazione e disidratazione delle rocce che stanno entrando nel mantello inferiore».

Fabrizio Nestola
Fabrizio Nestola

«L’effettiva presenza di acqua a grandissime profondità nella Terra era stata già scoperta nel 2014 grazie ad un altro diamante super profondo, tuttavia – conclude Luca Bindi del Dipartimento di Scienze della Terra dell’Università di Firenze – con questo nuovo studio non solo confermiamo che l’acqua deve essere assolutamente presente tra la zona di transizione e il mantello inferiore, ma che a quelle profondità dobbiamo anche avere altri fluidi come il metano e l’idrogeno molecolare».

Link alla ricerca: https://www.nature.com/articles/s41586-022-05392-8

Titolo: “Extreme redox variations in a superdeep diamond from a subducted slab” – «Nature» – 2023.

Autori: Fabrizio Nestola, Margo E. Regier, Robert W. Luth, D. Graham Pearson, Thomas Stachel, Catherine McCammon, Michelle D. Wenz, Steven D. Jacobsen, Chiara Anzolini, Luca Bindi & Jeffrey W. Harris.

Testo e immagini dall’Ufficio Stampa dell’Università degli Studi di Padova sullo studio che non rileva solo acqua al centro della terra, ma pure metano e idrogeno molecolare.

Il Carbonio controlla la profondità di genesi dei magmi nel mantello superiore della Terra

In un nuovo studio (https://www.nature.com/articles/s41561-021-00797-y), pubblicato sulla rivista Nature Geoscience (https://www.nature.com/ngeo/), un team di ricercatori italiani guidato da Alessandro Aiuppa (Università di Palermo) e che vede fra i co-autori Federico Casetta (Università di Ferrara), Massimo Coltorti (Università di Ferrara), Vincenzo Stagno (Sapienza Università di Roma) e Giancarlo Tamburello (Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Bologna), ha sviluppato un nuovo approccio per ricostruire la quantità di Carbonio immagazzinato nel mantello superiore della terra, dalla cui fusione sono segregati i magmi.

Il Carbonio, il quarto elemento più abbondante in termini di massa nell’universo, è un elemento chiave per la vita. Il suo ricircolo, da e verso l’interno della Terra, regola i livelli di CO2 nell’atmosfera, giocando quindi un ruolo fondamentale nel rendere il nostro pianeta abitabile. Il Carbonio è un elemento unico, perché può essere immagazzinato nelle profondità della Terra in varie forme: all’interno di fluidi, come componente di fasi minerali, oppure disciolto nei magmi. Si ritiene, inoltre, che il Carbonio giochi un ruolo chiave nella geodinamica terrestre, in quanto questo elemento è in grado di controllare i processi di fusione che avvengono mantello superiore. Vista la sua tendenza ad essere incorporato nei magmi prodotti per fusione delle rocce peridotitiche nel mantello superiore, il Carbonio è facilmente trasportato verso la superficie terrestre, ove viene poi rilasciato come CO2 nelle emissioni gassose di vulcani attivi o quiescenti. I magmi ed i gas derivati dal mantello sono, pertanto, i mezzi di trasporto più efficaci per portare il Carbonio verso l’idrosfera e l’atmosfera, dove gioca un ruolo primario nel controllo dei cambiamenti climatici su scala geologica.

Ma quanto Carbonio è immagazzinato all’interno della Terra?

Questa domanda ha ispirato ricerche in diversi ambiti delle geoscienze, che si sono avvalse di molteplici approcci empirici, quali lo studio dei gas emessi in aree vulcaniche, del contenuto in CO2 nelle lave eruttate lungo le dorsali medio-oceaniche e/o nelle inclusioni di magma all’interno dei cristalli, delle inclusioni fluide in xenoliti di mantello portati in superficie dai magmi, e le misure sperimentali sviluppate con lo scopo di comprendere la massima quantità di CO2 che può essere disciolta nei magmi a pressioni e temperature tipiche dell’interno della Terra. Sfortunatamente, questi approcci hanno portato spesso a conclusioni contrastanti, al punto che le stime sul contenuto di Carbonio del mantello (così come dell’intera Terra) divergono di più di un ordine di grandezza. Le “melt inclusions”, o inclusioni di magma, cioè piccole goccioline di fuso silicatico intrappolate nei cristalli al momento della loro formazione nei magmi, possono essere sorgenti di informazione uniche per quantificare il contenuto di Carbonio del mantello da cui i magmi stessi sono segregati. Tuttavia, il massivo rilascio di gas (degassamento), tra cui CO2, a cui i magmi sono soggetti durante la loro risalita verso la superficie (prima della loro messa in posto ed eruzione) ha rappresentato un fattore limitante nella comprensione delle variazioni di concentrazione di Carbonio nel mantello.

Nel loro studio, Aiuppa e co-autori hanno revisionato e catalogato i dati relativi al contenuto in CO2 (e zolfo) nei gas vulcanici emessi da 12 vulcani di hot-spot e di rifting continentale, i cui magmi sono generati da sorgenti mantelliche più profonde rispetto a quelle del mantello impoverito da cui derivano i magmi delle dorsali medio-oceaniche.

Gas magmatici ricchi in CO2 rilasciati dal degassamento del lago di lava a condotto aperto presso il vulcano Nyiragongo, Repubblica Democratica del Congo (foto di Sergio Calabrese, Università di Palermo)

I risultati ottenuti hanno permesso di comprendere che il mantello superiore (50-250 km di profondità) che alimenta il vulcanismo in aree di rifting continentale e di hot-spot contiene in media 350 parti per milione (ppm) di Carbonio (intervallo compreso tra 100 e 700 ppm di C). Questo ampio range conferma la visione di un mantello superiore fortemente eterogeneo, la cui composizione è stata variabilmente modificata, in tempi geologici, dall’infiltrazione di fusi carbonatici-silicatici generati in profondità. Le nuove stime ottenute da Aiuppa e co-autori indicano che il mantello superiore ha una capacità totale di Carbonio di circa ~1.2·1023 g. È possibile che la Terra, nelle sue porzioni interne, sia in grado di contenere ancora più Carbonio, come suggerito dai diamanti provenienti da profondità sub-litosferiche (fino a 700 km), i quali mostrano evidenze dell’esistenza di minerali e fusi che contengono significative quantità di C.

In aggiunta, il team di ricercatori ha stimato che il contenuto di Carbonio aumenta con la profondità di fusione parziale nel mantello. Questa scoperta permette di validare i dati sperimentali, che suggeriscono come il Carbonio giochi un ruolo nel determinare percentuale e profondità di fusione parziale nelle sorgenti di mantello che alimentano i vulcani in aree di rift continentali e di hot-spot. I risultati ottenuti, indicando che le porzioni di mantello ricche in Carbonio fondono più in profondità rispetto a porzioni povere in Carbonio, confermano il ruolo di primaria importanza giocato da questo elemento nel guidare i cicli geodinamici.

Aumento della concentrazione di Carbonio con la profondità di fusione nel mantello superiore terrestre. I magmi prodotti in contesti di Isole Oceaniche e di Rift Continentale sono alimentati da sorgenti di mantello più ricche in Carbonio rispetto alle porzioni di “Depleted MORB Mantle (DMM)”, cioè di mantello impoverito da cui sono prodotti i “Mid-Ocean Ridge Basalts (MORB)”, ovvero basalti di dorsale medio-oceanica

L’esistenza di un mantello ricco in Carbonio, evidenziata da Aiuppa e co-autori, ha profonde implicazioni rispetto alle modalità di immagazzinamento del Carbonio primordiale nel mantello, e per il suo riciclo nel tempo e nello spazio. I risultati ottenuti con questo studio sono anche importanti per comprendere le possibili variazioni nel ciclo geologico del Carbonio causate da eventi vulcanici di grande magnitudo, quali la messa in posto delle “Large Igneous Provinces (LIP)”, o grandi province ignee. Se i magmi prodotti dai “plume”, o pennacchi, di mantello sono ricchi in Carbonio, come suggerito da questo studio, allora il rilascio di Carbonio dalle grandi province ignee nel Fanerozoico può aver contribuito a causare le estinzioni di massa, le cui tracce sono preservate nei record sedimentari in tutto il mondo.

carbonio genesi magmi mantello
Sezione schematica dall’Oceano Atlantico all’Oceano Indiano (passando attraverso il cratone Africano), che mostra le variazioni nelle concentrazioni di Carbonio ricostruite nelle sorgenti di mantello da cui sono prodotti i magmi delle Isole Oceaniche e dei Rift Continentali

Il Carbonio controlla la profondità di genesi dei magmi nel mantello superiore della Terra

CITAZIONE

Alessandro Aiuppa, Federico Casetta, Massimo Coltorti, Vincenzo Stagno and Giancarlo Tamburello (2021), Carbon concentration increases with depth of melting in Earth’s upper mantle, Nature Geoscience, https://doi.org/10.1038/s41561-021-00797-y

La ricerca è stata finanziata dal Deep Carbon Observatory (https://deepcarbon.net/) e dal Miur, Progetto PRIN2017 Connect4Carbon (https://prin2017.wixsite.com/connectforcarbon)

Il Carbonio controlla la profondità di genesi dei magmi nel mantello superiore della Terra. Testo e immagini dal Settore Ufficio stampa e comunicazione Sapienza Università di Roma, Università di Palermo, Università di Ferrara, Istituto Nazionale di Geofisica e Vulcanologia.

Accostare la parola “marea” alla Geologia può lasciare perplessi in prima battuta, scavando nella memoria difficilmente si recupera un ricordo che le vede accomunate. Un termine notoriamente associato al movimento di masse liquide e la scienza che studia le masse rocciose: in che modo sono legati?

A partire dalla metà del ventesimo secolo, la teoria della tettonica a placche è entrata a far parte stabilmente del pensiero scientifico: da allora gli esperti dibattono sui processi che governano il moto dei blocchi tettonici. Postulata e dimostrata la teoria della deriva dei continenti, gli scienziati hanno ricercato le sue cause nella struttura interna della Terra ed in particolare nei moti convettivi del mantello superiore, che determinano l’allontanamento o la collisione delle placche.

Secondo i dati raccolti, però, i movimenti relativi dei blocchi non sono governati esclusivamente dalla dinamica del mantello: esiste una componente orizzontale regolata da un processo diverso. Da ricercare fuori e non dentro il pianeta. Ecco che entrano in gioco le “maree solide”, movimenti di blocchi di litosfera dipendenti dai moti solari e lunari con lungo periodo di oscillazione (maggiore di un anno).

Lo studio “Tidal modulation of plate motions” di Davide Zaccagnino (Università Sapienza di Roma), Francesco Vespe (Agenzia Spaziale Italiana) e Carlo Doglioni (Università Sapienza di Roma e INGV) pubblicato su Earth Science Reviews fornisce dati a sostegno di questa teoria, facendo uso di misurazioni satellitari registrate in uno spazio temporale di più di venti anni.

La sezione di Terra oggetto di studio è la litosfera, l’insieme della crosta terrestre e della parte superiore del mantello. Il suo comportamento – se sottoposta a sforzo – è di tipo rigido, a differenza della sottostante astenosfera più fluida e facilmente deformabile. La separazione tra queste due masse è garantita dalla low velocity zone (LVZ), una fascia a basse velocità delle onde sismiche sulla quale la litosfera scorre con poca frizione.

 

maree solide Carlo Doglioni
La struttura della terra: 1) crosta, 2) mantello, 3) nucleo (esterno liquido e interno solido), 4) litosfera, 5) astenosfera. Immagine USGS, vettoriale di Anasofiapaixao, pubblico dominio

La ricerca ha analizzato la distanza relativa di una serie coppie di stazioni GNSS (Global Navigation Satellite Systems) collocate su placche differenti (9) ed una coppia di controllo sulla stessa placca. Lo studio si è focalizzato sui moti ciclici del Sole e della Luna con oscillazioni comprese tra uno e 18,61 anni. Cicli più brevi e quindi più frequenti vengono mascherati da effetti climatici sull’atmosfera e sul sottosuolo (influenzando ad esempio pressione dei fluidi). Inoltre, i cataloghi delle misurazioni satellitari hanno a disposizione dati degli ultimi 15-20 anni.

Il professor Carlo Doglioni ha quindi risposto per noi ad alcune domande relative a questo ultimo, importante studio.

Professor Doglioni, ci sono teorie e/o ricerche riguardo oscillazioni astronomiche con periodo maggiore? Che cataloghi e misurazioni vengono usati in quel caso?

Lo studio pubblicato è un tassello importante di un percorso di ricerca iniziato circa 30 anni fa, quando si è iniziato a vedere che le placche (cioè i frammenti della litosfera, il guscio esterno della Terra) non si muovono a caso, ma seguono un flusso primario, descritto da quello che abbiamo definito ‘equatore tettonico’, che fa un angolo di circa 30° rispetto all’equatore geografico.

Guarda caso, la proiezione del passaggio della Luna sulla Terra descrive un angolo molto simile. Poi però negli anni sono state documentate delle profonde asimmetrie della tettonica in funzione della polarità geografica, per esempio le differenze tra le catene montuose legate a subduzioni verso ‘est’ o verso ‘ovest’.

Infine è stato documentato come il guscio litosferico, circa 100 km di spessore, abbia un ritardo verso ‘ovest’ di alcuni centimetri l’anno rispetto al mantello sottostante. Quindi la tettonica delle placche è polarizzata. Queste osservazioni cruciali sono state in larga parte ignorate o liquidate come effetti secondari della sola dinamica interna di raffreddamento della Terra.

Ora abbiamo invece una prova sperimentale che le maree solide – e quindi le forze astronomiche – hanno invece un effetto cruciale sulla dinamica delle placche, in particolare quelle che hanno frequenze compatibili con le alte viscosità del mantello terrestre. L’equatore tettonico, per esempio, sembra avere una inclinazione controllata dalla precessione dell’asse di rotazione terrestre, cioè circa 26.000 anni.

Quindi sì, dovrebbero esserci effetti importanti anche con frequenze con periodi più lunghi a quelli delle nutazioni (18.6 anni). In questo caso però non ci sono cataloghi né sismici, né geodetici che ci possano aiutare, se non i dati geologici di lungo periodo.

maree solide Carlo Doglioni
Immagine di Arek Socha

Lo studio conferma inoltre la teoria secondo cui l’attività sismica ha un legame con il movimento relativo di Sole e Luna. Che impatto ha questa relazione sullo studio dei terremoti, in particolare sui cataloghi degli eventi sismici passati e sul monitoraggio delle aree attive? Potranno esserci (o esistono già) studi in “tempo reale” (geologicamente parlando) dell’effetto sui diversi tipi di faglia?

La gravità rimane sempre uno dei segreti più straordinari della natura e i suoi effetti sono in parte ancora da scoprire. Basti pensare che pur avendo il Sole il 99% della massa di tutto il sistema solare, il baricentro del sistema solare oscilla continuamente per effetto della massa rimanente inferiore all’1% di cui Giove fa la parte del leone. Le forze mareali, inoltre, vanno con il cubo della distanza, e questo spiega perché la Luna, pur essendo infinitamente più piccola, ha un effetto mareale circa doppio rispetto al Sole.

La tettonica delle placche e quindi la sismicità esistono però perché il mantello terrestre può convettere, e questo è possibile perché la temperatura e la composizione interna della Terra determinano viscosità che permettono questa mobilità. Tuttavia, la domanda è se i moti convettivi sono l’unico motore attivo oppure se esiste un’altra forza che li mette in movimento.

La componente orizzontale della marea solida ora è il candidato ideale per far scivolare la litosfera sul mantello sottostante, per farla sprofondare nelle zone di subduzione o permettere la risalita per isostasia del mantello al di sotto delle dorsali oceaniche che si formano dove i gradienti di viscosità determinano velocità diverse tra le placche a parità di effetto mareale. In sostanza la convezione mantellica viene polarizzata e attivata dalla componente orizzontale della marea solida; una componente che sposta avanti e indietro il suolo di 10-20 cm a ogni passaggio è la miglior candidata a pompare il sistema tettonico.

Vediamo infatti una certa correlazione con la sismicità in funzione dei periodi in cui la componente orizzontale è maggiore. Tuttavia, la sismicità è la liberazione di gradienti di pressione che si formano nei decenni, se non millenni, e la rottura che provoca il terremoto si attua nel momento in cui le rocce non sono più in grado di accumulare energia; viene dunque raggiunta la soglia critica e si attivano le faglie che producono i terremoti.

La faglia di Sant’Andrea. Foto di Ikluft, CC BY-SA 4.0

In sostanza, la correlazione tra maree e terremoti è più subdola, nel senso che c’è una frequenza maggiore di terremoti quando le placche vanno un po’ più veloci, ma i terremoti avvengono anche quando le placche si muovono più lentamente, qualora lo stato limite o condizione critica siano stati raggiunti. La componente orizzontale fornisce l’energia al sistema, mentre la componente verticale della marea modifica e modula continuamente, ogni secondo, la gravità terrestre, alzando e ribassando la litosfera e quindi anche la superficie terrestre di 30-40 cm, e quindi modificando anche il peso delle rocce: questa oscillazione favorisce o sfavorisce i terremoti in funzione della loro natura.

Per esempio, i terremoti estensionali avvengono più frequentemente durante le fasi di bassa marea (quando cioè la gravità terrestre è massima), mentre i terremoti compressivi avvengono più spesso durante le fasi di alta marea perché con una leggera diminuzione della forza di gravità si facilita lo scorrimento contrazionale.

In sostanza, la componente orizzontale carica il sistema, mentre quella verticale può essere il grilletto che innesca i terremoti, ma questi possono avvenire indipendentemente dalla marea quando la ‘misura è colma’. La Terra esercita delle maree solide che innalzano il suolo lunare di circa 10 metri, e la sismicità lunare ha una ciclicità mensile concentrata nell’emisfero rivolto verso la Terra.

La Luna non ha una tettonica delle placche perché evidentemente non ha temperature interne sufficientemente alte da determinare basse viscosità che permettano la convezione e inoltre si trova in tidal-locking, cioè guarda la Terra sempre con la stessa faccia, quindi manca la rotazione del corpo celeste come per il nostro pianeta. Quindi sì, c’è un controllo gravitazionale fondamentale sulla sismicità, ma questo non significa che ora siamo in grado di prevedere i terremoti.

Sismogramma all’Osservatorio di Weston, Massachussetts. Foto di Z22, CC BY-SA 3.0

Abbiamo però una chiave di lettura che ci permetterà di approfondire quei settori delle geoscienze che ci possono dare informazioni deterministiche sull’evoluzione delle aree a maggiore pericolosità sismica: dalla geodesia alla geochimica dei fluidi, dalla statistica all’intelligenza artificiale, discipline che ci permettono di riconoscere dei transienti o anomalie che preludono l’attivazione delle faglie, o meglio il rilascio dell’energia accumulata nei volumi adiacenti alle faglie stesse che sono dei piani passivi di rilascio e canalizzazione di una parte di questa energia.

Che impatto può avere questa ricerca sullo studio degli hotspot, ad esempio quello delle Hawaii? Può aiutare a definire la profondità di origine del magma che alimenta l’apparato vulcanico? Può aiutare a determinare la dinamica dello spostamento dell’hotspot stesso (se lo spostamento esiste)?

Uno studio relativamente recente – grazie alla tecnica sismologica delle receiver functions – ha permesso di ricostruire la profondità a circa 130 km della camera magmatica sotto le Hawaii: questo significa che sì, gli hotspot pacifici sono alimentati da magma che proviene appunto da quel livello sotto la litosfera che si chiama canale a bassa velocità (low-velocity zone, LVZ) che costituisce la parte alta dell’astenosfera che va da circa 100 a 410 km di profondità.

I magmi delle Hawaii inoltre, sulla base dei dati petrologici sappiamo che si sono formati a una temperatura di circa 1500°C, a conferma del dato sismologico, e sono quindi relativamente superficiali, non provenienti cioè dal limite nucleo-mantello a 2900 km, come alcuni ricercatori avevano ipotizzato. Le Hawaii, come varie altre catene magmatiche, ci documentano che la litosfera si muove rispetto all’astenosfera e questo dato ci permette di calcolare la deriva della litosfera verso ‘ovest’ rispetto al mantello.

Carta batimetrica delle isole Hawaii. Immagine USGS in pubblico dominio; credits per Barry W. Eakins, Joel E. Robinson, Japan Marine Science e Technology Center: Toshiya Kanamatsu, Jiro Naka, University of Hawai’i: John R. Smith, Tokyo Institute of Technology: Eiichi Takahashi, e Monterey Bay Aquarium Research Institute: David A. Clague – Bathymetry image PDF, tratta dalla pubblicazione USGS Geologic Investigations Series Map I-2809: Hawaii’s Volcanoes Revealed

Vi sono anche altri tipi di catene magmatiche che venivano etichettate come hotspot, in particolare posizionate sulle dorsali oceaniche come l’Islanda, le Azzorre, Ascencion, ma è stato dimostrato dalle ricerche di scienziati italiani come Enrico Bonatti e Marco Ligi che in realtà sono zone dove il mantello fonde a una temperatura più bassa per il maggiore contenuto di fluidi, a cominciare dall’acqua stessa. Sono chiamati appunto wetspot o punti bagnati e hanno quindi un’origine e una composizione diversa rispetto agli hotspot come le Hawaii. Lo spostamento degli hotspot e wetspot è documentato, ma ha natura e significato geodinamico diverso. Nessun punto o margine di placca sulla Terra è fisso, tutto si muove, a velocità diverse, rispetto al mantello sottostante.

Quali campi altri di ricerca potranno beneficiare delle conclusioni di questo studio?

Il nostro auspicio (con Davide Zaccagnino e Francesco Vespe, coautori della ricerca, ma anche di numerosi altri colleghi che nel corso degli anni hanno contribuito in modo fondamentale a queste ricerche) è che questa scoperta sia l’inizio di un percorso che ci permetterà di capire sempre meglio non solo la sismicità, ma anche i meccanismi fondamentali di funzionamento della Terra e le sue interazioni con la dinamica planetaria e, perché no, anche dell’origine ed evoluzione della vita.

maree solide Carlo Doglioni
Immagine di malith d karunarathne

 

Riferimenti:

Tidal modulation of plate motions – Davide Zaccagnino, Francesco Vespe, Carlo Doglioni – Earth Science Reviews https://doi.org/10.1016/j.earscirev.2020.103179