News
Ad
Ad
Ad
Tag

Luka Ðorđević

Browsing

LE CAPSULE CHE “CATTURANO” GLI INQUINANTI: poliedri supramolecolari artificiali con la geometria del cubo simo, capsule in grado di immagazzinare sostanze (anche inquinanti)

Pubblicato su «Nature» lo studio di un team internazionale di ricercatori delle Università di Padova e Hong-Kong che svela un nuovo materiale “intelligente” di dimensioni nanoscopiche per immagazzinare e rilasciare sostanze in modo controllato

 Studiare materiali innovativi che individuino e catturino sostanze inquinanti per aria e acqua è oggi di fondamentale importanza: un aiuto nella preparazione di questi nuovi materiali arriva dalle capsule proteiche artificiali. In biologia le capsule proteiche svolgono funzioni essenziali in diversi processi, tra cui il trasporto e l’immagazzinamento di sostanze che spaziano dal fragile materiale genetico dei virus al ferro contenuto nelle ferritine.

Luka Ðorđević

Un team internazionale di ricercatori delle Università di Padova e Hong-Kong, con la collaborazione di università statunitensi (Duke, Northwestern, South Florida, California Institute of Technology) e cinesi (Tianjin, Anhui, Zhejiang), ha scoperto un nuovo materiale con caratteristiche simili alle capsule biologiche: lo studio, dal titolo Dynamic supramolecular snub cubes e pubblicato sulla rivista scientifica «Nature», è stato coordinato da Sir James Fraser Stoddart, premio Nobel per la chimica nel 2016 venuto a mancare il 30 dicembre 2024.

Le capsule biologiche sono dei poliedri supramolecolari, cioè subunità proteiche che si auto-assemblano attraverso numerosi legami deboli per creare delle strutture ben definite e simmetriche. Gli scienziati hanno provato a lungo a replicare queste strutture naturali e dopo molti tentativi sono riusciti a preparare poliedri supramolecolari artificiali e produrre capsule con caratteristiche simili a quelle biologiche che possano immagazzinare sostanze e rilasciarle in modo intelligente e controllato.

La scoperta del processo che porta dal riconoscimento delle molecole alla preparazione di capsule artificiali ha reso possibile lo studio di due caratteristiche fondamentali di questi nuovi materiali, che trovano una similitudine con le proprietà delle capsule biologiche: le proprietà dinamiche e la capacità di incapsulare altre sostanze, doti essenziali per lo sviluppo di questa classe di sistemi altamente “intelligenti” dal momento che consentono una cattura e un rilascio controllato delle sostanze utilizzando la luce come stimolo. Tra le numerose applicazioni possibili c’è, ad esempio, la purificazione dell’aria o dell’acqua attraverso l’immagazzinamento di idrocarburi.

«Per la preparazione di questo nuovo materiale è stato fondamentale sfruttare delle molecole chirali – spiega Luka Ðorđević, autore della ricerca e docente al Dipartimento di Scienze Chimiche dell’Università di Padova –. La chiralità è una proprietà di oggetti che sono immagini speculari l’uno dell’altro ma non sono sovrapponibili, come le nostre mani destra e sinistra. Questa proprietà è universale in natura e si manifesta ovunque, dal DNA alle proteine. Nel nostro studio abbiamo osservato come delle molecole chirali possano riconoscersi e auto-assemblarsi in capsule sintetiche dalle dimensioni di solo un paio di nanometri. La dimensione della capsula determina ciò che questa riesce a immagazzinare: creare poliedri da oggetti macroscopici risulta molto facile, ma produrne di dimensioni nanoscopiche è estremamente complicato. Il nostro studio dimostra che le dimensioni di un paio di nanometri sono sufficienti per consentire di immagazzinare idrocarburi come il benzene e il cicloesano, inquinanti di aria e acqua».

Luka Ðorđević
Luka Ðorđević

La geometria di un materiale ne influenza le proprietà e quindi le sue possibili applicazioni: questo nuovo poliedro sintetico è interessante perché riproduce la geometria del cubo simo (snub cube), uno dei 15 poliedri archimedei con 60 spigoli, 24 vertici e 38 facce. Inoltre, anche il cubo simo è chirale e quindi si presenta in due forme speculari.

Riferimenti bibliografici: Huang Wu, Yu Wang, Luka Đorđević, Pramita Kundu, Surojit Bhunia, Aspen X.-Y. Chen, Liang Feng, Dengke Shen, Wenqi Liu, Long Zhang, Bo Song, Guangcheng Wu, Bai-Tong Liu, Moon Young Yang, Yong Yang, Charlotte L. Stern, Samuel I. Stupp, William A. Goddard III, Wenping Hu & J. Fraser Stoddart, Dynamic supramolecular snub cubes – «Nature» – 2025, link: https://www.nature.com/articles/s41586-024-08266-3

Luka Ðorđević
Poliedri supramolecolari artificiali con la geometria del cubo simo, capsule in grado di immagazzinare sostanze (anche inquinanti)

Testo e foto dall’Ufficio Stampa dell’Università di Padova

PER PRODURRE L’ETILENE CI VUOLE… IL SOLE: un’alternativa sostenibile al processo utilizzato in industria per convertire l’acetilene in etilene attraverso la luce solare e idruri di cobalto

Studio dell’Università di Padova rivoluziona i processi chimici di produzione di etilene puro con la luce solare per un futuro più sostenibile

Un catalizzatore a base di cobalto (in centro) promuove la conversione di molecole di acetilene (a sinistra) in molecole di etilene (a destra) mediante l’impiego della luce come fonte energetica
Un catalizzatore a base di cobalto (in centro) promuove la conversione di molecole di acetilene (a sinistra) in molecole di etilene (a destra) mediante l’impiego della luce come fonte energetica

L’etilene è la sostanza chimica organica più importante dell’industria moderna: con una produzione annua che raggiunge 200 milioni di tonnellate, le sue applicazioni spaziano dalla produzione di circa il 60% di tutte le plastiche alla gestione agricola, fino alla sintesi di numerosi prodotti chimici e composti organici.

Oggigiorno l’etilene viene prodotto principalmente attraverso la pirolisi petrolchimica di idrocarburi, un processo industriale che introduce delle impurezze di acetilene che limitano il diretto utilizzo dell’etilene prodotto. Per questo motivo, in industria, l’etilene deve essere prima purificato dall’acetilene in un processo di trasformazione che attualmente presenta grandi problematiche in termini di sostenibilità poiché necessita di alte temperature e metalli nobili – costosi e difficili da reperire – come catalizzatori. Nonostante i progressi compiuti, queste strategie tradizionali per la conversione dell’acetilene in etilene possiedono ancora una selettività relativamente bassa (ossia l’acetilene non viene soltanto convertito nel desiderato etilene, ma una parte di esso viene anche convertito in prodotti non desiderati).

Miscele fotocatalitiche illuminate dalla luce visibile nei laboratori Unipd di Arcudi e Ðorđević. Una molecola agisce da fotosensibilizzatore mediante l’assorbimento della luce e, in tal modo, promuove la reazione chimica ad opera di un’altra molecola che agisce da catalizzatore
Miscele fotocatalitiche illuminate dalla luce visibile nei laboratori Unipd di Arcudi e Ðorđević. Una molecola agisce da fotosensibilizzatore mediante l’assorbimento della luce e, in tal modo, promuove la reazione chimica ad opera di un’altra molecola che agisce da catalizzatore

Nello studio dal titolo Photocatalytic Semi-Hydrogenation of Acetylene to Polymer-Grade Ethylene with Molecular and Metal–Organic Framework Cobaloximes e pubblicato sulla prestigiosa rivista «Advanced Materials», il team di ricerca internazionale coordinato da Francesca Arcudi e Luka Ðorđević del Dipartimento di Scienze Chimiche dell’Università di Padova e da Joe Hupp della Northwestern University (Illinois, USA) ha riportato una strategia efficiente per convertire l’acetilene in etilene attraverso la luce solare, rappresentando un’alternativa sostenibile al processo utilizzato in industria.

«Abbiamo scoperto che una classe di molecole a base di cobalto, un metallo non nobile, è in grado di ridurre l’acetilene ad etilene impiegando la luce come fonte energetica. Con il nostro sistema, rispetto a quello utilizzato in industria, è possibile far avvenire questa importante trasformazione chimica a temperatura ambiente impiegando dei materiali poco costosi» spiega Francesca Arcudi, corresponding author dello studio e docente al dipartimento di Scienze Chimiche dell’Università di Padova.

I ricercatori hanno scoperto che a essere responsabile delle elevate prestazioni dei loro sistemi è la formazione di una particolare specie di cobalto.

«Grazie all’impiego della luce abbiamo generato dei cobalto idruri altamente reattivi e selettivi per questa reazione. Inoltre, è importante sottolineare che siamo stati in grado di sviluppare dei materiali che possono anche essere riciclati» aggiunge Anna Fortunato, assegnista di ricerca del dipartimento di Scienze Chimiche e co-prima autrice dell’articolo.

Francesca Arcudi e Luka Ðorđević sono stati i primi, nel 2022, a dimostrare un’alternativa sostenibile a questa reazione industriale mediante l’utilizzo della luce e lo studio appena pubblicato rappresenta un significativo passo avanti in termini di efficienza e selettività verso la reale implementazione industriale di questo rivoluzionario processo guidato dalla luce. Il sistema riportato dal gruppo di giovani ricercatori patavini ha mostrato sorprendenti risultati: rispetto ai processi tradizionali che raggiungono una selettività di circa l’85% per l’etilene con una conversione di acetilene del 90%, questo nuovo sistema che utilizza la luce raggiunge una selettività superiore al 99,9% per l’etilene con una completa conversione di acetilene. Tali efficienze e selettività sono state raggiunte in meno di un’ora di irradiazione.

«Le alte efficienze riportate in questo studio, oltre a rendere il nostro sistema un’alternativa sostenibile all’attuale processo di purificazione dell’etilene, aprono anche nuove prospettive per produrre etilene puro direttamente dall’acetilene utilizzando la luce solare, fonte di energia pulita, inesauribile e rinnovabile» spiega Luka Ðorđević, corresponding author dello studio e docente al dipartimento di Scienze Chimiche dell’Ateneo patavino.

La ricerca di nuove molecole e materiali è cruciale per facilitare la transizione verso un’industria chimica più sostenibile. Lo studio apre la strada a una rivoluzionaria metodologia che sostituisce le alte temperature con la luce per purificare questa importante molecola chimica, oltre a rappresentare un’alternativa produzione di etilene che potrebbe del tutto eliminare la pirolisi petrolchimica di idrocarburi utilizzando un metodo più pulito ed efficiente.

Da sinistra: Luka Đorđević, Anna Fortunato, Edoardo Saggioro, Francesca Arcudi
Da sinistra: Luka Đorđević, Anna Fortunato, Edoardo Saggioro, Francesca Arcudi

Lo studio è stato svolto nell’ambito del progetto europeo ERC Starting Grant recentemente finanziato dall’Unione Europea del professor Luka Ðorđević, e dei progetti di ricerca della dottoressa Francesca Arcudi per il programma Rita Levi Montalcini del Ministero dell’Università e della Ricerca e per lo STARS consolidator grant che le è stato recentemente finanziato dall’Università di Padova.

Link: https://onlinelibrary.wiley.com/doi/10.1002/adma.202408658

Titolo: Photocatalytic Semi-Hydrogenation of Acetylene to Polymer-Grade Ethylene with Molecular and Metal–Organic Framework Cobaloximes – «Advanced Materials» – 2024

Autori: Aaron E.B.S. Stone, Anna Fortunato, Xijun Wang, Edoardo Saggioro, Randall Q. Snurr, Joseph T. Hupp, Francesca Arcudi, Luka Ðorđević

Testo e immagini dall’Ufficio Stampa dell’Università di Padova