News
Ad
Ad
Ad
Tag

malattie genetiche

Browsing

Identificata la causa della malattia genetica rara della piccola Bea nel gene ARHGAP36

La prestigiosa rivista Nature Communications ha pubblicato il lavoro internazionale che ha studiato la malattia rara relativa al caso della piccola Bea.

Nel 2010 Bea venne visitata nell’Ambulatorio di Genetica Clinica Pediatrica dell’Ospedale Infantile Regina Margherita di Torino perché presenta delle tumefazioni alle articolazioni. Le radiografie e la TAC rilevarono rapidamente una situazione molto particolare, una serie di “calcificazioni” che stavano progressivamente trasformando la cartilagine in osso. Bea era una bimba vivace ed intelligente, ma ben presto le articolazioni si bloccarono, rendendo impossibili i movimenti di braccia e gambe. Gli esami radiologici mostrarono un quadro sempre più grave: nessuno specialista aveva mai visto un caso come quello di Bea in tutto il mondo. La famiglia creò una Onlus, si adoperò per far conoscere il caso e la zia pubblicò #Leggera come una piuma – Il Mondo di Bea (Pathos edizioni) per far conoscere la malattia. I mezzi di comunicazione si interessarono al caso e Bea venne conosciuta da molte persone che accompagnarono la famiglia nel lungo percorso di malattia della bambina.

Dopo 13 anni e centinaia di esperimenti, un gruppo internazionale di ricercatori, coordinati dalla dott.ssa Elisa Giorgio ricercatrice dell’Università di Pavia e di Fondazione Mondino IRCCS, è riuscito ad identificare la causa della malattia di Bea, chiarendo come questa sia una malattia genetica non solo rarissima, ma semplicemente unica. La ricerca è iniziata attraverso la collaborazione tra i Pediatri che hanno inizialmente approfondito il quadro clinico (Prof. Giovanni Battista Ferrero, Prof.ssa Margherita SilengoUniversità di Torino) ed il laboratorio di Genetica Medica e malattie rare del prof. Alfredo Brusco (Dipartimento di Scienze MedicheUniversità di TorinoCittà della Salute e della Scienza, Torino). Per capire il complesso meccanismo alla base della malattia è stata necessaria una collaborazione con diversi centri italiani (Dott. Marco Tartaglia, Ospedale Pediatrico Bambin Gesù, Roma; Prof. Massimo Delledonne, Università di Verona) ed esteri (Prof. Malte Spielmann, Università di Lubecca e Kiel, Germania).

Nella foto da sinistra: Palazzo del Lavoro (edificio coperto con il tricolore), Pala Vela (dietro al CTO), Ospedali CTO (grattacielo) e Regina Margherita (edificio ai piedi del CTO) e il Tetto di Torino Esposizioni (tetto ad arco tra gli alberi). Foto Flickr di Simone Graziano Panetto, CC BY 2.0

Inizialmente erano state approfondite le cause note di malattie genetiche associate alle calcificazioni ectopiche, quadri clinici caratterizzati da formazione di osso in tessuti normalmente non ossificati, come muscoli, tendini e legamenti. Questi disturbi sono solitamente causati da una mutazione genetica, come nella Fibrodisplasia ossificante progressiva (FOP), una rara malattia genetica in cui i muscoli e i tessuti molli vengono gradualmente sostituiti dalle ossa. La FOP è causata da una mutazione nel gene ACVR1, responsabile dell’informazione necessaria per formare tessuto osseo nei vari distretti scheletrici. Quando questo gene è mutato, invia un segnale anomalo a vari tessuti che progressivamente calcificano e si trasformano in osso

 

LA RICERCA

La malattia di Bea aveva molte similitudini con la FOP, ma si era presentata nelle prime settimane di vita con un’evoluzione molto rapida ed invalidante. Le analisi genetiche avevano da subito escluso questa malattia.

Nel frattempo il gruppo di ricerca aveva identificato, con una serie di approfondimenti, un’anomalia cromosomica unica, mai descritta in letteratura caratterizzata dalla presenza di un segmento del cromosoma 2 doppio, inserito sul cromosoma X della bambina.

Questa anomalia dei cromosomi, ovvero l’inserzione di una regione di un cromosoma su un altro, può portare a un’espressione genica alterata. Questi eventi sono rari, molto eterogenei tra loro, ed è assai complesso capirne le conseguenze biologiche. Solo negli ultimi anni la tecnologia ha messo a disposizione dei ricercatori degli approcci estremamente complessi per poter studiare queste anomalie cromosomiche.

L’attività di ricerca ha permesso di capire che il pezzo di cromosoma 2 in più conteneva delle regioni in grado di attivare i geni sul cromosoma X nei tessuti sbagliati. In particolare, si è dimostrato che il gene ARHGAP36 produce una proteina in quantità molto più elevate dell’atteso, ma soprattutto nel tessuto sbagliato, la cartilagine. Proprio questo gene induce la formazione si tessuto osseo dove non dovrebbe essere presente.

“Questo studio è la dimostrazione di come la collaborazione tra gruppi di ricerca con competenze diverse sia la chiave per ottenere successi scientifici” spiega la dott.ssa Giorgio. “La ricerca ha bisogno di tempo e si costruisce sulle conoscenze che a mano a mano gli scienziati accumulano; nel 2010 non avevamo i mezzi tecnologici, né le conoscenze di base per capire la malattia di Bea”. Proprio la Dott.ssa Giorgio nel 2015 aveva scoperto un meccanismo simile a quello che causa la malattia di Bea (chiamato in gergo tecnico “adozione di un enhancer”) come causa di una rara forma di malattia neurodegenerativa, l’ADLD, adesso uno dei filoni di ricerca del suo laboratorio a Pavia.

La definizione del meccanismo biologico alla base del quadro clinico ha permesso di dare alla famiglia della bambina una risposta attesa da molti anni, una risposta che permette, come in tutte le malattie rare, di porre fine all’odissea diagnostica, complessa e dolorosa che caratterizza queste patologie.

LE PROSPETTIVE 

Studiando le malattie rare come quella di Bea, gli scienziati possono trovare percorsi e meccanismi che potrebbero essere coinvolti anche in malattie più comuni. Lo studio identifica un gene ARHGAP36 come implicato nella formazione ossea, un’informazione del tutto sconosciuta fino ad ora. Studiando questo gene e la sua funzione è possibile che capiremo meglio le malattie ossee nella popolazione generale. Al momento è troppo presto per pensare ad un utilizzo pratico della ricerca fatta, ma i ricercatori coinvolti sono entusiasti di aver contribuito a risolvere uno dei casi più difficili di malattia genetica rara conosciuta, quello della piccola Bea.

 

Nature Communications, Nat Commun. 2023 Apr 11;14(1):2034. doi: 10.1038/s41467-023-37585-8. PMID: 37041138

Enhancer hijacking at the ARHGAP36 locus is associated with connective tissue to bone transformation.

Melo US, Jatzlau J, Prada-Medina CA, Flex E, Hartmann S, Ali S, Schöpflin R , Bernardini L, Ciolfi A, Moeinzadeh M-H, Klever M-K, Altay A, Vallecillo-Garcia P, Carpentieri G, Delledonne M, Ort M-J, Schwestka M, Ferrero GB, Tartaglia M, Brusco A, Gossen M, Strunk D, Geißler S, Mundlos S, Stricker S, Knaus P, Giorgio E, Spielmann M. –  https://www.nature.com/articles/s41467-023-37585-8

 

Testo dall’Ufficio Stampa Area Relazioni Esterne e con i Media Università degli Studi di Torino

L’articolo sulle trombofilie ereditarie inaugura una nuova rubrica, con la quale rispondere alle domande dei lettori. Si è quindi approfondito l’argomento, non senza alcune difficoltà, dal momento che si tratta di una malattia rara. Come indicato anche altrove, i nostri articoli hanno scopo informativo e divulgativo, e non sostituiscono in alcun modo il parere, la diagnosi o l’intervento del medico o di altri operatori sanitari: in caso di bisogno invitiamo a rivolgervi a loro.

Immagine di National Cancer Institute

Le trombofilie ereditarie

Le trombofilie ereditarie consistono in anomalie coagulatorie genetiche che favoriscono l’eccessiva formazione di trombi ed emboli venosi (le vene sono i vasi sanguigni che riportano il sangue verso il cuore). Il trombo è un aggregato solido di componenti del sangue quali piastrine, globuli rossi, globuli bianchi e fibrina che si forma nei vasi sanguigni o nelle cavità cardiache aderendo alle pareti. Il trombo può staccarsi e propagarsi, comportando l’ostruzione di vasi importanti, o può frammentarsi e dar luogo ad emboli. Questi ultimi sono formazioni anomale insolubili di origine varia (lipidica, trombotica o gassosa) che circolano nel torrente sanguigno e possono ostruire un vaso. I meccanismi alla base delle trombofilie ereditarie e i fattori di rischio correlati all’insorgenza della malattia sono diversi in base alla sede della trombosi (vene o arterie).

trombofilie ereditarie

Sezione di un’arteria umana. Immagine di Lord of Konrad, CC0

Cos’è la proteina S?

Il deficit congenito della proteina S è una malattia ematologica rara ereditaria, dovuta a difetti del gene PROS1. Il difetto riguarda il processo di coagulazione, cioè quel meccanismo protettivo necessario per evitare eccessive perdite ematiche che metterebbero in pericolo la sopravvivenza. La proteina S è presente nel plasma sanguigno in forma libera, svolgendo una funzione anticoagulante, o legata a proteine del cosiddetto sistema del complemento. La forte associazione tra carenza della proteina S, ereditaria o acquisita, e l’aumentato rischio di trombosi venose evidenzia il ruolo importante di questa proteina nel controllo dell’inizio e dell’avvio della cascata coagulativa, nonché della sua regolazione. In altre parole, come si evince dalla letteratura scientifica, la proteina S aiuta a prevenire l’eccessiva coagulazione del sangue.

Doppia elica del DNA. Immagine di Arek Socha

Come si manifestano le trombofilie ereditarie da deficit della proteina S? 

La malattia, caratterizzata da trombosi delle vene per la ridotta sintesi e/o attività della proteina S, ha una trasmissione autosomica dominante, cioè causata da un’alterazione presente nel corredo di cromosomi non sessuali. I dati sulla prevalenza della malattia non sono del tutto noti. Il deficit parziale (eterozigosi, presenza di un solo gene difettoso) di proteina S ha un’incidenza stimata tra 0,16 e 0,21% nella popolazione generale; la forma grave (omozigosi, presenza di entrambi i geni difettosi) ha prevalenza, al momento, sconosciuta per le difficoltà diagnostiche della patologia. Occasionalmente, il deficit da proteina S può essere acquisito come conseguenza di altre patologie o terapie.

Dati epidemiologici non del tutto disponibili. Immagine di Adrian

Condizioni fisiologiche e patologiche

I livelli di proteina S nel plasma sanguigno fluttuano anche in base all’età, al sesso, oltre che per influenze genetiche o acquisite come lo stato ormonale e il metabolismo lipidico. La trombofilia ereditaria da deficit congenito della proteina S può presentare tre manifestazioni, come è stato definito dalla International Society on Thrombosis and Hemostasis (ISTH), in base alla quantità della proteina S libera e totale, nonché dell’attività. Il tipo 1 e il tipo 3 sono carenze quantitative, con livelli bassi di antigene libero; il tipo 2 è un deficit qualitativo, con livelli normali di proteina S totale e libera. 

Immagine di Fernando Zhiminaicela

Segni, sintomi e diagnosi

Secondo lo Human Phenotype Ontology, i segni clinici e i sintomi più frequenti negli omozigoti sono porpora fulminante o trombosi venosa massiva nei primi momenti della vita neonatale. La porpora fulminante causa coagulazione del sangue estesa e morte dei tessuti, mettendo a rischio la vita del paziente. Invece, i pazienti eterozigoti sono di solito asintomatici nell’età adulta. In tal caso, gli eventi trombotici sono principalmente dovuti all’immobilizzazione protratta, ad interventi chirurgici o alla gravidanza.

La diagnosi si basa sull’identificazione dei sintomi caratteristici della patologia, una dettagliata storia individuale e familiare, una valutazione clinica e diversi test specialistici (per esempio, la misurazione dell’attività anticoagulante della proteina S, dei livelli di proteina S totale o libera). La diagnosi prenatale, nel caso in cui si presenti una storia familiare positiva per le malattie trombotiche, è possibile e si basa sull’identificazione della mutazione patogenetica sul DNA estratto dai villi coriali.

Immagine di Darko Stojanovic

Terapie disponibili

La più significante causa di morbilità è la predisposizione alla formazione di trombi a livello delle gambe, dell’intestino, dei polmoni, dell’encefalo. Non c’è (al momento), infatti, una vera e propria terapia per i pazienti. Il trattamento d’elezione prevede terapie anticoagulanti. La scelta del farmaco più idoneo, del dosaggio e della durata della terapia varia da paziente a paziente. I fattori da tenere in considerazione ai fini terapeutici sono diversi: severità e frequenza dei trombi, potenziale interazione tra farmaco e alimentazione, l’età, lo stato di salute generale. La terapia, in alcuni casi, può durare tutta la vita e, associata ad un controllo adeguato, riduce significativamente il rischio di tromboembolia.

Immagine in evidenza di John Schnobrich

Fonti:

trombofilie ereditarie
Foto di John Schnobrich

La storia di Luca? L’emofilia A 

Giuseppe Luca Rizzo non rinuncia, oggi, all’amore per lo sport. E perché dovrebbe? Luca è affetto da emofilia A. L’emofilia è una malattia genetica rara provocata dalla mancanza dei fattori indispensabili per la coagulazione del sangue. Quando era piccolo, la sua condizione non gli consentiva di praticare niente. Poi, crescendo e conoscendo se stesso, lo sport è entrato a far parte della sua quotidianità. Ad una passione se ne aggiunse subito un’altra: la musica. Sport e musica hanno aiutato Luca ad affrontare le sfide legate alla malattia e ad aprirsi alle nuove. Attualmente, la vita delle persone affette da emofilia è migliorata grazie allo sviluppo di nuove terapie di profilassi, capaci di fornire un’efficace protezione dal rischio di sanguinamenti. Luca non aveva mai parlato volentieri della sua malattia, finché nel 2021 sentì l’esigenza di uscire allo scoperto. Luca sapeva che tante persone si limitavano nello sport a causa della malattia. Pianificò, allora, un viaggio in bicicletta per trasmettere un messaggio: con l’emofilia si può fare quasi tutto. L’esperienza, condivisa con la compagna, ha avuto una grande risonanza, tanto da indurlo ad organizzare altri viaggi.

Immagine  di Fabricio Macedo

L’emofilia

La coagulazione del sangue è un meccanismo protettivo per evitare eccessive perdite ematiche che metterebbero in pericolo la sopravvivenza. L’emofilia si eredita, in modalità recessiva, attraverso il cromosoma X: si manifesta solo nei maschi, mentre le donne possono essere portatrici sane. Essa è caratterizzata dalla carenza di uno specifico fattore della coagulazione. Esistono principalmente due forme di emofilia, la A e la B. Nel primo caso, è carente il Fattore otto (FVIII), mentre nel secondo il Fattore nove (FIX). L’emofilia A è più diffusa (prevalenza 1: 10.000) dell’emofilia B (prevalenza 1:30.000). Le manifestazioni dipendono dipendono dalla gravità della malattia, che è determinata in base alla gravità della carenza di attività del fattore coagulante. Si parla di emofilia grave quando il valore dell’attività del fattore coagulante è inferiore all’1%.

Le persone affette da emofilia, in genere, oltre alle problematiche tipiche dello stato emorragico, presentano anche altre complicanze: per esempio, sanguinamenti dolorosi e prolungati a livello dei muscoli e delle articolazioni. Tali complicanze, se non sono trattate tempestivamente e in maniera adeguata, possono portare a patologie articolari (artropatie) croniche e disabilità.

sangue emofilia A in forma grave

Immagine di Deutsch

Terapie

La cura dell’emofilia ha avuto grandi sviluppi negli ultimi decenni. Le misure di prevenzione specifica prevedono la somministrazione del farmaco contenente i fattori della coagulazione mancanti. Le due principali terapie per l’emofilia sono quella “on demand” (al bisogno, cioè al momento del sanguinamento) e la profilassi, che prevede la somministrazione costante del fattore carente. In Italia, uno tra i paesi più evoluti dal punto di vista clinico-terapeutico, viene utilizzata l’autoinfusione domiciliare. Come si legge su OMaR (Osservatorio Malattie Rare),

“In molte regioni italiane, dal 1976, il trattamento domiciliare è stato reso possibile grazie a leggi regionali ad hoc che permettono, dopo idoneo corso di formazione, di abilitare i pazienti e/o i loro assistenti ad eseguire la terapia a domicilio senza la presenza del personale sanitario”.

Comunque, anche tale terapia è invasiva perché i pazienti devono ripeterla periodicamente per tutta la vita.

Immagine di National Cancer Institute

I passi per approvare un farmaco

L’azienda californiana BioMarin Pharmaceutical due anni fa iniziò, in diversi Paesi del mondo (inclusa l’Italia con l’Ospedale Maggiore del Policlinico di Milano), un trial clinico di Fase III con il farmaco con nome commerciale Roctavian (terapia genica denominata valoctocogene roxaparvovec). Il percorso regolatorio di Roctavian ha previsto il processo di valutazione da parte dell’Agenzia Europea per i Medicinali (EMA) e i pareri del Comitato per i Medicinali per Uso Umano (CHMP) e del Comitato per le Terapie Avanzate (CAT). Il 7 settembre 2022, la Commissione Europea ha concesso al farmaco Roctavian l’autorizzazione condizionata all’immissione in commercio per il trattamento dell’emofilia A grave. Tale tipo di autorizzazione garantisce che il farmaco approvato  soddisfi i rigorosi standard UE su sicurezza, efficacia e qualità. Come si legge sul sito Epicentro dell’Istituto Superiore di Sanità

le autorità regolatorie ricorrono a questo strumento se il beneficio della disponibilità immediata di un farmaco supera chiaramente il rischio legato al fatto che non tutti i dati sono ancora disponibili, normalmente richiesti per le autorizzazioni standard”.

Una volta concessa, le aziende sono obbligate a fornire entro determinate scadenze, ulteriori dati per confermare che i benefici continuano a superare nettamente gli eventuali rischi. 

Il farmaco è designato come orfano, cioè destinato alla cura di una malattia rara, la cui realizzazione, da parte delle aziende farmaceutiche, non consente ricavi per recuperare i costi sostenuti per il loro sviluppo. Tale denominazione garantisce a Roctavian un periodo di 10 anni di esclusività di mercato ed esclude la competitività di farmaci simili con la stessa indicazione terapeutica.

Immagine di Christian Lue

L’ultima terapia approvata

Roctavian è un medicinale per terapia avanzata denominato “prodotto di terapia genica”. La strategia alla base della terapia è fornire all’organismo una copia corretta del gene difettoso. Il farmaco è usato nei pazienti adulti affetti da emofilia A in forma grave che non hanno anticorpi per il FVIII e contro il virus che trasporta il gene del fattore mancante. Il tipo di virus utilizzato nel medicinale (detto virus adeno-associato) non provoca malattie nell’uomo. Roctavian è somministrato, in una struttura attrezzata, con infusione endovenosa un’unica volta. Esso fornisce al paziente il gene grazie a cui le cellule del fegato possono iniziare a produrre il FVIII senza che sia più necessario ricorrere alle infusioni periodiche (Osservatorio Malattie Avanzate).

Il dato che emerge dal trial, che ha coinvolto 134 pazienti, riguarda il numero annuo di episodi emorragici: si è ridotto di circa l’85% e con esso anche il tasso medio di infusioni di FVIII. Parallelamente, l’attività del FVIII nei pazienti che hanno ricevuto Roctavian si è mantenuta stabile nel tempo a due anni dalla somministrazione.

Il farmaco consentirà di ampliare le scelte terapeutiche del medico, potendo considerare anche un’infusione una tantum che protegge dalle emorragie per diversi anni.

Immagine di Lukas

 

Approfondimenti:

  1. Approvata in Europa la prima terapia genica per l’emofilia A
  2. First Gene Therapy for Adults with Severe Hemophilia A, BioMarin’s ROCTAVIAN™ (valoctocogene roxaparvovec), Approved by European Commission (EC)
  3. Emofilia: news su farmaci, terapie, sperimentazioni e qualità della vita
  4. Roctavian (valoctocogene roxaparvovec)
sangue emofilia A in forma grave
Immagine di qimono

STUDIO DI UNITO IN COLLABORAZIONE CON TOKAI UNIVERSITY APRE NUOVE FRONTIERE PER IL TRATTAMENTO DELLE MALATTIE RARE 

La ricerca utilizza modelli computerizzati di proteine generati con AlphaFold, la più recente e rivoluzionaria tecnologia di intelligenza artificiale, per verificare la fattibilità e pianificare rapidamente una strategia terapeutica personalizzata per pazienti pediatrici affetti da una malattia genetica rara (IAHSP), caratterizzata da grave spasticità agli arti. Pubblicato dal Drug Discovery Today, il lavoro supporta HelpOlly, onlus torinese nata per trovare una cura a una bambina di 4 anni affetta da IAHSP.

Studio dell’Università di Torino in collaborazione con Tokai University apre nuove frontiere per il trattamento delle malattie rare. Immagine di Joseluissc3CC BY-SA 4.0

Una ricerca realizzata dal gruppo di ricerca CASSMedChem del Dipartimento di Biotecnologie Molecolari e Scienze per la Salute dell’Università degli Studi di Torino — specializzato nella chimica farmaceutica —, in collaborazione con il Department of Molecular Life Sciences della Tokai University in Giappone, ha individuato un metodo innovativo per chiarire a livello molecolare l’effetto delle mutazioni alla base delle malattie genetiche rare. Lo studio, che si focalizza su una forma ultra-rara di paralisi spastica di origine genetica chiamata IAHSPè stato pubblicato dalla rivista scientifica Drug Discovery Today di Elsevier.

Attraverso l’utilizzo di AlphaFoldDB, un database di strutture proteiche 3D costruite con sistemi basati su reti neurali, i ricercatori sono riusciti a ottenere alcuni modelli di varianti mutate della proteina (alsina) responsabile della patologia, tipiche di ogni paziente affetto da IAHSP. La validità dei modelli proposti è stata verificata tramite una serie di dati sperimentali forniti dal prof. Shinji Hadano in Giappone, noto esperto di alsina e delle patologie correlate. In pratica, lo studio permette di visualizzare e ispezionare le strutture dell’alsina, delle sue varianti patogene e di analizzarle con strumenti di modellizzazione molecolare, spesso online e liberamente accessibili. La strategia proposta dai ricercatori di UniTo si è dimostrata relativamente semplice, in grado di fornire un guadagno di conoscenza in tempi brevi e con impiego limitato di risorse.

Lo studio, intitolato AI-based protein structure databases have the potential to accelerate rare diseases research: AlphaFoldDB and the case of IAHSP/Alsin, è firmato da Matteo Rossi SebastianoGiuseppe ErmondiShinji Hadano e Giulia Caron e supporta una Onlus torinese, HelpOllynata per trovare una cura per Olivia, una bambina di 4 anni affetta da IAHSP e in lotta contro il tempo per combattere la grave forma di spasticità degenerativa che l’ha colpita. I risultati ottenuti, pertanto, si inseriscono in uno specifico programma di drug discovery.

Nel corso dello studio sono stati analizzati 7 casi clinici di IAHSP. I modelli tridimensionali delle corrispondenti proteine mutate e una serie di strumenti computazionali hanno permesso di comprendere i meccanismi patogenetici di ogni singola mutazione. Approcciare questi casi clinici solo con metodi sperimentali tradizionali avrebbe richiesto anni e ingenti fondi, mentre con questo procedimento si può analizzare la situazione di ogni singolo paziente in poco tempo, delegando alla dimostrazione sperimentale, ovviamente necessaria, solo la conferma finale.

Questo tipo di strategia verificata per la IAHSP è trasferibile ad altre malattie genetiche. Secondo gli autori, integrare quest’approccio nel processo diagnostico, a valle dell’analisi genetica, permetterebbe di comprendere immediatamente i meccanismi patogenetici, valutare la fattibilità di un intervento farmacologico e accelerare la ricerca di una cura personalizzata per ogni paziente.

trattamento malattie genetiche rare
Studio dell’Università di Torino in collaborazione con Tokai University apre nuove frontiere per il trattamento delle malattie rare. Foto di PixxlTeufel (Micha)

Spesso siamo portati a pensare all’intelligenza artificiale come a qualcosa di futuristico e lontano— sottolinea Matteo Rossi Sebastiano, ricercatore del gruppo CassMedChem, Dipartimento di Biotecnologie Molecolari e Scienze per la Salute di UniTo — ma è fondamentale comprendere come l’applicazione di tali strumenti nel campo della Salute, rappresenti in realtà una rivoluzione in atto, un alleato prezioso e dagli effetti sempre più concreti. Fino a qualche mese fa era inimmaginabile poter dare una “faccia” alla maggior parte delle proteine, men che meno studiarne le varianti patologiche rare. Oggi possiamo, nell’arco di qualche settimana, gettare le basi per strategie terapeutiche personalizzate. Non a caso, la prestigiosa rivista Nature ha definito AlphaFold come metodo dell’anno. È un orgoglio che UniTo sia tra le prime università a fare ricerca con AlphaFold”.

“Le proteine sono macromolecole che garantiscono il corretto funzionamento delle cellule. In molti casi basta la sostituzione di un singolo aminoacido dovuto a una mutazione nel DNA per compromettere il funzionamento di una proteina e della intera cellula. Pertanto — aggiunge Giuseppe Ermondi, docente di Chimica Farmaceutica, Dipartimento di Biotecnologie Molecolari e Scienze pe la Salute di UniTo — è di fondamentale importanza la conoscenza della struttura proteica a livello atomico. Non a caso gli sviluppatori di tutte le principali tecniche di determinazione sperimentale della struttura delle proteine sono stati insigniti del premio Nobel (la crio-microscopia elettronica nel 2018, la risonanza magnetica nucleare nel 2002 e la cristallografia nel lontano 1962). Quando non è possibile ottenere delle strutture sperimentali ci vengono in aiuto alcune tecniche computazionali di predizione della struttura delle proteine. Nel 2013, ancora una volta il premio Nobel ha premiato gli sviluppatori di tecniche di calcolo basate sulla dinamica molecolare che permettono di studiare il comportamento delle proteine e dei loro mutanti a partire dalla struttura a livello atomico.”

Il primo passo per trovare un trattamento farmacologico verso una malattia genetica consiste nell’ottenere un modello computazionale ragionevole della struttura chimica della proteina responsabile della patologia — spiega Giulia Caron, docente di Chimica Farmaceutica, Dipartimento di Biotecnologie Molecolari e Scienze pe la Salute di UniTo e coordinatrice dello studio — Questo passaggio può essere complesso e scoraggiare ulteriori studi soprattutto per quelle malattie in cui i casi clinici sono pochi e uno diverso dall’altro. D’altro canto, come ricercatori di UniTo, abbiamo il dovere di utilizzare tutti gli strumenti e le competenze a nostra disposizione per dare speranza ai pazienti e ai loro familiari. Ci siamo quindi concentrati sulla tecnologia AlphaFold (disponibile solamente da fine luglio 2021) e l’abbiamo applicata alla coppia alsina/IAHSP per provare a dare qualche prima risposta concreta alla HelpOlly. Con questo studio abbiamo dimostrato che la IAHSP nella forma di Olivia è quantomeno potenzialmente trattabile da un punto di vista farmacologico e pertanto abbiamo applicato una procedura computazionale di drug discovery e individuato una molecola molto promettente per il trattamento della patologia di Olivia. A questo punto però i computer non bastano più e quindi sono in corso una serie di validazioni sperimentali sia dal prof. Hadano in Giappone, sia in altri Dipartimenti dell’Università degli Studi di Torino”.

 

Testo dall’Ufficio Stampa dell’Università degli Studi di Torino sul nuovo studio relativo al trattamento delle malattie rare.