News
Ad
Ad
Ad
Tag

Giove

Browsing

Prima evidenza sperimentale del ghiaccio VII plastico, una nuova forma di ghiaccio dal comportamento dinamico

Uno studio internazionale, coordinato dalla Sapienza Università di Roma, ha dimostrato sperimentalmente l‘esistenza del ghiaccio VII plastico, la cui presenza è ipotizzata all’interno di alcune lune del sistema solare. La scoperta, pubblicata su “Nature”, apre nuove opportunità di ricerca per la comprensione dell’evoluzione strutturale dei pianeti ghiacciati.

Una fase cristallina dell’acqua che si forma a pressioni superiori a 50000 atmosfere e 300 °C: il ghiaccio VII plastico che si differenzia dalle altre forme di ghiaccio per la sua natura ibrida tra un solido e un liquido. Le molecole dell’acqua in questa fase sono disposte in un reticolo cubico denso, ma, a differenza delle altre forme di ghiaccio, sono libere di ruotare attorno alle loro posizioni d’equilibrio in modo simile a un liquido. Questo comportamento dinamico conferisce alla fase una natura plastica, la cui esistenza è stata ipotizzata da simulazioni di dinamica molecolare ma mai osservata sperimentalmente.

Il gruppo internazionale di ricerca, guidato da Livia Eleonora Bove del Dipartimento di Fisica della Sapienza, è riuscito a ottenere l’osservazione diretta dell’esistenza del ghiaccio VII plastico. Per dimostrare sperimentalmente il comportamento esotico di questa fase dell’acqua, il team di ricercatori ha utilizzato lo scattering quasi-elastico da neutroni (QENS), una tecnica che consente di misurare direttamente le proprietà rotazionali e la dinamica diffusiva in sistemi molecolari. I dati sperimentali hanno fornito fin da subito la prova dell’esistenza della fase plastica. Tuttavia, per comprendere in dettaglio il meccanismo con cui le molecole ruotano, sono stati necessari ulteriori esperimenti e il confronto con simulazioni di dinamica molecolare. A queste attività di ricerca hanno contribuito in particolare John Russo e Francesco Sciortino del Dipartimento di Fisica della Sapienza.

“Combinando dati sperimentali e simulazioni, abbiamo scoperto che le rotazioni nel ghiaccio plastico non sono completamente libere, ma piuttosto avvengono attraverso salti tra posizioni preferenziali – spiega Maria Rescigno della Sapienza, prima autrice del lavoro – Questo comportamento conferisce al ghiaccio VII plastico proprietà uniche, che lo distinguono dalle altre fasi solide dell’acqua e ne influenzano significativamente le proprietà fisiche”.

Lo studio, non solo fornisce nuove informazioni sulla natura dei legami idrogeno in condizioni estreme – fondamentali per comprendere meglio le proprietà dell’acqua e di molti altri sostanze chimiche – ma apre nuove strade per la comprensione della struttura dei corpi celesti ghiacciati e la loro evoluzione.

Un caso particolarmente interessante è quello delle due lune di Giove, Ganimede e Callisto, la cui differenziazione interna rimane una questione aperta nella planetologia. Una possibile spiegazione di tale fenomeno potrebbe dipendere dalla presenza di ghiaccio plastico in una sola delle due lune. Questa circostanza avrebbe influenzato diversamente la loro evoluzione strutturale.

La ricerca, frutto di una collaborazione internazionale che ha coinvolto ben 9 istituzioni, rappresenta un importante avanzamento nella comprensione del complesso diagramma delle fasi dell’acqua in condizioni estreme e potrebbe aprire nuove prospettive di ricerca nel campo della planetologia.

Diagramma di fase. Immagine realizzata da Maria Rescigno del Dipartimento di Fisica della Sapienza
Diagramma di fase. Immagine realizzata da Maria Rescigno del Dipartimento di Fisica della Sapienza

Riferimenti bibliografici:

Rescigno, M., Toffano, A., Ranieri, U. et al. “Observation of Plastic Ice VII by Quasi-Elastic Neutron Scattering”, Nature (2025), DOI: https://doi.org/10.1038/s41586-025-08750-4

Al momento in cui si scrive, l’articolo su Nature è ancora in fase di editing.

Testo e immagine dal Settore Ufficio stampa e comunicazione Sapienza Università di Roma

Sotto la superficie di Io non c’è un oceano di magma liquido, ma un mantello solido

Un nuovo studio pubblicato su Nature, basato sui dati di gravità raccolti dalla sonda Juno della NASA durante dei sorvoli della luna Io di Giove esclude la presenza di un oceano di magma sotto la sua superficie

Sotto la superficie di Io, il satellite Galileiano più vicino a Giove, non c’è un oceano di magma liquido come si era pensato fino ad oggi, ma un mantello solido. A rivelarlo è uno studio pubblicato su Nature realizzato anche grazie al lavoro di diversi ricercatori della Sapienza Università di Roma e dell’Università di Bologna.

La ricerca, coordinata da Ryan Park del Jet Propulsion Laboratory dalla NASA, ha sfruttato i dati collezionati dalla sonda Juno della NASA durante due recenti sorvoli ravvicinati della luna insieme ai dati storici della missione Galileo, la sonda della NASA che tra il 1995 e il 2003 ha esplorato il sistema di Giove.

“La combinazione dei dati acquisiti da Juno con quelli collezionati dalla sonda Galileo oltre 20 anni fa – spiega Daniele Durante, ricercatore presso il Dipartimento di Ingegneria Meccanica e Aerospaziale – ha permesso di migliorare la stima della risposta mareale di Io, che fornisce indicazioni dirette della deformabilità della struttura interna della luna.”

Io è un satellite unico nel sistema di Giove grazie alla sua intensa attività vulcanica, che lo rende l’oggetto geologicamente più attivo del sistema solare. Per decenni si è creduto che l’enorme attrazione gravitazionale di Giove fosse sufficiente a creare un oceano di magma sotto la sua superficie, che alimentasse i suoi vulcani. Le misure di induzione magnetica condotte dalla sonda Galileo avevano infatti suggerito la presenza di un oceano di magma sotto la superficie di questa luna.

Questo scenario è stato però rivisto a seguito delle nuove osservazioni realizzate da Juno, la sonda che dal 2016 sta esplorando Giove e, più recentemente, le sue lune. Juno ha sorvolato per due volte Io a circa 1.500 chilometri di quota, raccogliendo dati del campo gravitazionale della luna molto accurati. I risultati dell’analisi mostrano una risposta gravitazionale della luna alle forze di marea piuttosto modesta.

“La risposta della luna alle forze di marea esercitate da Giove è risultata piuttosto bassa – afferma Luciano Iess, professore presso il Dipartimento di Ingegneria Meccanica e Aerospaziale – indicazione dell’assenza di un oceano di magma vicino alla superficie e, piuttosto, della presenza di un mantello solido profondo al suo interno”.

Lo studio è stato pubblicato su Nature con il titolo “Io’s tidal response precludes a shallow magma ocean”. Per Sapienza Università di Roma hanno partecipato Daniele Durante e Luciano Iess, in collaborazione con i colleghi dell’Università di Bologna, Luis Gomez Casajus, Marco Zannoni, Andrea Magnanini e Paolo Tortora. Le attività di ricerca sono state realizzate nell’ambito di un accordo finanziato dall’Agenzia Spaziale Italiana.

Struttura interna di Io. La nuova misura della deformazione mareale suggerisce che la luna non abbia un oceano globale di magma vicino la superficie ma è coerente con la presenza di un mantello più solido (sfumature di verde), con una quantità significativa di materiale fuso (in giallo e arancione) che ricopre un nucleo liquido (in rosso/nero). Illustrazione di Sofia Shen (JPL/Caltech).
Struttura interna di Io. La nuova misura della deformazione mareale suggerisce che la luna non abbia un oceano globale di magma vicino la superficie ma è coerente con la presenza di un mantello più solido (sfumature di verde), con una quantità significativa di materiale fuso (in giallo e arancione) che ricopre un nucleo liquido (in rosso/nero). Illustrazione di Sofia Shen (JPL/Caltech).

Riferimenti bibliografici:

Park, R.S., Jacobson, R.A., Gomez Casajus, L. et al. Io’s tidal response precludes a shallow magma ocean, Nature (2024), DOI: https://doi.org/10.1038/s41586-024-08442-5

Testo e immagine dal Settore Ufficio stampa e comunicazione Sapienza Università di Roma

MISSIONE JUICE: MAJIS SVELA NUOVI DETTAGLI SU TERRA E LUNA E APRE LA STRADA ALLA RICERCA DI VITA SULLE LUNE DI GIOVE

Il dati raccolti dallo spettrometro a bordo di JUICE  confermano le prestazioni previste, fornendo le prove dell’esistenza degli elementi alla base della vita sulla Terra, dettagli sulla riflettanza e sull’emissione termica di mari e altopiani lunari, oltre a immagini del nostro pianeta con risoluzione spaziale e spettrale eccezionale.

 

Roma, 10 settembre 2024 – Durante lo storico flyby del 19 e 20 agosto 2024, la missione JUICE dell’Agenzia Spaziale Europea (ESA) ha puntato i suoi strumenti verso il sistema Terra-Luna, un’occasione unica per raccogliere dati scientifici e calibrare i sensori a bordo. Tra gli strumenti utilizzati, lo spettrometro franco-italiano MAJIS ha dimostrato le sue straordinarie capacità, svelando dettagli senza precedenti sulla riflettanza e l’emissione termica della superficie lunare, acquisendo immagini della Terra con una risoluzione spaziale e spettrale eccezionale, e confermando che il nostro pianeta è abitabile. Queste osservazioni rappresentano un traguardo fondamentale verso la futura esplorazione del sistema gioviano, soprattutto perché MAJIS (insieme agli altri 9 strumenti a bordo di JUICE) potrebbe scovare – nelle sottili atmosfere e sulle superfici ghiacciate dei satelliti galileiani – elementi alla base della vita come la conosciamo dando nuovo slancio al filone di ricerca che si occupa dei mondi potenzialmente abitabili.

La Luna e la Terra in posa per la camera JANUS durante il primo flyby di JUICE

MAJIS è stato realizzato grazie a due importanti contributi da parte della Francia e dell’Italia attraverso il supporto delle rispettive agenzie spaziali, il Centro Nazionale di Studi Spaziali francese (Centre National d’études Spatiales – CNES) e l’Agenzia Spaziale Italiana (ASI). Il principale contributo scientifico e la responsabilità sono affidate all’Istituto di Astrofisica Spaziale Francese (Institut d’Astrophysique Spatiale – IAS) d’Orsay e all’Istituto Nazionale di Astrofisica (INAF).

Giuseppe Piccioni, Co-Principal Investigator dello strumento MAJIS per l’INAF di Roma, commenta: “Dopo tanti anni di lavoro di preparazione e sviluppo di uno strumento spaziale, è sempre una bellissima emozione vedere i primi risultati di tanto sforzo. In un viaggio lungo come quello della missione JUICE – oltre 8 anni solo per arrivare a Giove – i flyby di Terra, Luna e Venere, offrono delle ghiotte occasioni per verificare le prestazioni e le calibrazioni degli strumenti, in particolare per MAJIS”.

MAJIS non si limita solo a fornire immagini; lo strumento è anche in grado di rilevare la presenza di elementi fondamentali per la vita sia nelle atmosfere che sulle superfici di corpi celesti. Durante il flyby del 20 agosto, MAJIS ha verificato questa capacità analizzando l’atmosfera terrestre, confermando la presenza di elementi adatti allo sviluppo della vita e con molta probabilità che sia effettivamente abitata.

“Queste potenzialità – dice Piccioni – si rivelano fondamentali per la missione JUICE, che esplorerà anche le lune ghiacciate di Giove, alla ricerca di ambienti potenzialmente abitabili. Le osservazioni di Terra e Luna effettuate durante il sorvolo di JUICE hanno costituito la migliore opportunità per mettere alla prova le prestazioni e la calibrazione di MAJIS con bersagli estesi, simili per dimensioni a quelli che si prevede di incontrare su Giove durante la missione nominale. D’altra parte, Luna e Terra sono oggetti molto luminosi, il che richiede l’uso di modalità di osservazione speciali per evitare la saturazione dei rilevatori, un’altra importante prova della versatilità dello strumento MAJIS”.

Il Moons And Jupiter Imaging Spectrometer (MAJIS) è uno spettrometro a mappatura che opera nella finestra di lunghezze d’onda comprese tra 0,5 e 5,56 micrometri (milionesimi di metro) con una risoluzione di 150 metri da una distanza di 1000 km, in grado di fornire uno spettro con 1016 “colori” indipendenti del bersaglio osservato. Parte di questi colori rientra nello spettro visibile, ma la maggior parte si trova nell’infrarosso, una parte della radiazione non visibile all’occhio umano. Questo spettro consente di determinare la composizione e le proprietà fisiche del bersaglio osservato. Tutte queste caratteristiche rendono MAJIS uno strumento ideale per produrre mappe dettagliate della composizione superficiale dei satelliti galileiani e delle loro esosfere, oltre che per identificare le proprietà chimico-fisiche dell’atmosfera di Giove (l’obiettivo scientifico della missione JUICE).

Piccioni sottolinea che “la qualità dei dati forniti da MAJIS è sorprendente, superiore alle più rosee previsioni, e questo apre un’ottima aspettativa per le osservazioni che verranno in futuro. Non sappiamo ancora se sarà possibile, ma il flyby di Venere potrebbe darci un’altra occasione unica per fare altre osservazioni e verificare la calibrazione dello strumento, oltre a fornirci importanti informazioni scientifiche del nostro pianeta gemello”.

“Oltre alla calibrazione – prosegue il ricercatore – le osservazioni durante il sorvolo offrono un importante contenuto scientifico. MAJIS ha fornito una copertura locale della superficie lunare con un dettaglio fino a circa 130 metri, dal visibile all’infrarosso termico. È stato possibile, ad esempio, confermare le prestazioni radiometriche dello strumento e identificare l’emissione termica e le radiazioni di riflettanza dovute ai mari lunari (o anche detti maria) e agli altopiani lunari”.

Pur essendo molto simili a quelle che verranno effettuate attorno a Giove, le osservazioni effettuate da MAJIS nel sistema Terra-Luna sono state più impegnative: il flusso luminoso di Terra e Luna è molto più intenso rispetto a Giove, per la diversa distanza dal Sole; per evitare di saturare lo strumento, sono stati usati tempi di esposizione brevi e gestite condizioni termiche difficili, poiché MAJIS opera a -150°C per rilevare segnali deboli nell’infrarosso.

Le osservazioni della Terra effettuate durante il sorvolo sono composte da una serie di cubi di immagini acquisiti con risoluzioni spaziali dell’ordine del chilometro e risoluzione spettrale fino a 3,6 nanometri, coprendo una gamma di diverse geometrie di visione e illuminazione solare (dal lato notturno al lato diurno). Il procedimento di elaborazione ha poi previsto la creazione di un set di maschere per distinguere tra le diverse composizioni atmosferiche, utilizzando caratteristiche di riflettanza forti e consistenti specifiche delle singole topografie. MAJIS misura anche l’emissione termica, offrendo una vista spettacolare del lato notturno.

Questo e molto altro ci regalerà la missione JUICE all’arrivo nel sistema gioviano. Un recente articolo pubblicato sulla rivista Space Science Reviews, dal titolo “Characterization of the Surfaces and Near-Surface Atmospheres of Ganymede, Europa and Callisto by JUICE” e guidato da Federico Tosi dell’INAF di Roma, esplora lo stato attuale della ricerca sulle superfici e le sottili atmosfere dei satelliti ghiacciati di Giove – Ganimede, Europa e Callisto – basandosi su dati raccolti da missioni spaziali e osservazioni telescopiche. La missione JUICE dell’ESA giocherà, infatti, un ruolo chiave nell’approfondire la conoscenza di queste lune, studiandone la geologia, la composizione superficiale e i processi atmosferici, tra cui le misteriose emissioni di vapore d’acqua su Europa. L’articolo presenta anche mappe e misurazioni previste per ottimizzare le future osservazioni di JUICE.


 

Per ulteriori informazioni:

MAJIS è stato costruito da un consorzio franco-italiano guidato dall’Institut d’Astrophysique Spatiale (IAS) di Orsay, in Francia, e finanziato dal Centre National d’études Spatiales (CNES) e dall’Agenzia Spaziale Italiana (ASI). L’INAF ha coordinato la proposta originale dello strumento, selezionata da ESA a febbraio 2013, e in qualità di Istituto Co-PI ha poi seguito lo sviluppo del sostanziale contributo hardware italiano che riguarda la testa ottica costituita da telescopio e spettrometro, realizzati presso Leonardo (Campi Bisenzio, Firenze), e la valutazione delle performance attese. Lo strumento è stato assemblato e calibrato inizialmente presso Leonardo, poi presso IAS-Orsay. Infine, è stato alloggiato a bordo del satellite JUICE a dicembre 2021. I laboratori belgi supportati da Belspo sono stati coinvolti nella caratterizzazione dei rivelatori MAJIS.

Testo e immagini dall’Ufficio stampa dell’Istituto Nazionale di Astrofisica (INAF).

LO SPETTROMETRO A IMMAGINE MAJIS DELLA SONDA JUICE HA COMPLETATO I TEST IN VOLO

MAJIS test in volo
Lo strumento MAJIS a bordo della sonda JUICE che ha completato i test in volo. Crediti: Leonardo

Fra gli strumenti di telerilevamento a bordo della sonda dell’Agenzia Spaziale Europea (ESA) JUICE (Jupiter Icy Moon Explorer), lo spettrometro a immagine MAJIS (Moons and Jupiter Imaging Spectrometer), operante nel visibile e vicino infrarosso (0.5-5.5 μm), assume un particolare rilievo per la sua capacità di fornire misure importanti per l’intera gamma di indagini che riguardano il pianeta Giove e i suoi maggiori satelliti. MAJIS come anche JANUS, RIME e 3GM tutti realizzati con il finanziamento dell’Agenzia Spaziale Italiana (ASI) sono stati precedentemente accesi e testati nello spazio con successo dimostrando il perfetto funzionamento di tutti gli strumenti realizzati, interamente o in parte, dal nostro Paese.

Giuseppe Piccioni, Co-Principal Investigator dello strumento MAJIS per l’INAF di Roma, spiega: “La scorsa settimana, lo specchio di scansione e l’otturatore sono stati attivati e azionati in modo impeccabile. Sono state poi eseguite osservazioni delle sue lampade di calibrazione interne, confermando le eccellenti prestazioni dello strumento in linea con la calibrazione a terra. MAJIS è quindi pronto per compiere la sua missione, ovvero studiare la composizione della superficie e l’esosfera delle lune ghiacciate e caratterizzare la composizione e la dinamica dell’atmosfera di Giove”.

La figura confronta due immagini MAJIS acquisite durante la calibrazione dello strumento (in alto) e la messa in servizio in volo (in basso) utilizzando la lampada di calibrazione interna. Da queste immagini vengono estratti due profili che mostrano che il segnale preso in volo (verde) è simile a quello acquisito durante la calibrazione in condizioni criogeniche simili. Crediti: INAF

Tra gli obiettivi di MAJIS rivestono la massima importanza la determinazione e mappatura della composizione superficiale delle lune Ganimede, Callisto ed Europa, con particolare enfasi sui composti diversi dal ghiaccio d’acqua già noti da precedenti osservazioni o previsti dai modelli, come sali minerali idrati, volatili e composti organici, e la mappatura composizionale dell’atmosfera di Giove, inclusa la densità delle nubi e la morfologia delle aurore. In questo contesto, il progetto MAJIS si propone di valorizzare e sviluppare ulteriormente le competenze maturate durante il progetto Jovian InfraRed Auroral Mapper (JIRAM) attualmente operante attorno a Giove a bordo della missione NASA Juno.

“Il completamento dei primi test in volo dello strumento MAJIS – dichiara Raffaele Mugnuolo, responsabile di Unità di Esplorazioni, Infrastrutture Orbitanti e di Superficie e Satelliti Scientifici di ASI – è un passo importantissimo e che instilla grande ottimismo per il prosieguo della missione JUICE. Lo spettrometro MAJIS conferma la grande e consolidata capacità italiana in questo ambito, sia per la parte ingegneristica che per la parte scientifica. Il coordinamento esercitato dall’ASI si è rivelato efficace sia nei rapporti con il CNES che verso ESA e ha consentito il completamento di uno strumento complicatissimo che ripagherà in termini di ritorno scientifico senza precedenti”.

MAJIS è stato costruito da un consorzio franco-italiano guidato dall’Institut d’Astrophysique Spatiale (IAS) di Orsay, in Francia, e finanziato dal Centre National d’études Spatiales (CNES) e dall’Agenzia spaziale italiana (ASI). L’Istituto Nazionale di Astrofisica (INAF) ha coordinato la proposta originale dello strumento, selezionata da ESA a febbraio 2013, e in qualità di Istituto Co-PI ha poi seguito lo sviluppo del sostanziale contributo hardware italiano che riguarda la testa ottica costituita da telescopio e spettrometro, realizzati presso Leonardo (Campi Bisenzio, Firenze), e la valutazione delle performance attese. Lo strumento è stato assemblato e calibrato inizialmente presso Leonardo, poi presso IAS-Orsay. Infine è stato alloggiato a bordo del satellite JUICE a dicembre 2021. I laboratori belgi supportati da Belspo sono stati coinvolti nella caratterizzazione dei rivelatori MAJIS.

Testo e immagini dall’Ufficio stampa – Struttura per la Comunicazione Istituto Nazionale di Astrofisica (INAF).

APRE GLI OCCHI LA CAMERA JANUS (Jovis, Amorum ac Natorum Undique Scrutator) DELLA SONDA ESA JUICE (Jupiter Icy Moon Explorer )

Conclusa positivamente la cosiddetta fase di commissioning – cioè di collaudo – dello strumento ottico realizzato da Leonardo sotto la responsabilità dell’ASI e con il contributo e la guida scientifica dell’Università Parthenope di Napoli e dell’INAF.

camera JANUS
Foto della camera JANUS prima di essere stata installata a bordo della sonda JUICE. Crediti: Leonardo, DLR, IAA

Lo strumento Jovis, Amorum ac Natorum Undique Scrutator (JANUS) ha superato a pieni voti la fase di commissioning, vale a dire un vero e proprio collaudo durante il quale – a 8 milioni di km dalla Terra – ha aperto i suoi “occhi” elettronici inviando ai tecnici e ai ricercatori la cosiddetta “prima luce”, cioè la sua prima serie di immagini. La camera ottica, che viaggia ormai da poco più di un mese a bordo della sonda ESA Jupiter Icy Moon Explorer (JUICE), è stata progettata per studiare la morfologia ed i processi globali regionali e locali delle lune ghiacciate di Giove e per eseguire la mappatura delle nubi del gigante gassoso. Lo strumento è stato realizzato da Leonardo sotto la responsabilità dell’Agenzia Spaziale Italiana (ASI) e con il contributo e la guida scientifica dell’Università Parthenope di Napoli e dell’Istituto Nazionale di Astrofisica (INAF).

La scorsa settimana, la camera JANUS è stata messa in funzione e comandata quasi in tempo reale dall’European Space Operation Center (ESOC) a Darmstadt, per verificare tutte le sue funzionalità hardware e software. Lo strumento italiano è equipaggiato con un sistema di 13 filtri (5 a banda larga e 8 a banda stretta) distribuiti nell’intervallo spettrale dal visibile al vicino infrarosso (0.34 – 1.08 micron). Il sistema catadiottrico del telescopio definisce un campo di vista rettangolare di 1.29° × 1.72° e permette di raggiungere la risoluzione spaziale di 7 metri nella fase orbitale intorno a Ganimede a 500 km dalla superficie, e di circa 10 km per le immagini dell’atmosfera di Giove. JANUS permetterà dunque l’acquisizione di immagini multispettrali a una risoluzione e con una estensione 50 volte migliore che in passato, garantendo notevoli passi in avanti nella conoscenza di questi mondi esotici. La camera include anche un computer con un software che controlla tutte le funzionalità dello strumento, riceve i comandi e invia telemetria e dati a terra attraverso un’interfaccia satellitare.

“JANUS è stato progettato per rispondere a molte domande scientifiche della missione JUICE”, afferma Pasquale Palumbo (INAF di Roma), Principal Investigator del team che ha progettato, testato e calibrato la fotocamera. “Lo strumento è molto flessibile, possiamo ottimizzare i parametri di acquisizione per i diversi obiettivi, requisiti di osservazione e condizioni che la camera dovrà affrontare”.

JANUS è ottimizzato per lo studio della morfologia globale, regionale e locale della superficie delle lune ghiacciate di Giove e per il monitoraggio dell’atmosfera del pianeta. Con JANUS sarà inoltre possibile studiare gli strati esterni (fino alla troposfera) dell’atmosfera di Giove e approfondire lo studio della magnetosfera in cui Giove e i suoi satelliti sono inseriti e le complesse interazioni che avvengono nel sistema.

Le attività svolte durante la fase di commissioning hanno incluso un controllo completo dell’hardware, con tutti i sottosistemi attivati e monitorati attraverso le relative telemetrie, il comando di diverse impostazioni di configurazione e l’esecuzione di operazioni scientifiche per verificare le condizioni nominali della catena di acquisizione (dal rivelatore all’interfaccia con il veicolo spaziale).

Barbara Negri, Responsabile Unità Volo Umano e Sperimentazione Scientifica dell’ASI, commenta:

“JANUS ha rappresentato una significativa evoluzione tecnologica delle camere ottiche impiegate nelle missioni di esplorazione del sistema solare. La realizzazione di questo strumento è stata molto complessa e sfidante, ma la società Leonardo ha centrato pienamente l’obiettivo, che permetterà di fare notevoli passi avanti nella conoscenza di queste lune, candidate ad ospitare eventuali forme di vita”.

Il comportamento del sistema ottico è stato verificato anche osservando un campo stellare attorno a eta Cyg, una stella binaria visibile nella costellazione del Cigno a circa 135 anni luce dal Sistema solare. La serie di “scatti” fotografici ha confermato il buono stato dell’allineamento ottico critico di JANUS e l’integrità degli elementi ottici.

“Un rapido sguardo ai dati acquisiti suggerisce che quasi tutto era nominale. Dopo questa intensa sessione sul campo, possiamo dire: abbiamo uno strumento (completamente commissionato)!”, conclude Palumbo.


Per ulteriori informazioni:

Leonardo è responsabile industriale per la realizzazione, integrazione e test dello strumento JANUS, con il contributo di sottosistemi dal DLR di Berlino, CSIC-IAA di Granada e CEI-Open University di Milton Keynes. Le Agenzie Spaziali Italiana, Tedesca, Inglese (ASI, DLR e UKSA), con il Ministero della Ricerca Spagnolo, sono i principali finanziatori del progetto. JANUS è stata sviluppata da un team internazionale composto da Istituti e ricercatori situati in Italia, Germania, Spagna, Gran Bretagna, Francia, USA, Giappone e Israele. Il team è guidato dall’INAF-IAPS e include partecipanti anche da altri Istituti INAF (gli Osservatori di Padova, Roma e Catania), dal CISAS-Università di Padova e da altri istituti di ricerca e università.

Testo, video e immagini dall’Ufficio stampa – Struttura per la Comunicazione Istituto Nazionale di Astrofisica (INAF).

JUICE (Jupiter Icy Moon Explorer): verso il pianeta Giove per svelare i misteri delle sue lune ghiacciate, Ganimede, Europa e Callisto

La sonda lanciata il 14 aprile, arriverà a destinazione dopo otto anni di crociera.

A bordo importanti strumenti finanziati e sviluppati sotto la guida dell’Agenzia Spaziale Italiana con la partecipazione di un team scientifico a cui ha preso parte anche la Sapienza.

Le più grandi lune di Giove. Crediti: ESA – Agenzia Spaziale Europea

Giove e le sue lune ghiacciate – Ganimede, Europa e Callisto – saranno il fulcro dell’indagine della sonda JUICE (Jupiter Icy Moon Explorer), lanciata con successo oggi, 14 aprile alle 14.15 ora italiana, dalla Guyana francese.

JUICE raggiungerà Giove nel 2031, svolgendo la sua missione di studio per tre anni nell’ambiente giovano, molto somigliante a un sistema solare in miniatura. Lì dovrà portare a termine una complessa serie di compiti: dall’osservazione dell’atmosfera e della magnetosfera di Giove, a quella dell’interazione delle lune galileiane con il pianeta.

La sonda visiterà Callisto (il corpo celeste maggiormente ricoperto di crateri nel sistema solare), che potrebbe nascondere un oceano interno, e sonderà gli strati più superficiali della calotta ghiacciata di Europa, identificando siti appropriati per una possibile esplorazione in situ. JUICE terminerà la sua missione a settembre 2035 orbitando per quattro mesi attorno a Ganimede, l’unica luna dotata di un proprio campo magnetico. Sarà la prima volta che una sonda spaziale orbiterà attorno a un satellite diverso dalla nostra Luna. Proprio nella sua fase finale la missione svelerà i risultati più attesi, osservando i dettagli della superficie ghiacciata di Ganimede e fornendo uno spaccato della sua struttura interna.

Lo studio comparato dei tre satelliti gioviani in un’unica missione permetterà di comprendere le cause della loro diversità, dominata dall’influenza di Giove, e di fornire nuovi dati sulla formazione dei sistemi planetari.

Uno dei principali temi scientifici di JUICE riguarda l’eventuale abitabilità degli ambienti dei pianeti giganti e in particolare la possibilità che i satelliti ghiacciati di Giove possano rappresentare un ambiente potenzialmente in grado di supportare attività biotica per tempi lunghi.

La scelta della missione JUICE è il coronamento di un processo iniziato nel 2004, anno in cui l’Agenzia spaziale europea (Esa) ha avviato un’ampia consultazione della comunità scientifica per identificare i traguardi dell’esplorazione planetaria europea nel decennio successivo.

JUICE: ricostruzione artistica
JUICE: ricostruzione artistica. Crediti: ESA – Agenzia Spaziale Europea

La missione dell’Esa, selezionata dallo Space Programme Committee, vede un’importante partecipazione dell’Italia attraverso l’Agenzia spaziale italiana (Asi) e diversi enti e università tra i quali Sapienza Università di Roma, che hanno partecipato alla realizzazione di 3 strumenti: lo strumento di radioscienza e geofisica 3GM, il radar RIME, la camera JANUS.

3GM (Gravity and Geophysics of Jupiter and the Galilean Moons), guidato da Luciano Iess, del Dipartimento di Ingegneria meccanica e aerospaziale della Sapienza, comprende un transponder in banda Ka e un oscillatore ultrastabile (USO), realizzato dall’Agenzia Spaziale Israeliana (ISA). Questo insieme di strumenti sarà utilizzato per misurare il campo di gravità e la struttura profonda delle lune ghiacciate, per determinare l’estensione dell’oceano interno di Ganimede e per studiare l’atmosfera di Giove. La strumentazione di 3GM comprende anche un accelerometro ad alta precisione (HAA), necessario per calibrare i disturbi dinamici interni del satellite, in particolare dovuti al movimento del propellente nei serbatoi.

RIME (Radar for Icy Moon Exploration), radar sottosuperficiale ottimizzato per penetrare la superficie ghiacciata dei satelliti galileiani fin alla profondità di 9 km con una risoluzione verticale fino a 30 m.Il radar RIME è frutto di una collaborazione tra l’Università di Trento e il Jet Propulsion Laboratory (JPL) della NASA.

JANUS (Jovis, Amorum ac Natorum Undique Scrutator) è una camera ottica per studiare la morfologia e i processi globali regionali e locali sulle lune e per eseguire la mappatura delle nubi di Giove.

Importante, inoltre, il coinvolgimento italiano per quanto riguarda la testa ottica dello strumento MAJIS (Moons and Jupiter Imaging Spectrometer), uno spettrometro iper-spettrale a immagine per osservare le caratteristiche e le specie minori della troposfera di Giove nonché per la caratterizzazione dei ghiacci e dei minerali sulle lune ghiacciate.

JUICE: ricostruzione artistica
JUICE: ricostruzione artistica. Crediti: ESA – Agenzia Spaziale Europea

Ai team scientifici dei quattro strumenti finanziati dall’Asi partecipano molte università e istituti di ricerca italiani e stranieri. I Principal Investigator di 3GM, RIME e JANUS appartengono rispettivamente a Sapienza Università di Roma, all’Università di Trento e all’Inaf – Istituto Nazionale di Astrofisica, a cui appartiene anche il Co-Principal Investigator di MAJIS.

Testo e immagini dal Settore Ufficio stampa e comunicazione Sapienza Università di Roma

LA PIÙ ACCURATA MAPPA VULCANICA DEL SATELLITE GIOVIANO IO

Grazie ai dati raccolti dallo stumento JIRAM a bordo della missione NASA Juno, un team di ricerca a guida INAF ha identificato 242 “hot spot”, ovvero zone calde che indicano la presenza di vulcani, di cui 23 non osservati precedentemente sul satellite più interno di Giove. I dati indicano una maggiore concentrazione di punti vulcanici caldi nelle regioni polari rispetto alle latitudini intermedie. Si tratta della mappatura migliore mai ottenuta da remoto.

La più accurata mappa vulcanica del satellite gioviano Io
La più accurata mappa vulcanica del satellite gioviano Io, grazie allo strumento JIRAM. Insieme di figure chiamate “super immagini”, ottenute calcolando la media di più osservazioni JIRAM acquisite in un lasso di tempo di pochi minuti. Questo approccio riduce la possibilità di falsi positivi. Le immagini ritraggono gli hot spot di Io nel corso degli anni. Crediti: F. Zambon et al. / Geophysical Research Letters

L’infernale luna Io (la più interna fra quelle regolari del sistema gioviano) è il corpo vulcanicamente più attivo dell’intero Sistema solare. Un recente articolo pubblicato sulla rivista Geophysical Research Letters (GRL) fa nuova luce sulle proprietà vulcaniche di questo satellite, in particolare grazie a nuovi dati raccolti da JIRAM (Jovian InfraRed Auroral Mapper), uno degli otto strumenti a bordo della sonda NASA Juno. Finanziato dall’Agenzia Spaziale Italiana (ASI) e realizzato da Leonardo, lo strumento vede la responsabilità scientifica dell’Istituto Nazionale di Astrofisica (INAF). L’articolo delinea la mappa più recente della distribuzione degli hot spot (punti vulcanici caldi) di Io prodotta con dati JIRAM da remoto alla migliore scala spaziale attualmente disponibile. I ricercatori, guidati dall’INAF, sono riusciti a ottenere, inoltre, una migliore copertura delle regioni di Io prossime ai poli rispetto al passato.

Francesca Zambon, membro del gruppo JIRAM, ricercatrice dell’INAF di Roma e prima autrice dell’articolo pubblicato su GRL, spiega:

“La mappa degli hot spot presentata nel nostro lavoro è la più aggiornata tra quelle basate su dati di telerilevamento spaziale. Analizzando le immagini infrarosse acquisite da JIRAM, abbiamo individuato 242 punti vulcanici caldi, di cui 23 non presenti in altri cataloghi e localizzati nella maggior parte dei casi nelle regioni polari, grazie alla peculiare orbita della sonda Juno”.

La ricercatrice sottolinea: “Il confronto tra il nostro studio e il catalogo più recente rivela che JIRAM ha osservato l’82% degli hot spot più potenti precedentemente individuati, e la metà degli hot spot di potenza intermedia, dimostrando quindi che questi sono ancora attivi. Tuttavia, JIRAM ha rilevato solo circa la metà degli hot spot più deboli precedentemente segnalati. Le spiegazioni sono due: o la risoluzione di JIRAM non è sufficiente per rilevare questi deboli punti caldi, oppure l’attività di questi centri effusivi potrebbe essersi sbiadita o interrotta”.

Quando la sonda spaziale NASA Voyager 1 avvicinò Io, il più interno dei satelliti galileiani di Giove, nel marzo 1979, le immagini inviate alla Terra rivelarono che la sua superficie appariva punteggiata da una moltitudine di centri vulcanici caldi, con imponenti colate laviche e pennacchi alti fino a qualche centinaio chilometri. In seguito, l’esplorazione condotta soprattutto dalla missione NASA Galileo chiarì che questi punti caldi sono moltissimi: alcune centinaia, molti dei quali con attività pressoché costante.

 

La luna Io mostra molti centri vulcanici, innescati principalmente dalle potenti forze mareali esercitate da Giove. Lo studio dell’attività vulcanica di questo satellite gioviano è la chiave per comprendere la natura dei suoi processi geologici e la sua evoluzione interna. La distribuzione degli hot spot e la loro variabilità spaziale e temporale sono importanti per definire le caratteristiche del riscaldamento delle maree e i meccanismi attraverso i quali il calore fuoriesce dall’interno.

 

Alessandro Mura, leader del gruppo JIRAM e ricercatore dell’INAF di Roma, prosegue:

“Uno dei maggiori punti aperti nella comprensione della struttura interna di Io è se l’attività vulcanica osservabile in superficie sia dovuta a un oceano di magma globale presente nel mantello, oppure a camere magmatiche che si insinuano nella crosta a minori profondità. Le osservazioni di JIRAM sono tuttora in corso, e le future immagini a maggiore definizione saranno fondamentali per meglio evidenziare i punti caldi deboli e per chiarire la struttura interna di Io”.

Giuseppe Sindoni, responsabile del progetto JIRAM per l’ASI, aggiunge:

“La superficie della luna gioviana Io è molto dinamica, con vulcani ed emissioni laviche in continua evoluzione, come dimostrato da questo importante risultato ottenuto dal nostro strumento JIRAM e dall’ottimo lavoro svolto dal team. L’estensione della missione Juno fino al 2025 ci permetterà di monitorare questa evoluzione e di comprendere meglio i processi fisici che guidano un corpo così complesso e dalle fattezze simili alla nostra Terra primordiale, anche in previsione di future missioni dedicate.”

La sonda Juno è stata lanciata ad agosto 2011 dalla base di Cape Canaveral ed è in orbita attorno a Giove dal luglio del 2016. Da allora ha percorso 235 milioni di chilometri. Juno è tuttora la sonda in orbita planetaria più distante della NASA, e continuerà le sue indagini sul pianeta più grande del Sistema solare fino a settembre 2025.

Alla fine dell’anno, il 30 dicembre 2023, durante la 57ma orbita attorno a Giove, la sonda Juno effettuerà il suo passaggio più ravvicinato in assoluto a Io, a una distanza minima di circa 4800 chilometri. Le missioni Europa Clipper della NASA e JUICE di ESA, che opereranno nel sistema di Giove negli anni 2030, non potranno mai avvicinarsi a simili distanze. Sarà quindi cruciale che Juno possa condurre osservazioni anche con JIRAM durante tutte le prossime opportunità previste nel 2023.


 

Per ulteriori informazioni:

L’articolo “Io hot spot distribution detected by Juno/JIRAM”, di F. Zambon, A. Mura, R. M. C. Lopes, J. Rathbun, F. Tosi, R. Sordini, R. Noschese, M. Ciarniello, A. Cicchetti, A. Adriani, L. Agostini, G. Filacchione, D. Grassi, G. Piccioni, C. Plainaki, G. Sindoni, D. Turrini, S. Brooks, C. Hansen-Koharcheck, S. Bolton, è stato pubblicato su Geophysical Research Letters.

Testo e immagine dall’Ufficio stampa – Struttura per la Comunicazione Istituto Nazionale di Astrofisica – INAF sulla mappa vulcanica di Io prodotta dallo strumento JIRAM

Giove: pianeta in costante movimento

Le misure di gravità effettuate dalla sonda Juno della Nasa hanno rivelato che le masse gassose di Giove si muovono, provocando sulla superficie del pianeta oscillazioni simili a onde marine con ampiezze tra i 15 e gli 80 metri. I risultati dello studio, coordinato dal Dipartimento di Ingegneria meccanica e aerospaziale della Sapienza, sono stati pubblicati sulla rivista Nature Communications.

Giove pianeta in costante movimento
Rappresentazione artistica della sonda Juno attorno a Giove, pianeta in costante movimento. Crediti: Nasa/JPL-Caltech

Giove è un pianeta gassoso e le sue masse interne possono muoversi, generando oscillazioni simili per certi versi alle onde marine e ai terremoti terrestri. Questi spostamenti di masse provocano piccole variazioni della gravità del pianeta.

Un nuovo studio, coordinato da Daniele Durante del Dipartimento di Ingegneria meccanica e aerospaziale della Sapienza, ha rivelato, grazie alle misurazioni della sonda spaziale Juno della Nasa, come il campo di gravità di Giove sia perturbato dalle oscillazioni interne, ovvero vere e proprie onde che si propagano da una parte all’altra del pianeta. In particolare, gli strumenti altamente sensibili della sonda spaziale in orbita intorno al pianeta hanno permesso di misurare i periodi di oscillazione dei modi più energetici, che risultano dell’ordine dei 15 minuti e che generano onde di ampiezza compresa tra i 15 e gli 80 metri sulla superficie.

I risultati della ricerca, realizzata da un team internazionale e finanziata in parte dall’Agenzia spaziale italiana, sono stati pubblicati sulla prestigiosa rivista scientifica Nature Communications.

Giove pianeta in costante movimento
Rappresentazione artistica di Juno in orbita intorno a Giove, pianeta in costante movimento. Essendo il pianeta un gigante gassoso, il suo campo di gravità è perturbato dalla presenza di oscillazioni interne, che muovono grandi quantità di massa. Crediti, immagine di Juno: NASA/JPL-Caltech.
Crediti, immagine di Giove: NASA, ESA, A. Simon (Goddard Space Flight Center), and M. H. Wong (University of California, Berkeley) and the OPAL team

La missione della sonda Juno, in orbita intorno a Giove dal 5 luglio 2016, ha come obiettivi principali lo studio dei processi di formazione della struttura interna, del campo magnetico e dell’atmosfera del pianeta. Giove, che da solo ha una massa due volte e mezzo maggiore rispetto a quella di tutti gli altri pianeti messi assieme, è composto quasi esclusivamente da idrogeno ed elio. Il suo interno non è direttamente osservabile e per comprenderne la struttura più profonda si ricorre a misurazioni accurate del campo gravitazionale, espressione della distribuzione delle masse interne del pianeta.

“Circa ogni 52 giorni – spiega Daniele Durante, primo autore dello studio – la sonda Juno compie passaggi ravvicinati del pianeta, a circa 4,000 km dal limite delle nubi. A queste distanze Juno subisce piccole ma misurabili accelerazioni esercitate dalle oscillazioni interne del pianeta”.

Lo strumento di radio scienza KaT (Ka-Band Translator, realizzato da Thales Alenia Space Italy e finanziato dall’Agenzia spaziale italiana), presente a bordo della sonda, è il cuore dell’esperimento di gravità che ha permesso di misurare le perturbazioni al campo gravitazionale causato dalle oscillazioni interne a Giove. Il KaT riceve e ritrasmette il segnale radio inviato da una speciale antenna di terra ubicata nel deserto della California, permettendo di misurare la velocità della sonda con precisioni di centesimi di millimetro al secondo e variazioni di gravità 60 milioni di volte più piccole della gravità terrestre.

Profilo della velocità radiale dello strato superiore di Giove in funzione della frequenza di oscillazione dei modi normali interni. Ogni linea rappresenta un modello diverso la cui opacità è proporzionale alla probabilità del modello stesso: linee più scure indicano modelli più probabili, mentre linee più chiare indicano modelli via via meno probabili. La dispersione delle linee fornisce un’indicazione dell’incertezza del profilo di ampiezza ottenuto

Le misure di gravità effettuate da Juno avevano già portato ad altre importanti scoperte relative alla struttura interna del pianeta, tra cui la profondità dei forti venti est-ovest (con velocità fino a 360 km/h), che si spingono fino a circa 3,000 km al di sotto del livello delle nubi. Inoltre, le misure di gravità effettuate durante due sorvoli ravvicinati della Grande Macchia Rossa di Giove hanno permesso di determinarne per la prima volta la profondità, pari a circa 300 km, assai inferiore a quella dei venti est-ovest.

Nelle 22 orbite dedicate allo studio del campo gravitazionale di Giove, durante i primi 5 anni della missione, la sonda Juno ha sorvolato il pianeta fino a 4-5,000 km al di sopra del livello delle nubi (poiché Giove non ha una vera e propria superficie), misurando molto accuratamente il campo di gravità del pianeta ad ogni passaggio. Si è così potuto osservare che la gravità del gigante gassoso cambiava leggermente nel tempo.

“Per il nostro team scientifico – continua Daniele Durante – l’interpretazione di gran lunga più convincente è la presenza di fenomeni dinamici quali i modi di oscillazione. Le misure mostrano quindi un pianeta in costante movimento, non solo intorno al suo asse di rotazione, attorno cui compie un giro completo in 10h e 55m, ma anche al suo interno”.

Gli strati più esterni oscillano verticalmente per 15–80 metri ogni circa 15 minuti, in maniera simile a ciò che avviene per le maree terrestri. Questi modi di oscillazione sono chiamati ‘di tipo p’, poiché la forza di richiamo è la pressione interna.

“Analogamente a quanto è avvenuto per il sole con quel vasto campo di ricerca noto come eliosismologia, la misura di queste oscillazioni con strumenti dedicati potrà fornire in futuro – conclude Durante – una descrizione della struttura interna del pianeta assai più dettagliata di quanto sia possibile al giorno d’oggi”.

Riferimenti:
Juno spacecraft gravity measurements provide evidence for normal modes of Jupiter – Daniele Durante, Tristan Guillot, Luciano Iess, David J. Stevenson, Christopher R. Mankovich, Steve Markham, Eli Galanti, Yohai Kaspi, Marco Zannoni, Luis Gomez Casajus, Giacomo Lari, Marzia Parisi, Dustin R. Buccino, Ryan S. Park, Scott J. Bolton – Nature Communications (2022) https://doi.org/10.1038/s41467-022-32299-9

Articoli correlati:

Giove, il pianeta più grande del sistema solare

Testo, video e foto dal Settore Ufficio stampa e comunicazione Sapienza Università di Roma

La Grande macchia rossa di Giove: una tempesta anticiclonica dalla profondità “contenuta”

I nuovi risultati delle misurazioni di gravità del pianeta ottenute dalla sonda Juno rivelano, in uno studio pubblicato su Science, che la grande macchia rossa, pur molto estesa, non è profonda come si immaginava. Questa scoperta potrebbe spiegare i motivi della sua evoluzione e forse della possibile scomparsa.

grande macchia rossa Giove
L’animazione simula il moto delle nuvole della Grande Macchia Rossa di Giove. E’ stata creata applicando il modello del movimento dei venti ad un mosaico di immagini scattate dallo strumento. Credits: NASA/JPL-Caltech/SwRI/MSSS/Gerald Eichstadt/Justin Cowart

Giove è il più grande pianeta del sistema solare, con un raggio equatoriale di 71.492 km, ed è composto principalmente da idrogeno ed elio e per questo viene definito “gigante gassoso”.

La caratteristica forse più iconica del pianeta è la Grande macchia rossa, una tempesta anticiclonica scoperta probabilmente da Giandomenico Cassini nel 1665. Oggi questa assomiglia a un ovale di dimensioni approssimativamente pari a 16000 x 12000 km, che ne fanno la più grande tempesta del sistema solare, seppur negli ultimi 100 anni, per cause ancora ignote, si sia ridotta considerevolmente. La Grande macchia rossa porta con sé ancora molti interrogativi: uno di questi riguarda la profondità con cui questa tempesta si inabissa dentro Giove.

A questo come ad altri quesiti sulla dimensione del nucleo ha risposto la sonda Juno, realizzata dalla NASA con un importante contributo italiano.

Rappresentazione artistica di Juno in orbita attorno a Giove. Crediti: Nasa/JPL-Caltech

Durante due sorvoli ravvicinati di Giove (febbraio e luglio 2019), la missione Juno della NASA (in orbita intorno a Giove dal 5 luglio 2016 per studiare i meccanismi di formazione, la struttura interna, la magnetosfera e l’atmosfera del gigante gassoso) ha osservato per la prima volta da vicino la Grande macchia rossa. Poiché l’interno del pianeta non è direttamente osservabile, per comprenderne la struttura più intima si ricorre a misurazioni accurate del campo gravitazionale, che è espressione della distribuzione della massa all’interno del pianeta.

grande macchia rossa Giove
Geometria delle osservazioni di Juno della Grande Macchia Rossa (GRS). Il campo di velocità della Grande Macchia Rossa (frecce nere) e le tracce a terra di Juno durante PJ18 e PJ21 (linee colorate) sono sovrimposte a una immagine della Grande Macchia Rossa effettuata da JunoCam durante PJ21. La quota della sonda durante il passaggio ravvicinato con la Grande Macchia Rossa (latitudine 20°S) era, rispettivamente per PJ18 e PJ21, di 13,000 km e 19,000 km, con scostamenti longitudinali di 11° e 2° 

Le misure del campo gravitazionale del pianeta avevano mostrato che i forti venti est-ovest (con velocità fino a 360 km/h), visibili tracciando il moto delle nubi, si spingono alla profondità di circa 3000 km.

Gli strati inferiori della Grande Macchia Rossa di Giove sono stati osservati da Juno anche usando i dati del radiometro a microonde (MWR). Ognuno dei sei canali dello strumento osserva diverse profondità sotto le nuvole

Oggi, una nuova ricerca, finanziata in parte dall’Agenzia Spaziale Italiana (ASI) e coordinata da Marzia Parisi, ex-dottoranda della Sapienza, ora post-doc al California Institute of Technology/Jet Propulsion Laboratory, insieme a un gruppo internazionale di cui fanno parte Daniele Durante e Luciano Iess del Dipartimento di Ingegneria meccanica e aerospaziale della Sapienza, mostra come invece i venti della Grande macchina rossa abbiano una profondità di penetrazione verticale piuttosto contenuta, pari a circa 300 km, assai inferiore a quella dei venti che soffiano nelle bande visibili del pianeta. I risultati del lavoro sono stati pubblicati sulla rivista Science.

“I risultati del nostro studio – spiega Daniele Durante del Dipartimento di Ingegneria meccanica e aerospaziale della Sapienza – attestano una massa della tempesta pari a circa la metà dell’intera atmosfera terrestre e poco meno di quella di tutta l’acqua del Mar Mediterraneo, e rappresentano la Grande macchia rossa come un oggetto molto simile a un disco assai esteso (la sua dimensione minore è pari all’incirca al diametro della Terra) ma piuttosto sottile, con caratteristiche che ricordano quelle delle più grandi tempeste terrestri”.

grande macchia rossa Giove
Le dimensioni della Grande macchia rossa a confronto con la Terra. La profondità determinata dalle misure di gravità è di soli 300 km.

Con un’orbita molto eccentrica, la sonda Juno è riuscita ad avvicinarsi molto al gigante gassoso, fino a 4-5000 km al di sopra delle nubi: a queste distanze è possibile avere una elevata sensibilità all’accelerazione gravitazionale esercitata principalmente dalle strutture dell’atmosfera del pianeta. La sonda ha utilizzato lo strumento di radioscienza KaT (Ka-Band Translator, realizzato da Thales Alenia Space-I e finanziato dall’Agenzia spaziale italiana), il cuore dell’esperimento che ha permesso di determinare l’estensione verticale della Grande macchia rossa.

La Grande macchia rossa ha perturbato impercettibilmente l’orbita di Juno, ma l’estrema accuratezza della misura (fino a 0.01 mm/s) ha permesso di catturarne il debolissimo segnale gravitazionale e di stimare così la profondità a circa 300 km.

“Le misure di Juno – conclude Luciano Iess dello stesso Dipartimento – hanno fornito la terza dimensione a quel fenomeno dell’atmosfera di Giove che ha attratto l’attenzione di molti di noi, come anche quella degli astronomi da più di trecento anni, mostrando come sia una tempesta superficiale certamente molto estesa, ma ben poco profonda. Questa nuova misura contribuirà a capirne la natura, l’evoluzione e, forse, la sua possibile scomparsa”.

Riferimenti:

The depth of Jupiter’s Great Red Spot constrained by the Juno gravity overflights – Authors: M. Parisi, Y. Kaspi, E. Galanti, D. Durante, S. J. Bolton, S. M. Levin, D. R. Buccino, L. N. Fletcher, W. M. Folkner, T. Guillot, R. Helled, L. Iess, C. Li, K. Oudrhiri, M. H. Wong. Science 2021 DOI: 10.1126/science.abf1396

Testo e foto dal Settore Ufficio stampa e comunicazione Sapienza Università di Roma

Giove, il pianeta più grande del sistema solare

 

L’anima irrequieta dei pianeti

Un gruppo di studiosi del Dipartimento di Ingegneria civile edile e ambientale della Sapienza in un team con altre Università (Oxford, UAE, USF), ha formulato una teoria per misurare la turbolenza dei grandi pianeti. Lo studio, pubblicato su Geophysical Research Letters, mostra che Giove sarebbe quattro volte più turbolento di Saturno

pianeti Giove Saturno tempeste

Le immagini di Giove e Saturno della sonda Cassini mostrano che l’atmosfera di questi pianeti è caratterizzata da nuvole e tempeste estremamente vorticose, un noto esempio è la Grande Macchia Rossa di Giove. Sono le manifestazioni di una intensa attività turbolenta indotta dall’energia solare e dagli scambi di calore che avvengono all’interno del pianeta.

La turbolenza è associata al trasferimento non-lineare di energia tra le diverse scale del moto definito cascata di energia; in questo caso il trasferimento di energia avviene perlopiù verso le grandi scale del moto originando gli intensi flussi vorticosi osservati nelle atmosfere dei pianeti. Quantificare l’energia trasferita da una scala all’altra è quindi fondamentale per caratterizzare la turbolenza planetaria. Una nuova ricerca condotta presso il Dipartimento di Ingegneria civile edile e ambientale di Sapienza ha individuato un possibile metodo per misurare l’attività turbolenta dei grandi pianeti come Giove e Saturno. Il lavoro è stato finanziato nell’ambito del programma MARIE SKŁODOWSKA-CURIE ACTIONS Individual Fellowships e pubblicato su Geophysical Research Letters.

pianeti Giove Saturno tempeste

“In assenza di grandi quantità di dati ben definiti nello spazio e nel tempo una misurazione convenzionale appare non realizzabile – spiegano Stefania Espa e Simon Cabanes della Sapienza. La nostra ricerca mostra come sia possibile quantificare il trasferimento di energia turbolenta usando un metodo universale basato su una grandezza calcolabile in modo relativamente semplice con i dati disponibili, la vorticità potenziale (PV, il rapporto tra vorticità assoluta e spessore di fluido)”.

Il metodo descritto nello studio è stato provato sia con dati reali relativi a Giove e Saturno che con dati ottenuti da esperimenti di laboratorio e simulazioni numeriche. “Abbiamo verificato la consistenza del nostro metodo − conclude Stefania Espa − e mostrato per la prima volta che il trasferimento di energia su Giove è quattro volte superiore a quello che si verifica su Saturno”.

pianeti Giove Saturno tempeste

Riferimenti:

Revealing the intensity of turbulent energy transfer in planetary atmospheres – Simon Cabanes, Stefania Espa, Boris Galperin, Roland M. B. Young, Peter L. Read – Geophysical Research Letters, 2020. DOI https://doi.org/10.1029/2020GL088685

 

Testo e immagini dalla Sapienza Università di Roma