News
Ad
Ad
Ad
Tag

ingegneria

Browsing

La Gioconda in due millimetri: l’elettronica stampabile non è mai stata così micro – Realizzato all’Università di Pisa un prototipo di stampante per microdispositivi elettronici. La ricerca pubblicata sulla rivista Advanced Materials Technologies.

prototipo di stampante per microdispositivi elettronici La Gioconda di Leonardo da Vinci in due millimetri, il Cherubino dell’Università di Pisa in appena mezzo millimetro. Sono micro “prove di maestria” per testare un nuovo prototipo di stampante ad alta risoluzione dell’Ateneo pisano destinato a fabbricare microdispositivi elettronici su supporti bidimensionali come la carta. Lo strumento è infatti in grado di realizzare stampe a risoluzioni submicrometriche, superando i limiti dei dispositivi attualmente in commercio.

“Questa miniaturizzazione costituisce un ulteriore passo avanti – spiega Elisabetta Dimaggio, ricercatrice dell’Università di Pisa – Il futuro è infatti nell’elettronica flessibile e indossabile, nella creazione di sistemi alternativi rispetto a quelli classici basati su silicio che possano adattarsi a diverse superfici per portare l’elettronica ovunque, proprio lì dove serve. In questo scenario, uno dei campi di applicazione più promettenti è ad esempio quello biomedicale con apparecchi indossabili e capaci di registrare i parametri vitali senza dover necessariamente far ricorso a sistemi ingombranti o invasivi”.

Dal punto di vista tecnico la stampante realizzata è estremamente versatile e integra due diverse tecniche di deposizione additiva di materiali (Inkjet e Dip Pen Nanolithography) e una tecnica sottrattiva (Scratching Lithography). Le diverse modalità possono essere eseguite in sequenza senza dover mai rimuovere il campione dalla stampante, fattore che riduce il rischio di danneggiamento dei substrati e dei materiali.

La stampante è stata messo a punto nel laboratorio di Printable Electronics del dipartimento di Ingegneria dell’Informazione in collaborazione con l’azienda toscana Quantavis srl e NANO-CNR di Pisa. La ricerca, pubblicata sulla rivista Advanced Materials Technologies ha come primo autore Riccardo Sargeni, dottorando UNIPI ed è stata finanziata dalla Commissione europea attraverso due progetti (ERC PEP2D e ERC Proof of Concept PREPRINT) che vedono impegnato il gruppo guidato dal professore Gianluca Fiori dell’Università di Pisa.

Link all’articolo scientifico:

https://onlinelibrary.wiley.com/doi/10.1002/admt.202400610?af=R

Testo e immagini dal Polo Comunicazione CIDIC – Centro per l’innovazione e la diffusione della cultura dell’Università di Pisa.

Migliorare l’architettura dei computer con la biomimetica

Una ricerca, coordinata dal Dipartimento di Ingegneria meccanica e aerospaziale della Sapienza, ha sviluppato un nuovo dispositivo nanofluidico sul modello del funzionamento dei canali ionici cerebrali, essenziali per la propagazione ed elaborazione dei segnali elettrici, a basso consumo energetico. Il progetto, che ha ottenuto un finanziamento dal Consiglio europeo della ricerca (ERC), è stato pubblicato sulla rivista Nature Communications.

Rappresentazione schematica di un canale ionico: 1 - subunità proteiche (tipicamente 4 o 5 per canale), 2 - vestibolo esterno, 3 - filtro selettivo, 4 - diametro del filtro selettivo, 5 - sito di fosforilazione, 6 - membrana cellulare.
Rappresentazione schematica di un canale ionico: 1 – subunità proteiche (tipicamente 4 o 5 per canale), 2 – vestibolo esterno, 3 – filtro selettivo, 4 – diametro del filtro selettivo, 5 – sito di fosforilazione, 6 – membrana cellulare.
Immagine di Paweł Tokarz, in pubblico dominio

Il cervello è particolarmente efficiente dal punto di vista energetico, in quanto elabora le informazioni memorizzandole negli stessi elementi che le processano. Invece per i computer il modo in cui vengono eseguiti i calcoli richiede attualmente la memorizzazione e l’elaborazione delle informazioni in parti diverse del calcolatore, rendendo il processo poco efficiente energeticamente. La costruzione di dispositivi neuromorfici, ovvero ispirati alle componenti del cervello umano, può rappresentare un importante passo avanti nelle applicazioni di intelligenza artificiale.

Uno studio coordinato da Alberto Giacomello del Dipartimento di Ingegneria meccanica e aerospaziale della Sapienza, in collaborazione con il Istituto di Scienze Biomolecolari e Biotecnologia di Groningen (Paesi Bassi), l’Università del Sichuan e Centro di Innovazione Collaborativa (Cina) e l’Università di Roma Tor Vergata, prende ispirazione dai canali ionici che controllano il passaggio degli ioni nel cervello e sono essenziali per la propagazione ed elaborazione dei segnali elettrici nel sistema nervoso. Questo lavoro fa parte del progetto HyGate sul gating idrofobo finanziato dal Consiglio europeo della ricerca (ERC).

Il lavoro, pubblicato sulla rivista Nature Communications, si è basato sull’ingegnerizzazione di un particolare canale transmembrana – un nanoporo – che, sfruttando l’idrofobicità e la formazione di nanobolle, riesce a riprodurre il comportamento elettrico dei canali ionici naturali, pur funzionando mediante processi più semplici.

Era già noto che i nanopori idrofobi, tipicamente non conduttivi, possono diventare conduttivi quando viene applicato un voltaggio (electrowetting). Questo nuovo studio sviluppa una teoria quantitativa per questo fenomeno, dimostrando, per la prima volta, che in particolari condizioni, può essere usato per memorizzare informazioni. La teoria è stata testata realizzando sperimentalmente il singolo dispositivo “memristivo” ed implementando questo elemento in applicazioni neuromorfiche dimostrative.

“Eravamo interessati – afferma Alberto Giacomello – a progettare un nano-interruttore controllato dal voltaggio, ovvero in cui il cambiamento delle proprietà di conduzione è dovuto al gating idrofobo, meccanismo mediante cui bolle di dimensioni nanometriche, dette nanobolle, bloccano il passaggio degli ioni attraverso i canali. Abbiamo poi sfruttato il fenomeno dell’elettrowetting per causare il riempimento del nanoporo idrofobo e renderlo quindi conduttivo in maniera controllata”.

Il singolo dispositivo è stato progettato a partire da un particolare nanoporo biologico che poteva essere modificato e bioingegnerizzato seguendo i criteri suggeriti dalla teoria e dalle simulazioni, portate avanti dallo studio in questione. Tale dispositivo è stato realizzato grazie alla collaborazione con i partner sperimentali che lavorano con questi canali e hanno potuto studiarne la risposta al voltaggio.

La ricerca ha così dimostrato un nuovo modo di costruire dispositivi memristivi iontronici, basato sul gating idrofobo, contribuendo a costruire basi più concrete per studiare l’effetto della tensione sulla conduzione in nanopori idrofobi.

Inoltre, nuove architetture neuromorfiche potrebbero potenziare gli attuali algoritmi e i sistemi di intelligenza artificiale, rendendoli energeticamente più efficienti e sostenibili. Fra queste la iontronica che utilizzando gli ioni al posto degli elettroni come elementi conduttori apre a nuove prospettive anche in campo medico.

Riferimenti bibliografici:

Hydrophobically gated memristive nanopores for neuromorphic applications – Gonçalo Paulo, Ke Sun, Giovanni di Muccio, Alberto Gubbiotti, Blasco Morozzo della Rocca, Jia Geng, Giovanni Maglia, Mauro Chinappi, Alberto Giacomello – Nature Communications (2023). DOI: 10.1038/s41467-023-44019-y

 

Testo e foto dal Settore Ufficio stampa e comunicazione Sapienza Università di Roma

PROGETTO GLAMS: BASI LUNARI COSTRUITE CON LA MATERIA PRIMA DEL SATELLITE TERRESTRE

Finanziato da ASI – Agenzia Spaziale Italiana – il progetto di ricerca dell’Università di Padova coordinato da Luca Valentini del Dipartimento di Geoscienze in cui si utilizzerà la tecnologia di stampa 3D per realizzare leganti cementizi a partire da sedimenti, polvere e frammenti di materiale lunari che si trovano in loco.

GLAMS (Geopolimeri per Additive Manufacturing e Monitoraggio Lunare) è il nome del progetto biennale dell’Università di Padova finanziato con oltre 400.000 euro dall’Agenzia Spaziale Italiana ed è risultato vincitore del bando “Giornate della ricerca accademica spaziale”, classificandosi al primo posto nell’area tematica “Materiali Avanzati”.

Si pone la finalità di realizzare elementi strutturali per la costruzione di basi lunari, mediante un approccio di stampa 3D che utilizza leganti cementizi formulati a partire da suoli lunari (regoliti), secondo il principio dello sfruttamento di materie prime disponibili in loco. Tale principio consentirà di minimizzare i costi e l’impatto ambientale dovuti al trasporto di materie prime dal pianeta Terra alla Luna.

GLAMS – coordinato dal Centro di Ateneo di Studi e Attività Spaziali “Giuseppe Colombo” (CISAS) – in partnership con l’Istituto di Chimica della Materia Condensata e di Tecnologie per l’Energia del CNR (ICMATE) con sede a Genova e WASP, azienda italiana leader nel settore della stampa 3D – vede come responsabile scientifico il professor Luca Valentini del Dipartimento di Geoscienze, mentre il professor Carlo Bettanini e la dottoressa  Giorgia Franchin del Dipartimento di Ingegneria Industriale sono i leader di specifici work package.

Il team di ricerca intende ottimizzare il “cemento lunare” formulato a partire dalla regolite, tenendo conto delle specificità delle condizioni ambientali del satellite, tra cui le elevate escursioni termiche, le condizioni di ridotta gravità e pressione atmosferica e l’impatto di micro-meteoriti.

A tal fine, gli elementi strutturati verranno realizzati mediante un processo produttivo che consentirà di realizzare materiali con struttura macro-porosa, capace di conferire eccellenti proprietà di isolamento termico, con la finalità di mitigare il degrado dovuto ai cicli gelo-disgelo causato dalle estreme variazioni di temperatura. Inoltre, all’interno delle unità strutturali verranno integrati opportuni sensori per il monitoraggio di impatti micro-meteoritici.

Progetto GLAMS basi lunari Esempio di struttura porosa - analisi 3D mediante microtomografia a raggi X - di un campione di cemento
Esempio di struttura porosa – analisi 3D mediante microtomografia a raggi X – di un campione di cemento

Il progetto GLAMS

Nella prima fase del progetto, l’unità di ricerca dell’Università di Padova, sotto la guida di Luca Valentini e Giorgia Franchin, formulerà i “leganti geopolimerici” ottenuti dall’attivazione chimica della regolite lunare: questo tipo di legante non prevede l’utilizzo del classico cemento Portland, comunemente utilizzato per la costruzione in ambiente terrestre. Infatti, rispetto a quest’ultimo, sono caratterizzati da emissioni di CO2 significativamente ridotte, inoltre le proprietà allo stato fresco di questi leganti verranno opportunamente ottimizzate per consentire una corretta estrusione mediante stampa 3D.

Nelle fasi successive, l’Istituto di Chimica della Materia Condensata e di Tecnologie per l’Energia del CNR con sede a Genova provvederà a selezionare opportuni agenti schiumogeni che consentiranno di conferire una struttura macro-porosa al legante geopolimerico indurito.

Progetto GLAMS basi lunari Stampa 3D per estrusione di miscela geopolimerica
Stampa 3D per estrusione di miscela geopolimerica

Successivamente i partner di WASP si occuperanno di implementare le formulazioni ottimizzate durante le fasi precedenti del progetto, alla realizzazione di un prototipo di elemento strutturale, con struttura macro-porosa, a media scala, mediante stampa 3D.

Infine, il gruppo coordinato da Carlo Bettanini provvederà alla sensorizzazione degli elementi strutturali, integrando opportune reti di sensori, finalizzate al monitoraggio continuo degli impatti micro-meteoritici.

L’auspicio è che i risultati del progetto GLAMS possano contribuire a soddisfare le esigenze delle agenzie spaziali che prevedono, entro il prossimo decennio, di realizzare missioni spaziali finalizzate a costruire habitat lunari che possano ospitare insediamenti umani semi-permanenti.

Luca Valentini
Luca Valentini

Testo e foto dall’Ufficio Stampa dell’Università di Padova sul Progetto GLAMS per la costruzione di basi lunari con materia prima dal satellite.

UNITO GUIDA UN PROGETTO INTERNAZIONALE
SULLA COMUNICAZIONE TRA PIANTE E IMPOLLINATORI

Come reagiscono le piante ai suoni emessi dagli insetti che ne visitano i fiori? Sono in grado di riconoscere i diversi visitatori in base alla loro firma acustica? Sono solo alcune delle domande a cui la ricerca, sostenuta da Human Frontiers Science Program, vuole dare risposta.

Progetto internazionale sulla comunicazione tra piante e impollinatori
Progetto internazionale sulla comunicazione tra piante e impollinatori

Due ricercatori dell’Università di TorinoFrancesca Barbero e Luca P. Casacci – docenti presso il Dipartimento di Scienze della Vita e Biologia dei Sistemi –, guideranno un gruppo di ricerca internazionale impegnato nel progetto Good Vibes: how do plants recognise and respond to pollinator vibroacoustic signals?, finanziato dallo Human Frontiers Science Program Award.

Good Vibes vuole scoprire i meccanismi molecolari e fisiologici delle risposte delle piante ai segnali vibroacustici emessi dagli insetti. I ricercatori utilizzeranno le bocche di leone (Antirrhinum spp.) e gli insetti che ne visitano i fiori come modello di studio. Durante il volo, questi insetti producono suoni differenti a seconda della specie, una sorta firma acustica, e possono fungere da efficienti impollinatori o sfruttare le risorse della pianta sottraendo nettare senza contribuire al trasferimento del polline e dunque al potenziale riproduttivo delle bocche di leone.

L’ipotesi principale che i ricercatori vogliono verificare è se le piante siano in grado di discriminare i diversi insetti visitatori dei fiori sulla base della loro firma acustica e di reagire con risposte atte a incrementare l’attrattività e la fedeltà alla pianta soltanto nel caso in cui siano visitate da impollinatori efficienti.

Più in generale, i risultati ottenuti tramite un approccio multidisciplinare che combina etologiabioacusticabiologia vegetalebiologia molecolareingegneriafisica modellistica permetteranno di rispondere, almeno in parte, ad alcune domande fondamentali: come reagiscono le piante ai suoni emessi dagli insetti che ne visitano i fiori? Nel corso dell’evoluzione, forma e materiali florali possono essere stati determinati anche dall’esigenza di migliorare la propagazione dei segnali vibroacustici? Perché la comunicazione vibroacustica si è evoluta nelle piante?

L’intento di Good Vibes è colmare le lacune nella conoscenza delle dinamiche complesse dei sistemi pianta-impollinatori affrontandone lo studio da una prospettiva completamente nuova. Il progetto coinvolgerà tre unità: Insect-Behaviour Unit guidata da Francesca Barbero (Università di Torino, Italia), Engineering-Modelling Unit guidata da Sebastian Oberst (University of Technology Sydney, Australia) e Plant-Physiology Unit guidata da J. Tomás Matus, ricercatore del programma Ramon y Cajal (Università di Valencia) presso I2SysBio (UV-CSIC).

L’ente internazionale Human Frontier Science Program Organization (HFSPO) ha stanziato 37 milioni di dollari per sostenere il 4% dei migliori progetti di ricerca HFSP nei prossimi 3 anni. I vincitori dell’anno 2022 hanno superato un rigoroso processo di selezione durato un anno, che ha visto la partecipazione di 716 proposte da parte di ricercatori di oltre 50 diversi paesi. Tra questi sono stati selezionati 7 progetti dedicati a giovani ricercatori e 25 progetti senior. Il finanziamento del progetto Good Vibes ammonta a 1.140.000 dollari e avrà una durata di tre anni.

 

Testo e foto dall’Ufficio Stampa dell’Università degli Studi di Torino