News
Ad
Ad
Ad
Tag

Irene Bozzoni

Browsing

Scoperta la firma molecolare della SLA

Un nuovo studio condotto dalla Sapienza in collaborazione con il laboratorio dell’Istituto Pasteur-Italia ha identificato i potenziali marcatori della progressione della Sclerosi Laterale Amiotrofica (SLA): sono piccole molecole di RNA non codificante, i microRNA. Lo studio è stato da poco pubblicato su Cell Death Discovery

Foto di Arek Socha 

Sclerosi laterale amiotrofica (SLA). Nota anche come malattia dei motoneuroni perché causa una graduale perdita di queste cellule che impartiscono ai muscoli il comando del movimento. È una malattia degenerativa che porta progressivamente alla paralisi e al decesso del paziente entro pochi anni dalla comparsa dei sintomi.

Il decorso non è però uguale in tutti pazienti, e fino a oggi, le basi molecolari che potessero spiegarlo erano sconosciute: molti biomarcatori sono stati descritti per diverse patologie neurodegenerative, ma per nessuno di loro era stata riscontrata una specifica correlazione con la SLA.

Ora, il lavoro sinergico di diversi centri di ricerca clinica, coordinato da Antonio Musarò e Irene Bozzoni, della Sapienza Università di Roma e del laboratorio dell’Istituto Pasteur-Italia, ha portato a identificare i potenziali biomarcatori prognostici della SLA. Si tratta di molecole di microRNA (miRNA) che non contengono informazioni per la formazione di proteine, ma che spesso risultano alterate in alcune condizioni patologiche e che possono anche essere rilasciate nel sangue.

In questo studio, pubblicato su Cell Death Discovery, sono stati selezionati e analizzati quantitativamente, ogni tre mesi durante la progressione della malattia, cinque miRNA. I risultati hanno mostrato che queste molecole sembrano essere predittive del decorso della malattia. “Il nostro studio è il primo a quantificare i miRNA circolanti nei pazienti con SLA e a farlo durante la progressione della malattia permettendo così di dare un significato prognostico a tre delle cinque molecole studiate – spiega Antonio Musarò – e rappresenta una base da cui partire per mettere a punto dei test sierologici per la valutazione di queste molecole nelle persone affette da SLA”.

“Un’ottima integrazione di competenze tra ricerca e clinica” aggiunge Irene Bozzoni.

“Quantificare i livelli di queste molecole − continua Musarò – potrebbe essere un valido aiuto per la gestione clinica di questi pazienti. I microRNA che abbiamo analizzato sembrano essere la firma molecolare della SLA e l’uso dei loro livelli sierici per suddividere i pazienti secondo aggressività e velocità di progressione della malattia potrà servire ad arruolarli nei trial clinici in modo più preciso, proprio in relazione a una specifica firma molecolare”.

Lo studio è stato parzialmente supportato da Fondazione Roma, ASI, ARiSLA, ERC e dai progetti dei centri di ricerca coinvolti.

 

Riferimenti:

A longitudinal study defined circulating microRNAs as reliable biomarkers for disease prognosis and progression in ALS human patients – Gabriella Dobrowolnyj, Julie Martone, Elisa Lepore, Irene Casola, Antonio Petrucci, Maurizio Inghilleri, Mariangela Morlando, Alessio Colantoni, Bianca Maria Scicchitano, Andrea Calvo, Giulia Bisogni, Adriano Chiò, Mario Sabatelli, Irene Bozzoni & Antonio Musarò – Cell Death Discovery, 2021. https://www.nature.com/articles/s41420-020-00397-6

 

Testo dalla Sapienza Università di Roma sull’identificazione dei potenziali marcatori della progressione della Sclerosi Laterale Amiotrofica (SLA)

Quando la ricerca incontra le persone: una nuova possibile terapia per la distrofia muscolare di Duchenne 

Dallo studio quasi decennale sulla storia clinica di un giovane paziente asintomatico, la scoperta di un meccanismo genetico ereditato dalla madre in grado di riattivare la produzione di distrofina e migliorare le condizioni dei pazienti. Il lavoro, coordinato dalla Sapienza con l’Istituto italiano di tecnologia (IIT) e il Centre for Genomic Regulation (CRG) di Barcellona, e sostenuto da ERC Advanced Grants, Fondazione Telethon e Parent Project, è stato pubblicato sulla rivista EMBO Molecular Medicine

terapia Duchenne
Foto RAEng_Publications 

Quando la ricerca incontra le persone, può portare a cambiamenti importanti. È il caso di un paziente affetto da una forma di distrofia muscolare di Duchenne inspiegabilmente lieve che, proprio per la sua condizione anomala, è stato seguito per anni da Irene Bozzoni e dal suo team del Dipartimento di Biologia e biotecnologie Charles Darwin della Sapienza e dell’IIT, che lo aveva incontrato nel corso di una maratona Telethon nel 2011.

Quella di Gerardo non è solo la storia clinica di una malattia che colpisce 1 maschio su 3500 nati (le femmine generalmente sono portatrici asintomatiche) e che causa una progressiva degenerazione dei vari tessuti muscolari, ma è l’esperienza di un ragazzo che a 14 anni era ancora in grado di camminare e muoversi autonomamente e che ancora oggi a 23 anni, pur preferendo la carrozzina per i suoi spostamenti, riesce con qualche aiuto a stare in piedi e a muovere alcuni passi, e soprattutto non manifesta sintomi respiratori o cardiaci.

Dall’incontro, avvenuto quasi 10 anni fa, da una parte è nata una linea di ricerca volta a scoprire nuovi dettagli sui meccanismi alla base della formazione dei muscoli (miogenesi), dall’altra si è riaccesa la speranza di chiarire alcune incognite legate alla particolare evoluzione della malattia nel giovane.

In un primo studio del 2016, Irene Bozzoni e il suo gruppo di ricerca hanno osservato come le cellule del ragazzo mettessero spontaneamente in atto un particolare meccanismo molecolare che bypassa l’errore genetico che causa l’assenza della distrofina, ripristinandone la produzione in quantità sufficienti a migliorare le condizioni fisiche. In particolare, è stato visto che questo meccanismo, basato sul principio dell’exon skipping, è favorito dall’assenza di una proteina, chiamata Celf2a.

Oggi, in un nuovo studio realizzato in collaborazione tra la Sapienza, l’Istituto italiano di tecnologia (IIT) e il Centre for Genomic Regulation (CRG) di Barcellona, i ricercatori coordinati da Irene Bozzoni hanno proseguito nella caratterizzazione degli aspetti molecolari di questo interessante fenomeno e scoperto che il meccanismo genetico in grado di riattivare la produzione di distrofina è ereditato dalla madre.

Nel lavoro, pubblicato sulla rivista EMBO Molecular Medicine e sostenuto da Fondazione Telethon, dall’Associazione Parent Project e da un grant dell’European Research Council (ERC), è stato anche dimostrato che “spegnendo” il gene Celf2a nelle cellule di altri pazienti affetti dalla distrofia muscolare di Duchenne, viene recuperata la produzione di distrofina a livelli che potrebbero essere curativi.

“Abbiamo visto che anche nella madre del ragazzo il gene che produce la proteina era inattivato – spiega Irene Bozzoni – e questo ci ha permesso di capire che la mancata espressione di Celf2a non è dovuta a mutazioni del suo gene, ma a un silenziamento epigenetico trans-generazionale che opera attraverso uno specifico RNA non codificante. Il vero traguardo sarebbe quello di riprodurre questa specifica condizione molecolare in altri pazienti, aprendo nuove importanti prospettive di cura”.

I prossimi studi del team infatti indagheranno Celf2a come target terapeutico e saranno mirati allo sviluppo di potenziali molecole capaci di inibire tale fattore quando è presente. Queste molecole potrebbero diventare una cura, che a oggi non esiste, per altri pazienti con lo stesso tipo di mutazione.

Riferimenti:

Trans-generational epigenetic regulation associated with the amelioration of Duchenne Muscular Dystrophy – J. Martone, M. Lisi, F. Castagnetti, A. Rosa, V. Di Carlo, E. Blanco, A. Setti, D. Mariani, A. Colantoni, T. Santini, L. Perone, L. Di Croce & I. Bozzoni – EMBO Molecular Medicine (2020) DOI https://doi.org/10.15252/emmm.202012063

 

Testo dal Settore Ufficio stampa e comunicazione Sapienza Università di Roma.

Uno studio della Sapienza in collaborazione con l’Istituto Italiano di Tecnologia fornisce nuove informazioni sulla parte meno conosciuta del nostro corredo genetico mettendo sotto i riflettori il meccanismo di azione di una molecola di RNA non codificante sulla formazione dei tessuti muscolari. L’articolo è stato pubblicato sulla rivista EMBO Reports, che gli ha dedicato una creativa copertina per il numero di giugno.

Il nostro genoma può essere paragonato a un “manuale di istruzioni” che regola lo sviluppo e il funzionamento del nostro organismo. Per molti anni la comunità scientifica non ha approfondito quella parte consistente del suo contenuto che non essendo destinata alla produzione di proteine, era ritenuta meno importante. Per tale ragione, le informazioni presenti al suo interno, ovvero il ruolo funzionale di questi elementi, non codificanti”, è rimasto a lungo sconosciuto.

Nell’ambito della cosiddetta “materia oscura” del genoma, ci sono migliaia di sequenze di RNA non codificanti (ncRNA), che si sono rivelate invece centrali nel controllo di tutti quei processi che sottintendono al corretto differenziamento di cellule e tessuti del nostro organismo, e che, se alterate, possono causare numerose malattie. La loro funzione si esplica sia nel nucleo che nel citoplasma dove regolano rispettivamente la produzione degli RNA messaggeri (mRNA) e il successivo processo di traduzione in proteine.

Un team di ricercatori del Dipartimento di Biologia e biotecnologie “Charles Darwin” della Sapienza e dei centri CLNS e CHT dell’Istituto Italiano di Tecnologia (IIT), ha scoperto in un RNA non codificante, lnc-SMaRT, un interessante meccanismo d’azione attraverso il quale la molecola riesce a controllare lo sviluppo delle cellule muscolari.

Il nuovo studio ha svelato come lnc-SMaRT sia capace di regolare negativamente la traduzione di un RNA messaggero, MLX-g, che ricopre un ruolo fondamentale nella formazione dei tessuti muscolari. I risultati sono stati pubblicati sulla rivista EMBO Reports, che ha dedicato allo studio la copertina del numero di giugno.

“Questo RNA – spiega Irene Bozzoni, coordinatrice del team di ricerca – presenta al suo interno una struttura G-quadruplex, una sorta di nodo, che ha bisogno di essere sciolta da un enzima, DHX36, affinchè l’informazione contenuta al suo interno possa essere efficientemente tradotta e quindi convertita in proteina. In questo meccanismo raffinato, abbiamo visto che lnc-SMaRT va a inserirsi come antagonista rispetto a DHX36, bloccando la sequenza su cui l’enzima opera”.

I ricercatori hanno dimostrato come lnc-SMaRT, legandosi alla struttura G-quadruplex dell’RNA messaggero MLX-g, riesca ad abbassare i livelli della corrispondente proteina e a scandire in maniera precisa le tempistiche che portano al corretto differenziamento muscolare.

“I risultati – conclude Bozzoni – aggiungono un importante tassello alla comprensione dell’utilità di strutture complesse dell’RNA come le G-quadruplex e, grazie all’identificazione di un nuovo meccanismo di regolazione, contribuiscono a gettare nuova luce sul repertorio funzionale degli RNA non codificanti, la parte “oscura” dei trascritti delle nostre cellule.

Lo studio di questi meccanismi d’azione è parte integrante di progetti finanziati dal programma H2020 Synergy Grants (SyG) dell’European Research Council (ERC).

genoma muscoli

 

Riferimenti:

 

SMaRT lncRNA controls translation of a Gquadruplexcontaining mRNA antagonizing the DHX36 helicase – Julie Martone, Davide Mariani, Tiziana Santini, Adriano Setti, Sama Shamloo, Alessio Colantoni, Francesca Capparelli, Alessandro Paiardini, Dacia Dimartino, Mariangela Morlando, Irene Bozzoni – EMBO Rep (2020) https://doi.org/10.15252/embr.201949942

 

Testo e immagine dall’Ufficio Stampa Università La Sapienza di Roma