News
Ad
Ad
Ad
Tag

Irlanda

Browsing

UN PESCE FOSSILE DI 48 MILIONI DI ANNI RIVELA L’INASPETTATA STORIA EVOLUTIVA DEI PESCI LUNA

Lo studio, effettuato da un team italo-irlandese guidato da Valentina Rossi della University College Cork, Irlanda e da Giorgio Carnevale dell’Università di Torino, è stato pubblicato sulla prestigiosa rivista scientifica “Palaeontology”.ù

storia evolutiva pesce luna Bolca
Pesce fossile di 48 milioni di anni fa rivela la storia evolutiva dei pesci luna. Figura 1 – Mene rhombea (A) e ricostruzione schematica dell’anatomia (B)

Il recente ritrovamento di un nuovo esemplare di pesce luna (Mene rhombea – in figura 1) nei depositi fossiliferi di Bolca (Monti Lessini, Verona) ha stimolato un nuovo studio paleontologico che ha permesso di ricostruirne l’aspetto e determinarne la dieta e l’habitat. La ricerca, sviluppata da un team italo-irlandese guidato dalla ricercatrice Valentina Rossi della University College Cork, Irlanda e dal Prof. Giorgio Carnevale del Dipartimento di Scienze della Terra dell’Università di Torino, è stato pubblicato oggi sulla prestigiosa rivista scientifica “Palaeontology”.

I sedimenti fossiliferi di Bolca si sono accumulati nell’Eocene (circa 48 milioni di anni fa) in un mare tropicale che un tempo esisteva dove oggi sorgono i Monti Lessini, e sono ora conosciuti in tutto il mondo, da esperti e appassionati di paleontologia, per la straordinaria preservazione dei fossili che in essi sono conservati.

“I fossili rinvenuti dal sito della Pesciara sono definiti eccezionali in quanto presentano, oltre ai resti scheletrici, anche l’evidenza di tessuti non-mineralizzati come pelle, occhi, muscoli e organi interni”

ha dichiarato il Prof. Giorgio Carnevale, esperto delle faune di Bolca. L’esemplare studiato appartiene alla famiglia dei menidi, comunemente chiamati pesci luna per via del loro corpo appiattito, che al giorno d’oggi è rappresentata dalla sola Mene maculata, una specie che vive in acque poco profonde nell’Oceano Indo-Pacifico.

storia evolutiva pesce luna Bolca
Figura 2 – Mene maculata (A) e ricostruzione dell’aspetto del Mene rhombea, basata sui nuovi risultati scoperti dallo studio (B)

“Di esemplari di Mene rhombea ne sono stati trovati moltissimi, tanto che si può definire una vera e propria icona di questi giacimenti fossiliferi”, ha aggiunto Roberto Zorzin, “ma l’esemplare che abbiamo avuto l’opportunità di studiare è tra i meglio conservati mai rinvenuti”.

Sin dalle prime osservazioni effettuate presso il Museo Civico di Storia Naturale di Verona è stato chiaro per gli studiosi che si trattasse di un esemplare eccezionale (Fig. 1).

“Tre prominenti strie longitudinali di colore scuro alternate ad altrettante di colore più chiaro erano ben evidenti ad occhio nudo sui resti della pelle dell’animale. Grazie all’utilizzo di un microscopio ci siamo accorti che nell’addome erano presenti non solo i resti del suo ultimo pasto ma anche le tracce dell’intestino e altro materiale organico”, ha spiegato il Prof. Carnevale.

Ulteriori analisi morfologiche e chimiche di dettaglio hanno confermato la presenza di melanosomi nelle strie scure della pelle, nell’occhio e anche in alcune zone dell’addome. I melanosomi sono dei microscopici organelli cellulari contenti la melanina, il pigmento che dona il colore alla pelle, occhi, capelli e piume.

“Oggi sappiamo che nei vertebrati i melanosomi possono essere anche interni, ovvero contenuti all’interno degli organi, per esempio nel cuore, nel fegato e nei reni, per citarne alcuni” ha dichiarato la ricercatrice Valentina Rossi“trovarli in un fossile ci permette di ricostruirne il colore della pelle e l’anatomia interna”.

Lo studio comparativo con pesci attuali, la specifica distribuzione anatomica e la distinta geometria dei melanosomi nel fossile suggeriscono che questi organelli provengano da diversi tessuti, in particolare da pelle, rene, peritoneo e probabilmente cuore o fegato. L’analisi del contenuto dello stomaco invece ha rivelato la presenza di piccole ossa di pesce simili a quelle di una sardina, indicando che il M. rhombea avesse, almeno in parte, una dieta piscivora.

“Una dieta piscivora nei pesci attuali è spesso associata ad una livrea striata, con strie longitudinali con toni alternati chiari e scuri” ha aggiunto il Prof. Carnevale, “e questa informazione corrisponde perfettamente con i dati ottenuti dal nostro fossile confermando che in passato i pesci luna di Bolca preferivano mangiare piccoli pesci a differenza della specie attuale che invece si ciba di piccoli invertebrati e plancton”.

Un altro aspetto importante dello studio è la comparazione tra il pattern del colore della pelle osservabile nella specie vivente e quello rivenuto nel suo antenato fossile. Il primo è caratterizzato da una livrea maculata mentre il secondo da strie longitudinali e questo suggerisce che nel corso di quasi 50 milioni di anni la linea evolutiva dei menidi si sia diversificata e che le due specie avessero delle abitudini di vita diverse.

Nel Mene rhombea, le strie del dorso suggeriscono che l’animale abitasse ambienti di mare aperto. “È probabile che gli antichi pesci luna vivessero in banchi come gli attuali, ma preferissero nuotare in mare aperto, avvicinandosi alla costa solo per predare i piccoli pesci presenti in queste zone” ha spiegato il Prof. Carnevale.

Ma cosa ha portato a queste differenziazione delle livree? “Diverse modificazioni ambientali e genetiche hanno avuto un ruolo fondamentale nel cambiamento del pattern del colore nella linea evolutiva dei menidi”, ha aggiunto la ricercatrice Valentina Rossi. “Variazioni dei geni che controllano la formazione dei pattern della pelle possono avvenire molto rapidamente e sono osservabili nel giro di poche generazioni nei pesci; quindi, non è così strano ipotizzare gli stessi processi in due specie morfologicamente simili separate da ben 48 milioni di anni. La cosa incredibile è proprio che abbiamo potuto osservare direttamente un esemplare fossile così ben preservato da offrirci nuovi spunti per la ricerca dell’evoluzione del colore nelle specie ormai estinte. Rimango sempre affascinata dalla quantità di informazioni che possiamo estrarre dai fossili”.

Link all’articolo https://onlinelibrary.wiley.com/doi/full/10.1111/pala.12600 

 

Testo e foto dall’Area Relazioni Esterne e con i Media Università degli Studi di Torino sul pesce luna fossile di Bolca che rivela la storia evolutiva dei pesci luna.

QUBIC, un modo nuovo di studiare l’universo primordiale

Escono oggi, giovedì 21 aprile, su un numero speciale della rivista “Journal of Cosmology and Astroparticle Physics”, otto articoli a firma della collaborazione internazionale QUBIC (Q&U Bolometric Interferometer for Cosmology), che sta realizzando in Argentina un telescopio per lo studio dell’universo appena nato che si avvarrà di una tecnica innovativa.

QUBIC, infatti, osserverà e mapperà le proprietà del fondo cosmico a microonde, l’eco residua del Big Bang, concentrandosi sulla misura di particolari componenti dell’orientamento dell’oscillazione delle microonde della radiazione cosmica di fondo sul piano del cielo (polarizzazione), denominate modi-B, indicative delle possibili perturbazioni indotte dalle onde gravitazionali generate nei primi istanti di vita dell’universo.

Il progetto vede l’Italia protagonista grazie ai contributi scientifici e tecnologici forniti dall’INFN (Istituto Nazionale di Fisica Nucleare) e dalle Università di Milano Statale, Milano-Bicocca, Università di Roma “Tor Vergata” e Sapienza Università di Roma. QUBIC osserverà il cielo a partire dalla fine del 2022, da un sito desertico di alta quota (5000 m) in Argentina, vicino alla località San Antonio de Los Cobres.

QUBIC
Rotatore criogenico. Crediti: archivio fotografico QUBIC

Dopo il suo sviluppo e l’integrazione avvenuta presso i laboratori europei delle Università e degli enti di ricerca coinvolti nella collaborazione, QUBIC è arrivato in Argentina, nella città di Salta, nel luglio 2021, dove si sta procedendo alle fasi finali di calibrazione e di test in laboratorio. I risultati di queste attività, presentati negli otto articoli apparsi su ‘Journal of Cosmology and Astroparticle Physics, hanno confermato il corretto funzionamento dello strumento e dell’’interferometria bolometrica’, ossia la tecnica di nuova concezione su cui si baseranno le osservazioni di QUBIC, che combina l’elevatissima sensibilità dei rivelatori raffreddati quasi allo zero assoluto (-273 °C) e capaci di misurare l’energia della radiazione del fondo cosmico trasformandola in calore (bolometri), con la precisione degli strumenti interferometrici.

“QUBIC è uno strumento originale ed estremamente complesso: per questo era necessario pubblicare in anticipo tutti i dettagli del suo hardware e delle nuove metodologie di sfruttamento dei dati raccolti. Inoltre, con queste lunghe ed esaustive calibrazioni abbiamo dimostrato in laboratorio l’efficienza di QUBIC come interferometro bolometrico. È un passo essenziale per le successive misure di interesse per la cosmologia e la fisica fondamentale”, spiega Silvia Masi, docente presso Sapienza Università di Roma e ricercatrice INFN, che coordina la partecipazione italiana all’esperimento.

Grazie alla sua estrema sensibilità, che consentirà di distinguere i dettagli di ciascuno dei ‘pixel’ in cui sarà suddivisa la mappa celeste, QUBIC potrà discriminare i modi-B dai segnali generati dalle altre sorgenti del cielo, fornendo una prova diretta della teoria dell’inflazione. Questa è oggi la teoria di riferimento per la descrizione di ciò che sarebbe avvenuto nei primi istanti dell’universo, sviluppata negli anni ‘80 per spiegare alcune caratteristiche dell’universo, fra cui la ‘piattezza’ e l’estrema omogeneità dello spaziotempo.

QUBIC
Criostato. Crediti: archivio fotografico QUBIC

Secondo la teoria dell’inflazione, la rapidissima fase di espansione dell’universo subito dopo il Big Bang, durata meno di un centomillesimo di miliardesimo di miliardesimo di miliardesimo di secondo (circa 10-32 secondi), avrebbe lasciato un debole fondo di onde gravitazionali, che a loro volta avrebbero prodotto particolari debolissime tracce, detti modi-B, nella polarizzazione del fondo cosmico di microonde. In pratica, le onde elettromagnetiche del fondo cosmico non oscillerebbero in direzioni casuali. Sarebbero invece leggermente preferite direzioni che in cielo formano un disegno vorticoso.

Alla precisione delle misure che saranno effettuate da QUBIC contribuiranno inoltre la limpidezza e l’assenza di umidità che contraddistinguono l’aria del sito di Alto Chorrillo in cui sarà istallato il telescopio, a circa 5000 metri sul livello del mare, sul plateau La Puna nell’Argentina settentrionale, vicino alla cittadina di San Antonio de los Cobres, nella provincia di Salta.

“QUBIC verrà portato nel sito di Alto Chorrillo entro pochi mesi. Le prime misure dimostreranno l’efficienza del nuovo metodo dell’interferometria bolometrica per la prima volta osservando sorgenti astronomiche. Lo strumento verrà poi completato inserendo un maggiore numero di rivelatori, in modo da poter eseguire le misure di interesse cosmologico entro tre anni. La strada è lunga, e QUBIC si presenta come estremamente originale e complementare a tutti gli altri che cercano di misurare questo elusivo segnale primordiale”, illustra Aniello Mennella, ricercatore INFN e docente all’Università di Milano.

La ricerca dei modi-B rappresenta una sfida formidabile e centrale per fisici e astrofisici. Il segnale da misurare è così debole da richiedere rivelatori ultrasensibili e telescopi di grande precisione, anche per rimuovere, durante l’analisi dati, altri segnali polarizzati di origine locale che potrebbero confondere la misura. Le misure di QUBIC saranno perciò contemporanee a quelle di una mezza dozzina di altri esperimenti nel mondo che hanno lo stesso obiettivo scientifico. A differenza di questi ultimi, che producono immagini direttamente tramite telescopi a singola apertura, QUBIC sarà l’unico strumento a effettuare osservazioni raccogliendo le microonde da molte aperture e facendole interferire.

“La misura di un segnale così debole”, dice Mario Zannoni, ricercatore INFN e docente all’Università di Milano-Bicocca, “verrà ritenuta esente da errori sistematici solo se si avranno risultati consistenti provenienti da strumenti molto diversi. Proprio per questo motivo QUBIC, unico interferometro bolometrico, rappresenta una risorsa insostituibile nella ricerca dei modi-B e nello studio dei primi attimi dell’universo”. Grazie alle capacità multispettrali e di autocalibrazione, “QUBIC produrrà dati del tutto originali e complementari a quelli degli altri esperimenti, offrendo agli analisti innumerevoli possibilità di controllo incrociato e quindi una robustezza ineguagliabile dei risultati”, conclude Giancarlo De Gasperis, ricercatore INFN e docente all’Università di Roma “Tor Vergata”.

QUBIC è il risultato della collaborazione di 130 ricercatori, ingegneri e tecnici in Francia, Italia, Argentina, Irlanda e Regno Unito. Lo strumento è stato integrato a Parigi presso i laboratori APC nel 2018 e calibrato durante il 2019-2021.

Il contributo italiano è stato fondamentale per lo sviluppo dello strumento, e continuerà ad esserlo nelle fasi successive dell’esperimento. Lo strumento è ospitato in un criostato, progettato e costruito nei laboratori della Sapienza e della Sezione di Roma dell’INFN, capace di raffreddare vicino allo zero assoluto non solo i rivelatori ma anche tutto il sistema ottico dell’interferometro. Lo stesso gruppo ha realizzato anche il sistema crio-meccanico che permette di ruotare i componenti ottici all’interno del criostato per misurare lo stato di polarizzazione della radiazione. Italiane sono anche altre componenti criogeniche, che lavorano a una temperatura inferiore a -270 °C, come le avanzatissime antenne corrugate che selezionano i fotoni da far interferire, realizzate nei laboratori dell’Università e della Sezione INFN di Milano Statale, mentre le ottiche che focalizzano i fotoni sui rivelatori e il sistema di otturatori che permette di variare la configurazione dell’interferometro e di autocalibrarlo sono realizzate dall’Università e dalla Sezione di Milano Bicocca. L’Università di Roma “Tor Vergata” e la Sezione INFN di Roma2 contribuisce invece allo sviluppo del complesso software di analisi dei dati.

Per maggiori informazioni:

 

 

Testo dall’Ufficio Stampa Università di Milano-Bicocca e dal Settore Ufficio stampa e comunicazione Sapienza Università di Roma, immagini dal Settore Ufficio stampa e comunicazione Sapienza Università di Roma.

Il professor Emidio Albertini premiato per uno studio sul ruolo svolto dalla variazione del numero di cromosomi nell’evoluzione delle piante 

Emidio Albertini cromosomi piante
Emidio Albertini

Il Prof. Emidio Albertini, del Dipartimento di Scienze Agrarie, Alimentari e Ambientali (DSA3) dell’Università degli Studi di Perugia, è risultato vincitore di un progetto per il trasferimento di conoscenze di Ricerca e Innovazione Tecnologica nell’ambito dell’H2020-Marie Sklodowska-Curie.

Il Prof. Albertini, che negli ultimi 5 anni è stato responsabile di 4 ‘azioni’ Marie Sklodowska-Curie, ha ottenuto il prestigioso riconoscimento con il progetto dal “The polyploidy paradigm and its role in plant breeding”; è il secondo che lo vede coordinatore ed è volto a comprendere il ruolo giocato dalla variazione del numero cromosomico nella evoluzione delle piante.

 Il progetto ha avuto una delle maggiori valutazioni (90.2 su 100) tra quelli finanziati dalla EU confermando il gruppo di Genetica del Dipartimento di Scienze Agrarie, Alimentari e Ambientali dell’Università degli Studi di Perugia ai vertici Europei.  

Partner dello studio sono, oltre alle Università di Milano e di Napoli, la University of California, Davis (USA), la Lincoln University (Nuova Zelanda), il CONICET (Argentina), la Galway University (Irlanda) e due industrie, la Sequentia Biotech (Spagna) e la Keygene (Olanda).

“Organismi come l’uomo e gli animali hanno normalmente due set completi di cromosomi (46 cromosomi nel caso dell’uomo) e mal sopportano la presenza di qualche cromosoma soprannumerario che molto spesso porta alla morte dell’organismo – spiega il Prof. Albertini -. Nel corso dei millenni, invece, le piante hanno sviluppato un complesso sistema genetico che ha permesso loro di avere numeri multipli di assetti cromosomici che hanno conferito caratteristiche uniche. Si pensi, ad esempio, ai frumenti, che derivano tutti dalla moltiplicazione di un assetto cromosomico di base. Così dal farro monococco, che ha due assetti cromosomici, nel corso dei millenni si è sviluppato il frumento duro (quello della nostra pasta), che di assetti ne ha 4 e, molti decenni dopo, il frumento tenero (quello del nostro pane) che di set completi di cromosomi ne ha ben 6”.

La notevole superiorità dei poliploidi è stata dunque utilizzata da decenni dai genetisti vegetali per ottenere varietà sempre migliori e più produttive. Nonostante questo, poco si sa su come le piante poliploidi si siano formate in natura. E l’obiettivo di questo progetto è proprio quello di far luce su questo affascinante aspetto evolutivo.

“Siamo molto soddisfatti che il progetto che ci vede coordinatori sia stato finanziato a solo un anno di distanza dalla conclusione del precedente – conclude il Prof. Albertini –: dimostrazione che il lavoro che da anni svolgiamo sullo studio dell’evoluzione delle piante e del loro sistema riproduttivo è apprezzato e riconosciuto a livello internazionale”.

Emidio Albertini

 

Perugia, 4 settembre 2020

Testo e foto dall’Ufficio Stampa dell’Università degli Studi di Perugia sulla premiazione del professor Emidio Albertini per uno studio sul ruolo svolto dalla variazione del numero di cromosomi nell’evoluzione delle piante.

Onde gravitazionali: le nuove sensazionali scoperte del team internazionale di ricercatori Virgo e LIGO 

Il ruolo degli scienziati UNIPG  

onde gravitazionali Virgo LIGO
Helios Vocca e Roberto Rettori


Si è svolta oggi presso il Rettorato dell’Università degli Studi di Perugia la conferenza stampa di presentazione ai giornalisti umbri delle nuove, sensazionali scoperte scientifiche realizzate dai ricercatori dei progetti Virgo e LIGO.

onde gravitazionali Virgo LIGO
Helios Vocca e Roberto Rettori

All’incontro con i giornalisti – realizzato in contemporanea con l’omologo evento internazionale che ha visto collegati i vari gruppi di ricerca in modalità streaming – erano presenti i professori Helios Vocca, Delegato del Rettore per il settore Ricerca, Valutazione e Fund-raising e Roberto Rettori, Delegato del Rettore per il settore Orientamento, Tutorato e Divulgazione scientifica, insieme a numerosi Delegati Rettorali e Direttori dei Dipartimenti dello Studium.

Onde gravitazionali Virgo LIGO

I ricercatori dei progetti Virgo e LIGO hanno annunciato l’osservazione della fusione di un sistema binario di massa straordinariamente grande: due buchi neri di 66 e 85 masse solari, hanno prodotto alla fine un buco nero di circa 142 masse solari. Il buco nero finale è il più massiccio rivelato finora per mezzo delle onde gravitazionali. Si trova in una regione di massa entro cui non è mai stato osservato prima un buco nero, né con onde gravitazionali né con osservazioni elettromagnetiche, e potrebbe servire a spiegare la formazione dei buchi neri supermassicci. Inoltre, il componente più pesante del sistema binario iniziale si trova in un intervallo di massa proibito dalla teoria dell’evoluzione stellare e rappresenta una sfida per la nostra comprensione degli stadi finali della vita delle stelle massicce.

Helios Vocca

“Il risultato di oggi è per noi fonte di enorme soddisfazione – dichiara il professore Helios Vocca, responsabile del gruppo Virgo Perugia – perché si tratta di una nuova scoperta realizzata grazie ad un detector che è frutto anche del lavoro realizzato dal gruppo Virgo Perugia in trent’anni di attività: un impegno, quello del team perugino, che è stato ampiamente riconosciuto a livello internazionale e che ci vede coinvolti nel management sia del progetto Virgo, sia del nuovo esperimento  giapponese ‘Kagra’, guidato da Takaaki Kajita, premio Nobel per la Fisica nel 2015 e laureato honoris causa del nostro Ateneo. Del nostro gruppo, inoltre – aggiunge Vocca – fa parte anche il dottor Michele Punturo, della sezione INFN di Perugia, attualmente Principal Investigator dell’esperimento ‘Einstein Europe’, il futuro detector europeo per le onde gravitazionali.

Il team di Perugia possiede competenze uniche al mondo – spiega il professor Vocca – in particolare sulle sospensioni degli specchi degli interferometri. In virtù di questa altissima specializzazione, stiamo lavorando insieme ad altri colleghi di vari Paesi europei e giapponesi per creare un laboratorio internazionale proprio a Perugia o comunque in Umbria, al fine di sfruttare le ricadute tecnologiche dei rilevatori di onde gravitazionali in altri settori, quali ad esempio quello del rischio sismico, affinché le avanzatissime tecnologie utilizzate nello spazio servano al miglioramento della vita dei cittadini.

Il tutto, inoltre, – conclude il professor Helios Vocca – avrà un’importante valenza per i nostri studenti: stiamo infatti puntando a costruire, in questo ambito scientifico, un’offerta didattica innovativa interuniversitaria, ovvero corsi di laurea realizzati in partnership con altri Atenei del centro-Italia, per dar vita a una ‘scuola’ che sia davvero unica persino a livello internazionale”.

Roberto Rettori

“In questo periodo di emergenza, nel rispetto delle direttive ministeriali, l’Università degli Studi di Perugia non ha mai interrotto né l’attività didattica né quella di ricerca – ha sottolineato il professore Roberto Rettori -. L’esperimento Virgo, che per l’unità di Perugia è coordinato dal professor Helios Vocca del Dipartimento di Fisica e Geologia, ne è una chiara dimostrazione.

I risultati che i nostri eccellenti ricercatori ottengono in tutte le discipline, permettono al nostro Ateneo di crescere e sempre di più diventare un punto di riferimento in Italia e nel mondo, promuovendo quindi Perugia e il suo territorio. Attraverso le numerose iniziative di divulgazione della ricerca che stiamo organizzando in tutta la regione, l’Università degli Studi di Perugia esce dalle sue mura, arriva alla popolazione e diventa suo patrimonio da difendere e valorizzare. Ringrazio il Magnifico Rettore, Professore Maurizio Olivieroper il supporto costante che offre a tali iniziative nonché tutti i colleghi per il loro lavoro. L’Ateneo di Perugia è soprattutto il luogo accogliente della conoscenza dove i giovani possono realizzare le loro passioni e costruire il loro futuro”.

La Sala Dessau all’Università di Perugia

Perugia, 2 settembre 2020

 

Virgo e LIGO svelano nuove e inattese popolazioni di buchi neri

Helios Vocca e Roberto Rettori

Virgo e LIGO hanno annunciato l’osservazione della fusione di un sistema binario di massa straordinariamente grande: due buchi neri di 66 e 85 masse solari, hanno prodotto alla fine un buco nero di circa 142 masse solari. Il buco nero finale è il più massiccio rivelato finora per mezzo delle onde gravitazionali. Si trova in una regione di massa entro cui non è mai stato osservato prima un buco nero, né con onde gravitazionali né con osservazioni elettromagnetiche, e potrebbe servire a spiegare la formazione dei buchi neri supermassicci. Inoltre, il componente più pesante del sistema binario iniziale si trova in un intervallo di massa proibito dalla teoria dell’evoluzione stellare e rappresenta una sfida per la nostra comprensione degli stadi finali della vita delle stelle massicce.

Gli scienziati delle collaborazioni internazionali che sviluppano e utilizzano i rivelatori Advanced Virgo presso lo European Gravitational Observatory (EGO) in Italia e i due Advanced LIGO negli Stati Uniti hanno annunciato l’osservazione di un buco nero di circa 142 masse solari, che è il risultato finale della fusione di due buchi neri di 66 e 85 masse solari. I componenti primari e il buco nero finale si trovano tutti in un intervallo di massa mai visto prima, né con onde gravitazionali né con osservazioni elettromagnetiche. Il buco nero finale è il più massiccio rivelato finora per mezzo di onde gravitazionali. L’evento di onda gravitazionale è stato osservato dai tre interferometri della rete globale il 21 maggio 2019. Il segnale (chiamato GW190521) è stato analizzato dagli scienziati, che stimano che la sorgente disti circa 17 miliardi di anni luce dalla Terra. Due articoli scientifici che riportano la scoperta e le sue implicazioni astrofisiche sono stati pubblicati oggi su Physical Review Letters e Astrophysical Journal Letters,
rispettivamente.

“Il segnale osservato il 21 maggio dello scorso anno è molto complesso e, dal momento che il sistema è così massiccio, lo abbiamo osservato per un tempo molto breve, circa 0.1 s”, dice Nelson Christensen, directeur de recherche CNRS presso ARTEMIS a Nizza in Francia e membro della Collaborazione Virgo. “Non assomiglia molto ad un sibilo che cresce rapidamente in frequenza, che è il tipo di segnale che osserviamo di solito: assomiglia piuttosto ad uno scoppio, e corrisponde alla massa più alta mai osservata da LIGO e Virgo.” Effettivamente, l’analisi del segnale – basata su una potente combinazione di modernissimi modelli fisici e di metodi di calcolo – ha rivelato una gran quantità di informazione su diversi stadi di questa fusione davvero unica.

Questa scoperta è senza precedenti non solo perché stabilisce il record di massa tra tutte le osservazioni fatte finora da Virgo e LIGO ma anche perché possiede altre caratteristiche speciali. Un aspetto cruciale, che ha attratto in particolare l’attenzione degli astrofisici, è che il residuo finale appartiene alla classe dei cosiddetti “buchi neri di massa intermedia” (da cento a centomila masse solari). L’interesse verso questa popolazione di buchi neri è collegato ad uno degli enigmi più affascinanti e intriganti per astrofisici e cosmologi: l’origine dei buchi neri supermassicci. Questi mostri giganteschi, milioni di volte più pesanti del Sole e spesso al centro delle galassie, potrebbero essere il risultato della fusione di buchi neri di massa intermedia.

Fino ad oggi, pochissimi esempi di questa categoria sono stati identificati unicamente per mezzo di osservazioni elettromagnetiche, e il residuo finale di GW190521 è la prima osservazione di questo genere per mezzo di onde gravitazionali. Ed è di interesse ancora maggiore, visto che si trova nella regione tra 100 e 1000 masse solari, che ha rappresentato per molti anni una specie di “deserto dei buchi neri”, a causa della scarsità di osservazioni in questo intervallo di massa.

I componenti e la dinamica della fusione del sistema binario che ha prodotto GW190521 offrono spunti astrofisici straordinari. In particolare, il componente più massiccio rappresenta una sfida per i modelli astrofisici che descrivono il collasso in buchi neri delle stelle più pesanti, quando queste arrivano alla fine della loro vita. Secondo questi modelli, stelle molto massicce vengono completamente distrutte dall’esplosione di supernova, a causa di un processo chiamato “instabilità di coppia”, e si lasciano dietro solo gas e polveri cosmiche. Perciò gli astrofisici non si aspetterebbero di osservare alcun buco nero nell’intervallo di massa tra 60 e 120 masse solari: esattamente dove si trova il componente più massiccio di GW190521. Quindi, questa osservazione apre nuove prospettive nello studio delle stelle massicce e dei meccanismi di supernova.

“Parecchi scenari predicono la formazione di buchi neri nel cosiddetto intervallo di massa di instabilità di coppia: potrebbero risultare dalla fusione di buchi neri più piccoli o dalla collisione multipla di stelle massicce o addirittura da processi più esotici”, dice Michela Mapelli, professore presso l’Università di Padova, e membro dell’INFN Padova e della Collaborazione Virgo. “Comunque, è possibile che si debba ripensare la nostra attuale comprensione degli stadi finali della vita di una stella e i conseguenti vincoli di massa sulla formazione dei buchi neri. In ogni caso, GW190521 è un importante contributo allo studio della formazione dei buchi neri.”

Infatti, l’osservazione di GW190521 da parte di Virgo e LIGO porta la nostra attenzione sull’esistenza di popolazioni di buchi neri che non sono mai stati osservati prima o sono inattesi, e in tal modo solleva nuove intriganti domande sui meccanismi con cui si sono formati. A dispetto del segnale insolitamente breve, che limita la nostra capacità di dedurre le proprietà astrofisiche della sorgente, le analisi più avanzate e i modelli attualmente disponibili suggeriscono che i buchi neri iniziali avessero alti valori di spin, o in altre parole che avessero un’elevata velocità di rotazione.

“Il segnale mostra segni di precessione, una rotazione del piano orbitale prodotta da spin elevati e con un’orientazione particolare”, nota Tito Dal Canton, ricercatore del CNRS presso IJCLab ad Orsay, Francia, e membro della Collaborazione Virgo, “L’effetto è debole e non possiamo esserne certi del tutto, ma se fosse vero darebbe forza all’ipotesi che i buchi neri progenitori siano nati e vissuti in un ambiente cosmico molto dinamico e affollato, come un ammasso stellare denso o il disco di accrescimento di un nucleo galattico attivo.”

Parecchi scenari diversi sono compatibili con questi risultati e anche l’ipotesi che i progenitori della fusione possano essere buchi neri primordiali non è stata scartata dagli scienziati. Effettivamente, noi stimiamo che la fusione abbia avuto luogo 7 miliardi di anni fa, un tempo vicino alle epoche più
antiche dell’Universo.

Rispetto alle precedenti osservazioni di onde gravitazionali, il segnale di GW190521 è molto breve e più difficile da analizzare. La complessa natura di questo segnale ci ha spinto a considerare anche altre sorgenti più esotiche, e queste possibilità sono descritte in un altro articolo che accompagna quello della scoperta. La fusione di un sistema binario di buchi neri resta però l’ipotesi più
probabile.

“Le osservazioni portate avanti da Virgo e LIGO illuminano l’universo oscuro e definiscono un nuovo panorama cosmico”, dice Giovanni Losurdo, che guida Virgo ed è dirigente di ricerca presso l’Istituto Nazionale di Fisica Nucleare in Italia, “E oggi, ancora una volta, annunciamo una scoperta senza precedenti. Continuiamo a migliorare i nostri strumenti per aumentare la loro performance e
per vedere sempre più a fondo nell’Universo.”

Informazioni aggiuntive sugli osservatori di onde gravitazionali:

La Collaborazione Virgo è composta attualmente da circa 580 membri provenienti da 109 istituzioni in 13 diversi paesi, che comprendono Belgio, Francia, Germania, Grecia, Irlanda, Italia, Olanda, Polonia, Portogallo, Spagna e Ungheria. Lo European Gravitational Observatory (EGO) che ospita il rivelatore Virgo si trova vicino a Pisa in Italia ed è finanziato dal Centre National de la Recherche Scientifique (CNRS) in Francia, dall’Istituto Nazionale di Fisica Nucleare (INFN) in Italia, e dal Nikhef in Olanda. Una lista dei gruppi della Collaborazione Virgo è disponibile al link http://public.virgo-gw.eu/the-virgo-collaboration/ . Ulteriori informazioni sono disponibili sul sito web di Virgo http://www.virgo-gw.eu

.LIGO è finanziato dalla National Science Foundation (NSF) e la sua operatività dipende da Caltech e MIT, che hanno concepito e guidato il progetto. Il sostegno finanziario per il progetto Advanced LIGO è venuto dall’NSF, con significativi impegni e contributi da parte tedesca (Max Planck Society), inglese (Science and Technology Facilities Council) e australiana (Australian Research Council-OzGrav). Circa 1300 scienziati di tutto il mondo partecipano all’impresa scientifica della Collaborazione LIGO, che include anche la Collaborazione GEO. Una lista di altri partners è disponibile al link https://my.ligo.org/census.php
.

I RICERCATORI DI PERUGIA A CACCIA DELLE ONDE GRAVITAZIONALI

Un’esperienza ventennale nella descrizione teorica e nello sviluppo di tecnologie per osservare le onde gravitazionali che ha condotto anche a ricadute tecnologiche nel campo delle energie rinnovabili.

onde gravitazionali Virgo LIGO
Helios Vocca e Roberto Rettori

Il gruppo di scienziati di Perugia che lavora all’esperimento Virgo per la rivelazione e lo studio di onde gravitazionali fa parte del Dipartimento di Fisica e Geologia dell’Università di Perugia e della Sezione di Perugia dell’INFN e da circa trent’anni si occupa de i rivelatori delle Onde Gravitazionali. Il gruppo si occupa per lo più di elabora re modelli teorici e tecniche sperimentali per studiare la dinamica dei sistemi fisici non lineari e in particolare p er lo studio del rumore. Si tratta cioè di conoscere le caratteristiche e saper limitare o utilizzare in modo efficiente tutte qu elle vibrazioni che popolano i fenomeni naturali, dalle vibrazioni delle molecole e degli atomi dovute alla temperatura alle vibrazioni macroscopiche che potrebbero disturbare la rivelazione dei segnali che arrivano dal cosmo e che l’esperimento Virgo rivela. Oltre a questo negli ultimi anni ha acquisito competenze di ottica quantistica, di data analisi e modelli stica della Relatività Generale per sistemi compatti.

Il gruppo di ricerca perugino attivo nell’esperimento Virgo è coordinato dal Prof. Helios Vocca (attualmente nel Management Team sia dell’esperimento europeo Virgo che dell’esperimento giapponese Kagra). Sono nel complesso 12, tra scienziati e tecnici, le persone del Dipartimento di Fisica e della Sezione di Perugia dell’Istituto Nazionale di Fisica Nucleare che costituiscono il team coinvolto nell’osservazione e nell’analisi dei dati raccolti sulle onde gravitazionali; fra loro anche il Dott. Michele Punturo responsabile del gruppo di ricerca astroparticellare per la sezione INFN di Perugia e attualmente Principal Investigato dell’esperimento Einstein Telescope, futuro detector europeo per le Onde Gravitazionali.

Le abilità acquisite dal team perugino nello studio delle vibrazioni, da quelle microscopiche a quelle più grandi, ha consentito di apportare un contributo essenziale ai metodi utilizzati per istallare gli specchi e il complesso dei sistemi ottici, cuore dello strumento per l’osservazione delle onde gravitazionali: l’interferometro Virgo. Il rivelatore Virgo istallato a Cascina, nelle campagne poco fuori Pisa, è costituito da due lunghi tubi di tre chilometri l’uno, disposti perpendicolarmente tra loro a formare una elle. All’interno di questi tubi si fa il vuoto e viene fatto correre un raggio laser avanti e indietro attraverso un sistema di specchi. È proprio lo spostamento degli specchi al passaggio dell’onda gravitazionale che ne rileva la presenza. Di conseguenza è cruciale la realizzazione di queste parti dell’apparato. Attraverso una conoscenza accurata del rumore termico, ovvero delle vibrazioni degli atomi e delle molecole che costituisco i materiati di cui sono fatte le parti del rivelatore Virgo, il gruppo di Perugia ha fatto sì che il segnale delle onde gravitazionali non si confondesse con altri disturbi provenienti dall’ambiente. Il gruppo di Perugia si è occupato, sin dalla nascita del progetto Virgo, dello sviluppo del sistema per sospendere gli specchi all’interno delle torri dell’esperimento. Tale sistema è unico perché consente allo specchio di poter oscillare dissipando pochissima energia e quindi rendendolo estremamente sensibile alla rivelazione dei segnali gravitazionali. Il pendolo è costituito da sottilissimi fili prima di acciaio, ora di un particolare vetro: il quarzo fuso. Insieme ai fili è stato ideato e realizzato un sistema originale di ancoraggio degli specchi attraverso tecniche innovative d’incollaggio delle componenti del rivelatore sviluppate tra i laboratori di Perugia e quelli di Glasgow. Queste tecnologie sono alla base dell’aumento di sensibilità che caratterizza il cosiddetto Advanded Virgo.

Le abilità tecniche e le conoscenze teoriche acquisite in questi trent’anni dai fisici dell’Università di Perugia, coinvolti nel progetto Virgo, ha consentito al gruppo di entrare da protagonista anche nell’esperimento giapponese, Kagra (esperimento guidato da una vecchia conoscenza dell’Ateneo perugino, il Prof. Takaaki Kajita premio Nobel in Fisica nel 2015, al quale nel 2017 è stata riconosciuta la laurea Honoris Causa) trasferendo le proprie competenze alla collaborazione asiatica per la realizzazione delle sospensioni criogeniche in zaffiro delle ottiche del rivelatore.

 

 

Testi e foto dall’Ufficio Stampa Università di Perugia