News
Ad
Ad
Ad
Tag

malattie neurodegenerative

Browsing

Il segreto per sconfiggere Alzheimer e Parkinson nascosto nella laguna di Venezia? Un nuovo studio sul botrillo, pubblicato su Cells, per comprendere le malattie neurodegenerative

Padova – Milano, 20 aprile 2023 – Ad oggi, non conosciamo ancora quali siano le cause di malattie come l’Alzheimer o la Malattia di Parkinson; di conseguenza, le terapie a disposizione non sono purtroppo in grado di arrestare o rallentare la patologia. Ciò vale per tutte le cosiddette “malattie neurodegenerative”, che comprendono anche nomi noti, quali la Sclerosi Laterale Amiotrofica, e meno noti come la Demenza o Sindrome Fronto-Temporale (FTD).

botrillo (Botryllus schlosseri) per comprendere le malattie neurodegenerative
Nuovo studio sul botrillo (Botryllus schlosseri) per comprendere le malattie neurodegenerative. Foto di Géry PARENT, in pubblico dominio

Ma un inatteso aiuto potrebbe arrivare da un piccolo animale marino, l’invertebrato di nome botrilloun animaletto che cresce e si riproduce a basse profondità in mari quali il Mediterraneo e, in particolare in zone ricche in nutrienti e calde dell’Adriatico, come la Laguna di Venezia. Si tratta di un essere vivente molto semplice che presenta al suo interno anche un cervello rudimentale, costituito da poco meno di un migliaio di neuroni. Tuttavia tale organismo appartiene al gruppo di animali considerati i parenti più prossimi ai vertebrati (il gruppo a cui anche l’uomo appartiene) e, anche per tale motivo, i ricercatori lo stanno studiando da tempo.

Team internazionale di ricercatori  – Università di Stanford, California (dr.ssa Chiara Anselmi) e Università Statale di Milano (proff. Alberto Priori e Tommaso Bocci) – coordinato dalla prof.ssa Lucia Manni del Dipartimento di Biologia dell’Università di Padova ha pubblicato lo studio Multiple Forms of Neural Cell Death in the Cyclical Brain Degeneration of A Colonial Chordate sulla rivista scientifica «Cells» che evidenzia come questo invertebrato contenga tutti i geni coinvolti nelle malattie neurodegenerative umane e, durante il suo ciclo vitale, le sue cellule nervose invecchino esattamente come nell’uomo.

“Il botrillo, che abbiamo studiato attraverso microscopia elettronica e analisi dell’espressione genica, va incontro naturalmente a neurodegenerazione secondo modalità che potrebbero aiutare la ricerca nell’uomo a trovare strategie, o farmaci, per fermare gravi malattie neurodegenerative”, spiega la prof.ssa Lucia Manni, autore referente dello studio. “In particolare, i neuroni del botrillo mostrano diversi tipi di morte cellulare, così come avviene nelle malattie neurodegenerative umane. Inoltre, geni criticamente coinvolti in queste malattie sono espressi nelle diverse fasi del ciclo vitale del botrillo secondo tempistiche che ricordano molto il progredire delle malattie nell’uomo. Per esempio, geni tipici dei disordini conformazionali, come l’Alzheimer e il Parkinson, sono espressi nel botrillo in tempi che richiamano nell’uomo il passaggio della malattia da una fase di degenerazione pre-clinica alla comparsa di sindromi specifiche nell’uomo”.

“Questi risultati potrebbero aprire inediti scenari sia nell’identificazione di un minimo comune denominatore fra patologie umane molto dissimili fra di loro, sia nell’impiego di nuove metodiche di stimolazione elettrica cerebrale non invasiva per la prevenzione e la cura della neurodegenerazione”, dice il prof. Alberto Priori del Dipartimento di Scienze della Salute dell’Università Statale di Milano e co-autore della ricerca.

Articoli correlati:

Dal botrillo un aiuto per capire meglio Alzheimer e Parkinson

Testo dall’Ufficio Stampa Direzione Comunicazione ed Eventi istituzionali Università Statale di Milano.

Un nuovo studio, pubblicato su Brain, suggerisce che la rigidità muscolare nella malattia di Parkinson abbia alla base la disfunzione di un circuito neuronale

Un nuovo studio internazionale, pubblicato sulla rivista Brain e coordinato dal Dipartimento di Neuroscienze umane della Sapienza, suggerisce una nuova ipotesi interpretativa della rigidità muscolare nella malattia di Parkinson.

neuroni rigidità muscolare Parkinson
Immagine di Colin Behrens

Uno dei tratti caratteristici della Malattia di Parkinson è la rigidità muscolare, un aumento patologico del tono muscolare che si manifesta con una contrazione sostenuta e involontaria, che costituisce una invalidante limitazione della mobilità, talvolta associata a dolore cronico. Ad oggi sono ancora poco chiari i meccanismi alla base del fenomeno, del quale non è disponibile neanche una misura strumentale affidabile.

Uno studio internazionale, coordinato dalla Sapienza in collaborazione con la University College di Londra e il National Institutes of Health (NIH), Bethesda (USA), introduce una nuova ipotesi interpretativa secondo cui la rigidità è legata alla disfunzione di uno specifico circuito neuronale che include connessioni funzionali tra midollo spinale, cervelletto e la formazione reticolare del tronco dell’encefalo.

Il lavoro, che chiarisce rilevanti aspetti fisiopatologici della rigidità, affrontando anche il problema dello studio sperimentale di questo segno clinico, è stato pubblicato sulla rivista Brain.

Grazie a un innovativo protocollo sperimentale che ha visto l’utilizzo di una innovativa strumentazione robotica, associata e sincronizzata a specifiche misure neurofisiologiche e biomeccaniche, è stato possibile valutare con un algoritmo le caratteristiche della muscolatura e l’attività nervosa riflessa di 20 pazienti affetti dalla malattia di Parkinson e 25 soggetti sani di controllo con caratteristiche anagrafiche ed antropometriche simili.

“Il principale traguardo scientifico del nostro studio – spiega Antonio Suppa del Dipartimento di Neuroscienze Umane della Sapienza – consiste nella dimostrazione sperimentale che la rigidità nella Malattia di Parkinson dipende da specifiche alterazioni del controllo nervoso del tono muscolare (es. aumento velocità-dipendente dei riflessi di lunga latenza) che a loro volta riflettono una disfunzione nelle connessioni tra midollo spinale, cervelletto e formazione reticolare del tronco dell’encefalo.”

La Malattia di Parkinson è una patologia neurodegenerativa assai frequente nella popolazione generale (circa 300.000 pazienti in Italia) e purtroppo in continua crescita secondo le ultime stime dell’Organizzazione mondiale della sanità. Una più approfondita conoscenza dei suoi principali segni e sintomi clinici risulta fondamentale anche nell’ottica di una più appropriata pianificazione e programmazione di interventi specifici di sanità pubblica.

Riferimenti:
Rigidity in Parkinson’s disease: Evidence from Biomechanical and Neurophysiological Measures, Francesco Asci, Marco Falletti, Alessandro Zampogna, Martina Patera, Mark Hallett,John Rothwell, e Antonio Suppa,  https://doi.org/10.1093/brain/awad114

 

Testo dal Settore Ufficio stampa e comunicazione Sapienza Università di Roma

Charme: la molecola di lncRNA che controlla lo sviluppo del cuore
Charme è un lncRNA che controlla lo sviluppo cardiaco attraverso circuiti molecolari che si instaurano nel muscolo grazie alla sua interazione con la proteina Matrin3 

La molecola di RNA è in grado di costruire specifiche reti di interazione per un controllo temporale e spaziale dei processi di formazione del cuore.

È quanto dimostrato da un nuovo studio coordinato dal Dipartimento di Biologia e biotecnologie “Charles Darwin” della Sapienza e pubblicato sulla rivista eLife.

Charme: la molecola di lncRNA che controlla lo sviluppo del cuore 
Crediti per l’immagine: Taliani et al.

Per affrontare la complessità dei processi biologici, le cellule sfruttano molteplici sistemi di regolazione, spesso basati sull’attività di molecole di RNA, come nel caso dei lunghi RNA non codificanti (long non coding RNA, lncRNA) che non producono proteine. Queste molecole sono in grado di costruire specifiche reti di interazione per un controllo temporale e spaziale dei processi biologici.

È il caso di Charme, un lncRNA che controlla lo sviluppo cardiaco attraverso circuiti molecolari che si instaurano nel muscolo grazie alla sua interazione con la proteina Matrin3. Matrin3 è coinvolta in diverse miopatie e in malattie neurodegenerative, come la Sclerosi laterale amiotrofica (SLA).

Un nuovo studio italiano pubblicato sulla rivista internazionale eLife e coordinato dal Dipartimento di Biologia e biotecnologie “Charles Darwin” della Sapienza in collaborazione con l’Istituto italiano di tecnologia e l’European Molecular Biology Laboratory ha rivelato il ruolo chiave di Charme nell’accensione di geni necessari alla maturazione delle cellule del cuore. La presenza di Charme già durante le fasi embrionali dello sviluppo cardiaco, si è rivelata fondamentale per guidare Matrin3 sui giusti contesti genomici, promuovendo la funzionalità e lo sviluppo cardiaco.

“Tra i piani futuri del laboratorio – spiega Monica Ballarino della Sapienza – c’è l’ulteriore caratterizzazione funzionale di Charme che è abbondantemente espresso nel muscolo umano. Questo permetterà una migliore comprensione della fisiologia e dello sviluppo del cuore ed il disegno di nuove strategie diagnostiche e terapeutiche per le patologie cardiache.”

Riferimenti:

The long noncoding RNA Charme supervises cardiomyocyte maturation by controlling cell differentiation programs in the developing heart – Valeria Taliani, Giulia Buonaiuto, Fabio Desideri, Adriano Setti, Tiziana Santini, Silvia Galfrè, Leonardo Schirone, Davide Mariani, Giacomo Frati, Valentina Valenti, Sebastiano Sciarretta, Emerald Perlas, Carmine Nicoletti, Antonio Musarò, Monica Ballarino – eLife 2023 https://doi.org/10.7554/eLife.81360

Testo dal Settore Ufficio stampa e comunicazione Sapienza Università di Roma

NUOVE SCOPERTE SUI MECCANISMI MOLECOLARI ALLA BASE DELLE MALATTIE NEURODEGENERATIVE

Due ricerche del laboratorio di Maria Pennuto (UNIPD-VIMM) e Manuela Basso (UNITRENTO) pubblicati su «Nature Communications»

Gli studi del team di ricerca guidato dalla Prof.ssa Maria Pennuto (Università di Padova e VIMM) e dalla Prof.ssa Manuela Basso (Università di Trento) sulla malattia di Kennedy hanno portato a nuove scoperte ed evidenze sui meccanismi molecolari alla base della malattia.

Nuovi risultati per il team di ricerca guidato dalla Prof.ssa Maria Pennuto – Principal Investigator del VIMM e Professore Associato dell’Università degli Studi di Padova – che da diversi anni sta investigando il coinvolgimento del muscolo scheletrico nella malattia neurodegenerativa nota come malattia di Kennedy.

Se è stato dimostrato e provato da molti studi internazionali che questa malattia – causata da una mutazione del recettore degli ormoni (androgeni) – parte da processi patologici che iniziano nel muscolo scheletrico e che causano la perdita dei neuroni che regolano il movimento volontario, sono emerse nuove evidenze da una prima ricerca dal titolo “Defective excitation-contraction coupling and mitochondrial respiration precede mitochondrial Ca2+ accumulation in spinobulbar muscular atrophy skeletal muscle”, pubblicata sulla rivista «Nature Communications».

Realizzata e condotta dal team della Prof.ssa Pennuto con Caterina Marchioretti, Giulia Zanetti e Marco Pirazzini, la ricerca dimostra che nella malattia di Kennedy ci sono alterazioni precoci della capacità dei muscoli di contrarsi e di produrre energia, che si traduce in una progressiva alterazione della capacità dei muscoli di produrre la forza necessaria ad effettuare un movimento senza stancarsi precocemente.

L’altro risultato, pubblicato sempre su «Nature Communications», emerge dallo studio con titolo “LSD1/PRMT6-targeting gene therapy to attenuate androgen receptor toxic gain-of-function ameliorates spinobulbar muscular atrophy phenotypes in flies and mice” – frutto del lavoro del team della Prof. Pennuto con Ramachandram Prakasam e Roberta Andreotti e di Manuela Basso con Angela Bonadiman dell’Università di Trento) – in cui si spiega che questi fenomeni sono dovuti alla presenza nel muscolo di fattori che interagiscono con la proteina mutata.

A partire da questa evidenza, il gruppo di ricerca ha generato delle piccole molecole capaci di ridurre l’espressione di quei fattori che interagiscono con la proteina mutata, dimostrando che così facendo si migliora lo stato di salute dei muscoli e dei neuroni da loro contattati.

«Le malattie neurodegenerative sono una vasta categoria di condizioni patologiche che va da disordini cognitivi a motori, e dove i sintomi clinici sono dovuti al malfunzionamento di specifiche popolazioni del sistema nervoso centrale. Ciò che è attualmente oggetto di indagine è il meccanismo, o meglio i meccanismi molecolari alla base di queste malattie – sottolinea Maria Pennuto. Un concetto che è emerso negli ultimi anni è che molto spesso le malattie neurodegenerative sono multi-sistemiche e non coinvolgono solo i neuroni, ma diversi tipi di cellule e organi oltre al sistema nervoso. Queste due ricerche ci portano un passo avanti verso la comprensione di questi meccanismi, andando a identificare nuovi target terapeutici che verranno sviluppati dai gruppi coinvolti nei prossimi anni».

«In questi anni ci siamo chieste come poter preservare la funzione fisiologica del recettore degli androgeni, eliminando quella tossica legata alla mutazione. In questo studio siamo riuscite a realizzare questo nostro obiettivo e siamo pronte a investire i prossimi anni per traslare questo nostro approccio dalla ricerca di base alla clinica» afferma Manuela Basso.

Il progetto di ricerca della prof.ssa Maria Pennuto sulla malattia di Kennedy è iniziato nel 2013, quando ha ricevuto un finanziamento di oltre 500.000 euro da parte della Provincia Autonoma di Trento, nell’ambito del programma per le carriere dell’Istituto Telethon-Dulbecco (DTI), che le ha permesso di creare un gruppo di ricerca indipendente per lo studio di questa patologia.

LINK AI PAPER SU NATURE COMMUNICATIONS:

https://www.nature.com/articles/s41467-023-36185-w

https://www.nature.com/articles/s41467-023-36186-9

malattie neurodegenerative malattia di Kennedy
Nuove scoperte sui meccanismi molecolari alla base delle malattie neurodegenerative

MARIA PENNUTO

Maria Pennuto si è laureata con lode in Scienze Biologiche nel 1996 all’Università “La Sapienza” di Roma. Nel 2000 ha ottenuto il diploma di dottore di ricerca in “Biologia cellulare (Cellulare e Molecolare)” (XIII ciclo) all’Università degli Studi di Milano. Dal 2001 al 2004, ha svolto un post-dottorato nel laboratorio del Dr Lawrence Wrabetz (San Raffaele, Milano), dove ha investigato i meccanismi molecolari alla base della malattia della mielina periferica Charcot-Marie-Tooth tipo 1B. Nel 2005 si è recata al National Institute of Neurological Disorders and Stroke (National Institutes of Health, NIH, Bethesda, MD) negli USA, dove ha svolto attività di ricerca come visiting post-dottorato nel laboratorio del Dr Kenneth Fischbeck, investigando i meccanismi molecolari alla base delle malattie del motoneurone. Nel 2008 ha ottenuto la posizione di Staff Scientist al Dipartimento di Neurologia della University of Pennsylvania (UPenn, Philadelphia, PA USA), dove ha continuato la propria attività di ricerca sulle malattie neurodegenerative.

Nel 2009 la Professoressa Pennuto è rientrata in Italia con una posizione di ricercatore indipendente al Dipartimento di “Neuroscience and Brain Technologies” dell’Istituto Italiano di Tecnologia di Genova. Qui ha diretto l’unità di ricerca sulle basi molecolari delle malattie neuromuscolari degenerative quali SBMA e SLA. Nel 2013 ha vinto il premio alla carriera Dulbecco Telethon (DTI) e ha ottenuto una posizione di Ricercatore di tipo B al Centro di Biologia Integrata dell’Università di Trento. Nel 2017 Maria ha ottenuto una posizione di Professore Associato all’Università degli Studi di Padova. A partire dal 2018 è capo unità nell’Istituto Veneto di Medicina Molecolare (VIMM), Padova.

Maria Pennuto
Maria Pennuto

MANUELA BASSO

Manuela Basso si è laureata con lode e dignità di Stampa in Biotecnologie Mediche presso l’Università degli Studi di Torino nel 2002 con una tesi realizzata presso il Bioindustry Park del Canavese. Nel 2008 ha ottenuto il diploma di dottore di ricerca in Life Science presso l’università inglese The Open University e l’Istituto di Ricerche Farmacologiche Mario Negri lavorando sulla Sclerosi Laterale Amiotrofica. Dal 2008 al 2012 ha svolto un post-dottorato nel laboratorio del Dr Rajiv Ratan, presso il Burke Neurological Institute e il Weill Medical College, Cornell University, New York. Dal 2012 al 2013 è stata promossa alla posizione di Instructor alla Cornell University dove ha studiato i meccanismi molecolari coinvolti nella morte neuronale.

Nel novembre 2013 è rientrata in Italia con chiamata diretta dall’Università di Trento e ha iniziato a dirigere il suo gruppo di ricerca. Ad oggi Manuela Basso è professore Associato presso il Dipartimento di Biologia Cellulare, Computazionale e Integrata (Dipartimento CIBIO).

Manuela Basso. Foto © UniTrento, di Federico Nardelli

Testo e foto dagli Uffici Stampa dell’Università degli Studi di Padova, di Trento e VIMM sulla scoperta dei meccanismi molecolari alla base delle malattie neurodegenerative.

STUDIO VIMM-UNIVERSITÀ DI PADOVA SVELA NUOVI PASSI NELLA SCOPERTA DEI MECCANISMI DI TOSSICITÀ ALLA BASE DELLA MALATTIA DI KENNEDY 

Pubblicato su Science Advances il lavoro di ricerca coordinato dalla Prof.ssa Maria Pennuto (VIMM e Università di Padova) sulla malattia di Kennedy dovuta ad una mutazione del recettore degli androgeni che causa la perdita dei neuroni che permettono i movimenti volontari.

Nuovi passi nella scoperta dei meccanismi di tossicità alla base della malattia di Kennedy
Nuovi passi nella scoperta dei meccanismi di tossicità alla base della malattia di Kennedy

Recenti ricerche hanno rivelato che un individuo ogni sei persone è affetto da una malattia neurodegenerativa: una larga famiglia di disordini del sistema nervoso, che nelle forme più classiche si manifestano nell’adulto, sono progressive e con un decorso più o meno lento, ma inesorabile.

Parliamo di condizioni quali la malattia di Alzheimer, la malattia di Parkinson, le malattie del motoneurone e la malattia di Huntington. Tali malattie hanno manifestazioni cliniche diverse, che vanno da alterazioni cognitive a disturbi psichiatrici e problemi motori, e ciò risulta dal funzionamento alterato e dalla perdita di tipi diversi di neuroni nel cervello e nel midollo spinale.

Sebbene clinicamente diverse, le malattie neurodegenerative condividono diversi aspetti, tra cui quelle di essere patologie che si manifestano dopo i 40 o 50 anni di età nelle forme più canoniche, e di essere caratterizzate dall’accumulo di fibre tossiche di proteine dentro e fuori dai neuroni. Per di più sono accomunate da morte dei neuroni associata con infiammazione o attivazione dei processi di degenerazione che portano il neurone all’autodistruzione.

Nella maggior parte dei casi tali patologie sono sporadiche e non associate a mutazioni su geni specifici. In alcuni casi, queste patologie sono associate a mutazioni su geni diversi. Ed è proprio studiando tali forme genetiche che possiamo investigare i processi patologici che avvengono nei neuroni.

Nasce da qui lo studio coordinato dalla Prof.ssa Maria Pennuto – VIMM e Università di Padova – e condotto dalle ricercatrici Diana Piol e Laura Tosatto, che si è concentrato sullo studio della malattia di Kennedy, anche nota come atrofia muscolare spinale e bulbare (SBMA), causata dall’espansione di un tratto di poliglutammine nel gene che codifica il recettore degli androgeni.

Nello studio “Antagonistic effect of cyclin-dependent kinases and a calcium dependent phosphatase on polyglutamine-expanded androgen receptor toxic gain-of-function”, pubblicato su “Science Advances” si indaga sulla mutazione del recettore degli androgeni che causa la perdita di quei neuroni che ci permettono di effettuare tutti i movimenti volontari, dall’uso dei muscoli facciali alla deglutizione al muovere le gambe e le braccia.

I pazienti infatti sono via via costretti ad utilizzare supporti per camminare fino all’uso di sedie a rotelle a causa dell’affaticamento e dell’incapacità di muoversi. Studiando come il recettore degli androgeni funziona in condizioni normali e nella malattia, il gruppo di ricerca diretto dalla Prof.ssa Maria Pennuto ha dimostrato che la proteina mutata viene modificata da fattori cellulari, che aggiungono dei gruppi chimici o li tolgono. Tali modifiche avvengono sul recettore mutato in maniera più forte rispetto al recettore normale. Il gruppo di ricerca ha identificato i fattori responsabili di tali modifiche chimiche e quelli che le rimuovono. Se farmacologicamente o geneticamente si riduce l’attività di questi fattori, si assiste ad un miglioramento della funzionalità del recettore, dimostrando quindi la rilevanza di queste scoperte nel contesto della malattia di Kennedy. La ricerca condotta dal gruppo di Padova è stata effettuata in collaborazione con altri laboratori situati in Italia e all’estero.

Scopo dello studio è l’identificazione di nuovi target molecolari e l’ampliamento delle conoscenze nell’ambito delle malattie neurodegenerative.

“Questo studio ci ha permesso di chiarire che il recettore mutato va incontro alle stesse modifiche del recettore normale. Ciò che davvero cambia è l’entità di tali modifiche, che sono più forti nel caso del recettore mutato” Ha sottolineato Maria Pennuto, coordinatrice del progetto di ricerca. “E questo si traduce in un funzionamento non ottimale del recettore che quindi non riesce a compiere le funzioni che normalmente esegue nei neuroni e nelle cellule muscolari. L’identificazione dei fattori responsabili di tali modifiche potrà aiutare al raggiungimento di una migliore comprensione dei processi patologici che avvengono nel paziente, e in futuro porterà alla individuazione di nuovi bersagli terapeutici”.

Maria Pennuto
Maria Pennuto

Il progetto di ricerca della prof.ssa Maria Pennuto sulla malattia di Kennedy è iniziato nel 2013, quando ha ricevuto un finanziamento di oltre 500.000 euro da parte della Provincia Autonoma di Trento, nell’ambito del programma per le carriere dell’Istituto Telethon-Dulbecco (DTI), che le ha permesso di creare un gruppo di ricerca indipendente per lo studio di questa patologia.

MARIA PENNUTO

Maria Pennuto si è laureata con lode in Scienze Biologiche nel 1996 presso l’Università “La Sapienza” di Roma. Nel 2000 ha ottenuto il diploma di dottore di ricerca in “Biologia cellulare (Cellulare e Molecolare)” (XIII ciclo) presso l’Università degli Studi di Milano. Dal 2001 al 2004, ha svolto un post-dottorato nel laboratorio del Dr Lawrence Wrabetz (San Raffaele, Milano), dove ha investigato i meccanismi molecolari alla base della malattia della mielina periferica Charcot-Marie-Tooth tipo 1B. Nel 2005 si è recata presso il National Institute of Neurological Disorders and Stroke (National Institutes of Health, NIH, Bethesda, MD) negli USA, dove ha svolto attività di ricerca come visiting post-dottorato presso il laboratorio del Dr Kenneth Fischbeck, investigando i meccanismi molecolari alla base delle malattie del motoneurone. Nel 2008 ha ottenuto la posizione di Staff Scientist presso il Dipartimento di Neurologia della University of Pennsylvania (UPenn, Philadelphia, PA USA), dove ha continuato la propria attività di ricerca sulle malattie neurodegenerative.

Nel 2009 la Dr Pennuto è rientrata in Italia con una posizione di ricercatore indipendente presso il Dipartimento di “Neuroscience and Brain Technologies” dell’Istituto Italiano di Tecnologia di Genova. Qui ha diretto l’unità di ricerca sulle basi molecolari delle malattie neuromuscolari degenerative quali SBMA e SLA. Nel 2013 ha vinto il premio alla carriera Dulbecco Telethon (DTI) e ha ottenuto una posizione di Ricercatore di tipo B presso il Centro di Biologia Integrata dell’Università di Trento. Nel 2017 Maria ha ottenuto una posizione di Professore Associato presso l’Università degli Studi di Padova. A partire dal 2018 è vicedirettrice e capo unità presso l’Istituto Veneto di Medicina Molecolare (VIMM), Padova.

Testo e immagini dagli Uffici Stampa Istituto Veneto di Medicina Molecolare (VIMM) e Università degli Studi di Padova sui nuovi passi nella scoperta dei meccanismi di tossicità alla base della malattia di Kennedy.

DA UN PICCOLO INVERTEBRATO MARINO, IL BOTRILLO, UN AIUTO PER CAPIRE MEGLIO ALZHEIMER E PARKINSON

Con l’avanzare dell’età nel Botryllus schlosseri si osserva una riduzione del numero di neuroni e delle abilità comportamentali, come nell’uomo.

Inoltre il suo cervello manifesta geni la cui espressione caratterizza malattie neurodegenerative umane quali l’Alzheimer e il ParkinsonPubblicato su PNAS lo studio delle Università di Stanford, Padova e Cham Zuckerberg Biohub

I tunicati, invertebrati marini molto comuni nei nostri mari, sono i parenti più stretti dei vertebrati, di cui fa parte anche l’uomo. Tra i tunicati il botrillo, Botryllus schlosseri, forma piccole colonie in cui gli individui adulti si dispongono come i petali di un fiore. Nella colonia, che può essere formata anche da centinaia di fiori, ciascun individuo adulto presenta ai lati del corpo uno o più piccoli individui in crescita (le sue gemme), derivate per riproduzione asessuata. Gli adulti vengono settimanalmente riassorbiti e sostituiti dalle loro gemme nel frattempo maturate. Questo processo di sostituzione è ciclico e siccome ogni “genitore” produce più di una gemma, la colonia cresce di dimensioni in maniera veloce e continua. Tuttavia, se gli adulti hanno vita breve e sono continuamente sostituiti da nuovi individui, la colonia non vive in eterno: nella Laguna veneta muoiono tipicamente dopo 1-2 anni, ma in laboratorio si possono mantenere in vita anche per periodi molto più lunghi.

Dal botrillo un aiuto per capire meglio Alzheimer e Parkinson. In foto, un botrillo (Botryllus schlosseri)

Questi animali semplici, i botrilli, sono al centro dell’articolo dal titolo “Two distinct evolutionary conserved neural degeneration pathways characterized in a colonial chordate” pubblicato da un team di ricercatori del Dipartimento di Biologia dell’Università di Padova e dell’Università di Stanford, in collaborazione con il Cham Zuckerberg Biohub di San Francisco, sulla rivista scientifica «PNAS» perché presentano una degenerazione del cervello simile a quella umana. Capire quindi quali siano i processi che portano al decadimento del loro sistema nervoso, anche da un punto di vista evolutivo, può esser d’aiuto nel comprendere neuropatologie, spesso invalidanti, che coinvolgono un numero crescente di persone.

Lo studio

Il botrillo, come detto, ci offre la straordinaria possibilità di studiare la degenerazione del cervello sia nel breve periodo, ovvero nel processo ciclico (settimanale) di riassorbimento degli individui adulti che comporta di fatto un loro rapido invecchiamento, sia nel lungo periodo, ovvero nel processo di invecchiamento dell’intera colonia, che vede nel tempo diminuire la sua capacità di produrre nuovi individui ed espandersi.

La ricerca – coordinata da Chiara Anselmi, dottorata all’Ateneo patavino e ora post-doc all’Università di Stanford, Lucia Manni del Dipartimento di Biologia dell’Università di Padova, Ayelet Voskoboynik Irv Weissman dell’Università di Stanford – ha utilizzato colonie prelevate nella Laguna Veneta e allevate alla Stazione Idrobiologica di Chioggia e al Dipartimento di Biologia dell’Ateneo patavino oltre a quelle prese dalla Hopkins Marine Station, nella baia di Monterey in California.

Dalle analisi fatte emerge che la degenerazione del cervello del botrillo ha fortissime analogie con il decadimento del cervello umano: sia nella neurodegenerazione breve (settimanale) che in quella lunga (relativo all’invecchiamento della colonia). In entrambi i processi, nell’animale si osserva una riduzione del numero di neuroni e una diminuzione delle abilità comportamentali.

Lucia Manni

«È stato davvero sorprendente per noi vedere che nella degenerazione breve degli individui adulti il cervello cominciava a diminuire di volume qualche giorno prima del loro riassorbimento completo ovvero della loro morte. Dopo tre giorni di vita – dice la professoressa Lucia Manni del Dipartimento di Biologia dell’Università di Padova – il numero di neuroni nel cervello cominciava a diminuire, così come la loro capacità di rispondere a stimoli come il tocco della loro bocca, il sifone, attraverso cui l’acqua entra per la nutrizione e la respirazione. Questi stessi segni di invecchiamento erano poi presenti anche in individui di colonie neoformate rispetto a quelli presenti in colonie di soli 6 mesi. Eravamo quindi in presenza di due processi di neurodegenerazione la cui presenza non era mai stata sospettata, uno veloce e uno lento, nello stesso organismo».

Ma ciò che è ancor più interessante è che durante entrambi i processi degenerativi il cervello dell’animale manifesta geni la cui esressione caratterizza malattie neurodegenerative umane come l’Alzheimer e il Parkinson.

Chiara Anselmi

«Ancor più incredibile è stato poi verificare che entrambi i processi di neurodegenerazione erano associati all’aumento di espressione di geni che caratterizzano le malattie neurodegenerative nell’uomo come l’Alzheimer, il Parkinson, la malattia di Huntington, la demenza frontotemporale e altre ancora – sottolinea Chiara Anselmi dell’Università di Stanford –. Molti di questi geni erano espressi in entrambi i processi neurodegenerativi, mentre una piccola parte li differenziava. Questi geni, pertanto, svolgono un ruolo anche in questi semplici animali e questo piccolo invertebrato può rappresentare una risorsa per comprendere come l’evoluzione abbia forgiato i processi neurodegenerativi e quali siano le relazioni tra invecchiamento e perdita della funzionalità neuronale».

«Approfondire ora lo studio dell’invecchiamento e della neurodegenerazione in questo animale ci porterà a capire come il botrillo riesca a controllare e coordinare la neurodegenerazione ciclica rispetto a quella associata all’invecchiamento – concludono gli autori –. Questo potrebbe svelarci qualcosa di inaspettato rispetto alla nostra possibilità di governare i processi neurodegenerativi nell’uomo».

Il progetto di ricerca è stato finanziato dall’Università di Padova (Progetti di Ricerca di Ateneo, Dottorato di Ricerca, Iniziative di Cooperazione Universitaria), Fondazione “Aldo Gini”, Università di Stanford (School of Medecine Deans’s Postdoctoral Fellowship), l’NIH, il Chan Zuckerberg investigator program, e le Fondazioni “Stinehart-Reed” e “Larry L. Hillblom”.

Link: https://www.pnas.org/eprint/Y6SDVE94P5U58HVXSUGK/full

Titolo: Two distinct evolutionary conserved neural degeneration pathways characterized in a colonial chordate – “PNAS” – 2022

Autori: Chiara Anselmi, Mark Kowarsky, Fabio Gasparini, Federico Caicci, Katherine J. Ishizuka, Karla J. Palmeri, Tal Raveh, Rahul Sinha, Norma Neff, Steve R. Quake, Irving L. Weissman, Ayelet Voskoboynik, Lucia Manni

Testo e foto dall’Università degli Studi di Padova

Differenziamento dei motoneuroni: il ruolo degli RNA non codificanti

Un nuovo studio, frutto di una collaborazione tra il Dipartimento di Biologia e biotecnologie Charles Darwin della Sapienza, l’Istituto italiano di tecnologia e il Cnr, rivela la sinergia tra RNA codificanti e non codificanti nel regolare la formazione dei motoneuroni e apre la strada a nuovi approcci terapeutici per la cura delle malattie neurodegenerative. I risultati sono stati pubblicati sulla rivista The EMBO Journal.

Differenziamento dei motoneuroni: il ruolo degli RNA non codificanti
Foto di  Gerd Altmann

Il ruolo fondamentale degli RNA non codificanti – che non sono tradotti in proteine – nella regolazione dei programmi di sviluppo e funzionamento dei tessuti, in particolare del sistema nervoso, è emerso soprattutto negli ultimi anni.

Sebbene molte funzioni specifiche siano ancora poco conosciute, gli RNA non codificanti hanno un ruolo biologico cruciale, che li rende di notevole interesse soprattutto nell’ambito della ricerca biomedica.

Un nuovo studio, coordinato da Irene Bozzoni, del Dipartimento di Biologia e biotecnologie Charles Darwin della Sapienza e del Clns dell’Istituto italiano di tecnologia, in collaborazione con Pietro Laneve del Cnr, ha permesso di caratterizzare l’attività di uno specifico gene (MN2) che dirige la produzione di molteplici RNA non codificanti strutturalmente diversi, sia lunghi (lncRNA) che corti (microRNA).

In particolare, tecniche avanzate di biologia molecolare e cellulare hanno permesso ai ricercatori di chiarire il meccanismo attraverso cui il dialogo tra lncRNA e microRNA controlla l’espressione di geni codificanti per proteine fondamentali nel differenziamento dei motoneuroni, ovvero di quei neuroni che veicolano i segnali nervosi dal sistema nervoso centrale ai muscoli.

La ricerca, nata dalla collaborazione tra la Sapienza, l’Istituto italiano di tecnologia e il Cnr, è stata finanziata da ERC-2019-SyG e pubblicata sulla prestigiosa rivista internazionale The EMBO Journal.

“Il lavoro – spiega Irene Bozzoni, coordinatrice del gruppo di ricerca – ci aiuta a capire meglio le funzioni attribuite al genoma non codificante. In particolare, abbiamo evidenziato per la prima volta come un meccanismo basato sul sequestro di microRNA da parte di un lncRNA – detto “spugna molecolare” – contribuisca alla generazione dei motoneuroni.”

 I motoneuroni, oltre a essere mediatori dei segnali nervosi responsabili della contrazione muscolare, sono anche bersagli di gravi patologie degenerative e di lesioni invalidanti.

 “L’auspicio – conclude Irene Bozzoni – è che la comprensione dei processi di formazione dei motoneuroni possa consentire lo sviluppo di nuovi approcci terapeutici in medicina neurodegenerativa”.

Riferimenti:
A multifunctional locus controls motor neuron differentiation through short and long non coding RNAs – Andrea Carvelli, Adriano Setti, Fabio Desideri, Silvia Galfrè, Silvia Biscarini, Tiziana Santini, Alessio Colantoni, Giovanna Peruzzi, Matteo J Marzi, Davide Capauto, Silvia Di Angelantonio, Monica Ballarino, Francesco Nicassio, Pietro Laneve, Irene Bozzoni- The EMBO Journal (2022) https://doi.org/10.15252/embj.2021108918

 

Testo dal Settore Ufficio stampa e comunicazione Sapienza Università di Roma

NEURONI DEL MOVIMENTO NELLE MALATTIE NEURODEGENERATIVE

Conclusa la ricerca sulla loro diversità e vulnerabilità per trovare nuovi target terapeutici

Si chiama MOVEMeNt – Decoding alpha motor neurons diversity and selective vulnerability to disease – il progetto finanziato dall’European Union’s Horizon 2020 – Marie Sklodowska-Curie Individual Fellowship che ha come Principal Investigator Emanuela Zuccaro del Dipartimento di Scienze Biomediche dell’Università di Padova e concluso in questi giorni dopo due anni di lavoro scientifico. Lo studio ha avuto come focus la ricerca sulla diversità e vulnerabilità dei motoneuroni di tipo alfa al fine di individuare nuovi target terapeutici che possano interferire con il progresso delle patologie neurodegenerative.

Le malattie neurodegenerative, come la SLA, sono patologie altamente debilitanti che colpiscono il sistema nervoso ed in particolare i neuroni responsabili del movimento, detti motoneuroni. Nonostante le malattie neurodegenerative abbiano diversa causa, esordio e prognosi, un denominatore comune è la vulnerabilità selettiva e la conseguente perdita o disfunzione dei neuroni. È importante sapere che non tutti i neuroni sono suscettibili alle patologie in egual misura: ci sono neuroni che sono più vulnerabili e degenerano per primi, mentre altri restano funzionali anche durante gli stadi tardivi della patologia.

Il midollo spinale è popolato da molteplici e diverse tipologie cellulari e neuronali, ognuna delle quali ha una specifica identità molecolare e funzione biologica. I motoneuroni che degenerano in malattie neurodegenerative – e portano a gravi disfunzioni e disabilità – rappresentano una popolazione molto rara.

Emanuela Zuccaro neuroni del movimento malattie neurodegenerative
Emanuela Zuccaro

«L’obiettivo della mia ricerca è stata quella di analizzare l’identità molecolare dei neuroni motori a livello di singola cellula, utilizzando tecnologie all’avanguardia, al fine di rivelare nuovi meccanismi alla base del malfunzionamento di specifici sottotipi neuronali in seguito all’insorgenza di malattie neurodegenerative e identificare nuovi target terapeutici – dice la dottoressa Emanuela Zuccaro del Dipartimento di Scienze Biomediche dell’Università di Padova –. Ho messo a punto una nuova metodologia che permette di isolare in maniera specifica questi motoneuroni e caratterizzarli a livello molecolare e con risoluzione cellulare, senza ricorrere a strategie di gene reporter. Questo permette di restringere il campo di investigazione solo sui tipi cellulari noti per essere particolarmente suscettibili a malattie neurodegenerative».

Il confronto diretto tra motoneuroni resistenti e vulnerabili permette quindi di identificare il corredo molecolare di ogni sottotipo neuronale, che è di estrema utilità per studi futuri sia nel campo della neurobiologia di base che traslazionale, e individuare nuovi target terapeutici che possano interferire con il progresso della patologia.

«Il progetto MOVEMeNt – conclude Emanuela Zuccaro – si basa quindi sull’idea che ogni classe di neuroni sia dotata di una propria identità molecolare che li rende unici e distinguibili dalle altre classi neuronali, seppur spazialmente vicini. Al fine di capire quali siano i meccanismi che portano alla degenerazione selettiva di alcuni neuroni in seguito all’insorgenza di malattie neurodegenerative, siamo andati a isolare e caratterizzare in maniera specifica i neuroni vulnerabili per compararli con quelli resistenti alla patologia. Speriamo che in un prossimo futuro questo lavoro porti a nuove terapie efficaci contro patologie come la SLA».

Testo e foto dall’Ufficio Stampa Università degli Studi di Padova

SLA: aggiunto un nuovo tassello nella comprensione degli aggregati molecolari nella malattia

Un gruppo di ricercatori della Sapienza e dell’Università degli Studi di Perugia, in collaborazione con l’Istituto italiano di tecnologia (IIT), ha pubblicato sulla rivista iScience uno studio che fa luce su una nuova forma di RNA e sul suo coinvolgimento in malattie neurodegenerative come la Sclerosi laterale amiotrofica. Il lavoro è stato supportato dall’European Research Council e da Fondazione AriSLA.

SLA aggregati molecolari
SLA: aggiunto un nuovo tassello nella comprensione degli aggregati molecolari nella malattia. Foto di Arek Socha

La Sclerosi laterale amiotrofica, nota come SLA, è una malattia neurodegenerativa che colpisce i motoneuroni, le cellule neuronali responsabili dell’innervazione muscolare, la cui degenerazione porta alla paralisi progressiva, culminando in una incapacità motoria e respiratoria.

Nella SLA si identificano due forme, quella familiare dovuta a specifiche mutazioni genetiche, e quella sporadica, la cui patogenesi non è correlata a chiara familiarità congenita e le cui cause sono ancora per lo più sconosciute. Sebbene numerosi studi abbiano permesso di caratterizzare varie proteine coinvolte nella SLA, c’è ancora molto da scoprire sulla complessità dell’insorgenza e progressione della malattia e, soprattutto, sulla sua possibile cura.

Il team di ricercatori del Dipartimento di Biologia e biotecnologie Charles Darwin di Sapienza Università di Roma e del Centro for Life Nano- & Neuro-Science dell’Istituto Italiano di Tecnologia (IIT) a Roma, coordinati da Irene Bozzoni e in collaborazione con Mariangela Morlando dell’Università degli studi di Perugia, ha aggiunto un nuovo tassello nella comprensione di questa patologia, individuando un nuovo componente molecolare degli aggregati patologici caratteristici della SLA, l’RNA circolare circ-Hdgfrp3.

Gli RNA circolari sono così chiamati proprio per la loro forma peculiare che li rende particolarmente resistenti alla degradazione. Essi rappresentano una nuova classe di molecole espresse in tutte le cellule e in particolar modo nel sistema nervoso, dove il loro malfunzionamento è stato associato a diversi stati patologici.

Lo studio, pubblicato sulla rivista iScience, analizza la presenza di questo specifico RNA circolare in associazione alla SLA: più esattamente, esso è stato evidenziato negli aggregati patologici prodotti da mutazioni della proteina FUS associate a una grave forma della malattia. La proteina FUS, infatti, che normalmente è localizzata nel nucleo, a seguito di specifiche mutazioni viene a trovarsi nel citoplasma, dove può aggregarsi formando grosse inclusioni, tipiche della SLA, che sequestrano molti componenti cellulari impedendone la corretta localizzazione e funzione.

Il gruppo di ricerca, impiegando avanzate tecniche di imaging e studiando motoneuroni di modelli animali analizzati in vitro, ha studiato gli effetti delle mutazioni della proteina FUS sulla localizzazione di questo RNA circolare. Mentre in motoneuroni sani esso si muove lungo i prolungamenti dei neuroni, facendo quindi pensare a una importante funzione di spola da e verso la periferia della cellula, in condizioni patologiche questo RNA circolare rimane intrappolato negli aggregati della proteina FUS; ciò indica che la formazione di tali agglomerati patologici può avere un effetto deleterio nelle normali funzioni di spola di questo RNA circolare e contribuire, così, al malfunzionamento dei motoneuroni.

“In questo studio abbiamo definito le caratteristiche di questo RNA – dichiara Irene Bozzoni a capo del gruppo della Sapienza – e descritto le alterazioni che si verificano nei motoneuroni che portano mutazioni della proteina FUS associate alla SLA”.

Questa ricerca, finanziata dall’European Research Council (ERC) e da Fondazione AriSLA, apre nuove interessanti frontiere nella comprensione delle malattie neurodegenerative, rispetto al ruolo degli aggregati patologici e degli RNA in essi contenuti.

Riferimenti:

Circ-Hdgfrp3 shuttles along neurites and is trapped in aggregates formed by ALS-associated mutant FUS – Eleonora D’Ambra, Tiziana Santini, Erika Vitiello, Sara D’Uva, Valentina Silenzi, Mariangela Morlando e Irene Bozzoni – iScience 2021 https://doi.org/10.1016/j.isci.2021.103504

 

Testo dal Settore Ufficio stampa e comunicazione Sapienza Università di Roma

PUBBLICATA SU “SCIENCE” LA SCOPERTA DI UNA DELLE CAUSE DELL’INVECCHIAMENTO

Uno studio dei ricercatori del Centro di Biotecnologie Molecolari dell’Università di Torino, guidati dal Prof. Emilio Hirsch, svela nuovi elementi chiave dei processi di invecchiamento. La ricerca può avere ricadute imprevedibili: dalla comprensione dei meccanismi del cancro al contrasto al COVID-19.

Emilio Hirsch cause invecchiamento
Emilio Hirsch

Perché ognuno di noi invecchia? È una domanda chiave della biologia molecolare, ma una risposta precisa ancora manca. Non sappiamo se l’invecchiamento sia incontrastabile o se sia un fenomeno mitigabile. Tuttavia oggi è noto che le cellule del nostro corpo possono seguire un programma di cambiamento, chiamato senescenza, che se attivato porta all’invecchiamento prima a livello cellulare e poi dell’organismo intero. Chiarire cosa scateni questo fenomeno è una delle sfide più straordinarie del nostro tempo.

I ricercatori del Centro di Biotecnologie Molecolari dell’Università di Torino guidati dal Prof. Emilio Hirsch hanno aggiunto un sostanziale tassello alla soluzione di questo enigma, in uno studio i cui risultati sono stati pubblicati sulla prestigiosa rivista americana Science, una delle più autorevoli al mondo in campo scientifico. Lo studio, sostenuto da Fondazione AIRC per la ricerca sul cancro, prende le mosse da precedenti risultati ottenuti nell’ambito della ricerca sul cancro e suggerisce per la prima volta che la senescenza può essere scatenata da specifici difetti della proliferazione cellulare.

Due proteine, chiamate PI3K-C2alpha e VPS36, sono state identificate come elementi necessari perché una cellula possa dividersi in due cellule figlie. Quando la concentrazione di queste proteine diminuisce, le cellule si duplicano con difficoltà, rallentando i tempi di separazione necessaria perché le due cellule prodotte dalla duplicazione si stacchino l’una dall’altra, tanto da diventare due entità autonome. I dottori Federico Gulluni e Lorenzo Prever, insieme al gruppo di ricerca guidato dal professor Emilio Hirsch, hanno scoperto che se il fenomeno di separazione rallenta, come quando PI3K-C2alpha e VPS36 sono meno abbondanti, si scatena il programma di senescenza e le cellule entrano in un nuovo stato, tipico dell’invecchiamento.

La lente dell’occhio, ovvero il cristallino, è risultata uno dei tessuti più sensibili alla diminuzione delle due proteine. Se ciò avviene, le cellule della lente scatenano il processo di senescenza causando un malanno comune e frequentissimo nell’anziano: la cataratta. Questa patologia consiste in una opacizzazione del cristallino, la lente che all’interno dell’occhio ci permette di mettere a fuoco le immagini del mondo circostante. Negli anziani è fortemente invalidante e, se non opportunamente trattata, è causa di grave impedimento visivo e disabilità. Nonostante la chirurgia offra delle soluzioni più che eccellenti, riuscire a prevenire questo fenomeno è un traguardo finora mai raggiunto, perché le cause dell’opacizzazione del cristallino non sono ancora chiare.

I dati pubblicati su Science aggiungono elementi volti a una più completa comprensione di questi meccanismi, indicando una strada mai precedentemente percorsa. I risultati ottenuti nascono dal connubio tra diverse esperienze di biologia cellulare e genetica e hanno coinvolto ricercatori in tutto il mondo, inclusi gli Stati Uniti, la Germania e Israele. L’idea centrale nasce dall’osservazione di una rarissima condizione genetica in una famiglia i cui bambini, nati con una deficienza genetica di PI3K-C2alpha, mostrano segni di invecchiamento precoce, tra cui la cataratta infantile. L’osservazione è stata poi confermata in pesci zebrafish (Danio rerio) geneticamente modificati che, sviluppando la cataratta, hanno dimostrato quanto questo meccanismo descritto per la prima volta sia radicato anche in organismi evolutivamente distanti dagli esseri umani.

Al di là dell’ambito oftalmologico, la ricerca torinese chiarisce un processo fondamentale dell’invecchiamento che potrà avere ricadute potenziali molto più ampie. Coinvolgendo la duplicazione cellulare e quindi la proliferazione, lo studio potrà aiutare a capire, innanzitutto, nuovi meccanismi del cancro, malattia anch’essa tipicamente associata all’invecchiamento. Come affermato dal professor Emilio Hirsch, che è anche Direttore Scientifico della Fondazione Ricerca Molinette:

“È evidente che la ricerca sull’invecchiamento non può che essere multidisciplinare. Come questo studio dimostra pienamente, i risultati della ricerca di base hanno ricadute imprevedibili e per questo finanziare la ricerca di eccellenza in questo settore è fortemente necessario. Le malattie dell’invecchiamento – espressione che comprende varie patologie, da quelle oncologiche a quelle neurodegenerative – hanno sempre alla base i meccanismi di invecchiamento cellulare. Per questa ragione la Fondazione ha focalizzato la propria mission proprio su queste malattie, promuovendo un bando per favorire lo sviluppo di ricerca traslazionale di eccellenza a Città della Salute e della Scienza”.

Le potenziali implicazioni di questa scoperta, poi, non sono finite qui: chiarendo il ruolo delle proteine PI3K-C2alpha e VPS36 nella separazione delle membrane cellulari, infatti, si potrebbero aggiungere nuove ipotesi di lavoro nel contrasto del COVID-19, anche lui in grado di riprodursi proprio grazie alle stesse proteine in questione.

 

Testo e foto dall’Ufficio Stampa dell’Università degli Studi di Torino