Ad
Ad
Ad
Tag

Francia

Browsing

Alle origini del buco nero supermassiccio della Via Lattea

Uno studio coordinato dal Dipartimento di Fisica della Sapienza fornisce nuove informazioni sulla formazione del buco nero che si trova al centro dalla nostra Galassia. Lo studio suggerisce che il buco nero super massiccio sia il residuo di un insieme di buchi neri più leggeri che, orbitando, hanno perso energia fino a fondersi. I risultati del lavoro sono stati pubblicati sulla rivista Monthly Notices of the Royal Astronomical Society.

centro della Galassia buco nero supermassiccio Via Lattea costellazione del Sagittario
Costellazione del Sagittario. Foto di Kevin Wigell, CC BY-SA 3.0

Sagittarius A* (Sgr A*) è una intensa sorgente di onde radio molto compatta, situata al centro della Via Lattea, e nello specifico, nella costellazione del Sagittario.

Sgr A* è anche il punto della nostra Galassia in cui si trova un oggetto estremamente compatto – 4 milioni di volte più massiccio del Sole – un componente caratteristico dei centri di molte galassie ellittiche e spirali.

L’identificazione di questo “mostro celeste” ha fatto vincere il premio Nobel 2020 per la fisica agli scienziati R. Genzel e A. Ghez, che hanno effettuato misurazioni dei movimenti delle stelle nella regione centrale della Galassia così precise da contribuire a dimostrare l’esistenza di questo oggetto, molto probabilmente assimilabile a un buco nero supermassiccio.

L’esistenza di buchi neri, così come la presenza di oggetti supermassicci e compatti in altre galassie oltre la nostra, sembra essere quindi indubbia. Ma mentre l’origine dei cosiddetti buchi neri stellari ha una spiegazione fisica ormai assodata (sono il residuo di stelle massicce ormai spente) quella dei buchi neri supermassicci rimane ancora incerta.

Un nuovo studio coordinato da Roberto Capuzzo Dolcetta del Dipartimento di Fisica della Sapienza Università di Roma in collaborazione con la École Normale Supérieure di Parigi, dimostra come la formazione del buco nero supermassiccio al centro della nostra Galassia possa derivare dalla rapidissima aggregazione, che avviene tramite collisioni successive, di un “pacchetto” di buchi neri più leggeri, trasportati al centro della Galassia dagli ammassi stellari che li ospitavano, e che hanno orbitato perdendo progressivamente energia, fino a fondersi.

I risultati dello studio, pubblicati sulla rivista Monthly Notices of the Royal Astronomical Society, sono stati ottenuti attraverso simulazioni numeriche sofisticate e di alta precisione, condotte anche su computers del Centro di Ricerca Amaldi della Sapienza.

Riferimenti:

Dynamics of a superdense cluster of black Holes and the formation of the Galactic supermassive black hole – P. Chassonnery, R. Capuzzo Dolcetta – Monthly Notices of the Royal Astronomical Society https://doi.org/10.1093/mnras/stab1016

Testo, foto e video dal Settore Ufficio stampa e comunicazione Sapienza Università di Roma sulle origini del buco nero supermassiccio della Via Lattea.

Lupo: l’ibridazione con il cane domestico mette a rischio la conservazione della specie

Lo studio, condotto da ricercatori Sapienza, ha stimato nel Parco nazionale dell’Appennino tosco-emiliano e nelle zone circostanti dell’Appennino settentrionale una prevalenza di ibridazione del 70%, sulla base di 152 campioni raccolti, corrispondenti a 39 lupi in 7 branchi differenti. I risultati del lavoro, pubblicati sulla rivista The Journal of Wildlife Management, evidenziano la necessità di arginare il fenomeno per preservare l’integrità genetica del lupo.

 

L’integrità genetica del lupo italiano è sempre più minacciata dall’ibridazione con il cane domestico. È quanto dimostrato in un recente studio condotto dalla Sapienza Università di Roma in collaborazione con il Parco nazionale dell’Appennino tosco-emiliano, l’Istituto superiore per la ricerca e la protezione ambientale (Ispra) e il Centre Nationale de la Recherche Scientifique (Francia), pubblicato sulla rivista The Journal of Wildlife Management.

lupo cane ibridazione
Ibridi di Cerreto. Foto di Luigi Molinari

Il cane domestico è il risultato di una forte selezione attuata dall’uomo e di millenni di isolamento riproduttivo dal lupo. Nel tempo il cane ha sviluppato forme e comportamenti più appropriati alle necessità dell’uomo e profondamente diversi rispetto al suo progenitore selvatico. Dal punto di vista biologico, il cane e il lupo sono la stessa specie e in determinate circostanze possono accoppiarsi e generare ibridi fertili. Eppure, nonostante l’ibridazione con il lupo sia occasionalmente avvenuta fin dall’origine stessa della domesticazione del cane, oggi il timore è che il fenomeno sia in forte aumento a causa dell’espansione del lupo in aree maggiormente antropizzate, dove il rapporto numerico risulta ampiamente a favore della popolazione canina.

“Dai primi rari avvistamenti di ibridi negli anni ’70 e ’80, il fenomeno è stato ampiamente sottovalutato negli anni successivi – spiega Paolo Ciucci del Dipartimento di Biologia e biotecnologie Charles Darwin della Sapienza Università di Roma, coordinatore lo studio. “Questo sia per le difficoltà tecniche intrinseche all’identificazione degli individui ibridi, inclusi i re-incroci di successiva generazione, sia per le complesse e delicate implicazioni gestionali del fenomeno. Inoltre, ad oggi sono stati pochi gli studi che hanno realmente quantificato l’ibridazione tra cane e lupo secondo parametri popolazionistici e modelli statistici adeguati, mentre gli strumenti di cui oggi disponiamo ci permettono di produrre stime più accurate”.

Sulla base di 152 campioni raccolti, corrispondenti a 39 lupi in 7 branchi differenti, i ricercatori hanno stimato una prevalenza di ibridazione del 70%, con individui ibridi presenti in almeno 6 dei 7 branchi monitorati. Inoltre, attraverso la ricostruzione genealogica è stato accertato che in almeno due di questi branchi gli individui ibridi godono dello status di riproduttori, e sono in grado quindi di tramandare le varianti genetiche di origine canina alle generazioni successive.

Nonostante la presenza di casi di ibridazione fosse stata originariamente ipotizzata, se si considerano gli effetti potenzialmente negativi che i geni di origine canina possono avere per la sopravvivenza del lupo allo stato selvatico, i risultati dello studio evidenziano uno scenario allarmante per la conservazione della specie e per la tutela della sua identità genetica.

“Grazie a una rete di collaboratori con competenze complementari, che ci ha permesso di applicare adeguate strategie di campionamento, congiuntamente a metodi formali di stima demografica e a tecniche di diagnosi genetica particolarmente efficienti, nel nostro lavoro abbiamo prodotto una stima accurata del fenomeno su scala locale – aggiunge Nina Santostasi, ricercatrice dello stesso Dipartimento e prima autrice dello studio. “I risultati che abbiamo ottenuto sottolineano con enfasi come le presunte barriere riproduttive comportamentali tra cani e lupi, o la diluizione di geni di origine canina nella popolazione di lupo, non siano da sole sufficienti a prevenire l’ibridazione e il suo dilagare all’interno della popolazione di lupo. Purtroppo, con ogni probabilità, questa situazione non è limitata all’area in cui abbiamo lavorato ed è fondamentale replicare con urgenza lo stesso tipo di studio anche nelle altre aree dell’areale della specie”.

I risultati dello studio evidenziano quanto sia fondamentale non ignorare il fenomeno e mettere in campo tutte le migliori competenze e capacità gestionali per preservare l’integrità genetica del lupo. Ma non solo, è necessario informare e sensibilizzare l’opinione pubblica sul rischio di estinzione genomica. “È questo un concetto molto più difficile da comprendere e condividere di quanto non lo sia stato il rischio di estinzione demografica quando, nei primi anni ’70, l’Italia si è detta favorevole alla protezione legale della specie – conclude Ciucci. “Paradossalmente, 50 anni più tardi, è la stessa identità genetica del lupo che è messa a rischio come conseguenza delle dinamiche espansive della specie, dell’elevato numero di cani vaganti e dell’inerzia gestionale”.

Le tecniche genetiche utilizzate dai ricercatori per identificare gli ibridi, che utilizzano il DNA estratto dagli escrementi di lupo, sono state messe a punto nel laboratorio di Genetica della Conservazione dell’Istituto superiore per la ricerca e la protezione ambientale (Ispra), da anni attivo nel settore.

La stima della prevalenza degli ibridi è stata effettuata nella popolazione di lupo che vive nel Parco nazionale dell’Appennino tosco-emiliano e nelle zone circostanti dell’Appennino settentrionale, un’area centrale e strategica della distribuzione del lupo nell’Appennino, dove i primi individui ibridi, o comunque morfologicamente devianti rispetto allo standard morfologico del lupo, erano già stati osservati dalla fine degli anni ’90.

Riferimenti:

Estimating Admixture at the Population Scale: Taking Imperfect Detectability and Uncertainty in Hybrid Classification Seriously – Nina L. Santostasi, Olivier Gimenez, Romolo Caniglia, Elena Fabbri, Luigi Molinari, Willy Reggioni, Paolo Ciucci – The Journal of Wildlife Management https://doi.org/10.1002/jwmg.22038

 

Testo, foto e video dal Settore Ufficio stampa e comunicazione Sapienza Università di Roma

PRIMA OSSERVAZIONE DELLA NUTAZIONE NEI MATERIALI MAGNETICI

L’EFFICIENZA DEI DATA CENTER SI GIOCA IN UN PICOSECONDO

Su Nature Physics la scoperta del team guidato dal fisico Stefano Bonetti (Università Ca’ Foscari Venezia e Università di Stoccolma) nell’ambito di un progetto ERC sul magnetismo ultraveloce

ARSAT Data Center (2014). Foto IMarcoHerrera, CC BY-SA 4.0

VENEZIA – Gran parte della ‘memoria’ del mondo e tutte le nostre attività digitali si basano su supporti, dischi rigidi, codificati grazie al magnetismo, ovvero orientando in un verso o nell’opposto lo spin degli elettroni.

Un team internazionale di scienziati guidato dal fisico italiano Stefano Bonetti, professore all’Università Ca’ Foscari Venezia e all’Università di Stoccolma, è riuscito per la prima volta a osservare la ‘nutazione’ di questi spin in materiali magnetici, ovvero le oscillazioni del loro asse durante la precessione. Il periodo di nutazione che è stato misurato è dell’ordine di un picosecondo: un millesimo di miliardesimo di secondo. La scoperta è stata pubblicata oggi da Nature Physics.

L’asse di uno spin compie nutazione e precessione, come per ogni oggetto che ruota su sé stesso, dalle trottole ai pianeti. In questa ricerca, i fisici hanno osservato sperimentalmente che la nutazione dell’asse dello spin magnetico è 1000 volte più veloce della precessione, un rapporto curiosamente simile proprio a quello della Terra.

Questa nuova scoperta su caratteristiche fisiche degli spin finora sconosciute è fondamentale nell’ambito della ricerca per rendere sempre più veloci, compatte ed energicamente efficienti le tecnologie digitali. Per manipolare a scale temporali di millesimi di miliardesimi di secondo questi fenomeni, però, è prima necessario conoscerne le dinamiche anche inerziali.

“Questa è la prima evidenza diretta e sperimentale dei movimenti inerziali degli spin magnetici – spiega Stefano Bonetti, che coordina un progetto ERC proprio sul magnetismo ultraveloce – con implicazioni che interessano ad esempio i data center che immagazzinano quasi tutta l’informazione digitale dell’umanità in bit con il polo nord verso l’alto o verso il basso, codificando così gli 0 e 1 informatici. Quando questi spin vengono orientati entrano in gioco anche precessione e nutazione. Conoscere il periodo della nutazione diventa fondamentale all’aumentare della velocità di rotazione. Questa prima osservazione di tali movimenti apre la strada a nuove tecnologie per rendere più efficienti le nostre attività digitali, che, tra tutte le attività umane, stanno registrando il più alto incremento in consumo energetico”.

L’esperimento

L’esperimento ha richiesto una collaborazione con diversi laboratori scientifici europei in Germania (Helmholtz-Zentrum Dresden-Rossendorf, Chemnitz University of Technology, University of Duisburg-Essen, German Aerospace Center (DLR), TU Berlin) Francia (École Polytechnique) e Italia (Università di Napoli Federico II e  Università di Napoli ‘Parthenope’), con la misura chiave fatta nel centro di ricerca Helmholtz a Dresda-Rossendorf, in Germania (https://www.hzdr.de/). In questo centro, il laboratorio TELBE è in grado di generare l’intensa radiazione terahertz (zona di frequenze tra le microonde e gli infrarossi), necessaria per l’esperimento. Il gruppo guidato da Stefano Bonetti è stato tra i primi gruppi di utenti del laboratorio ed ha contribuito allo sviluppo della macchina stessa.

“I primi esperimenti sono stati faticosi – afferma il fisico cafoscarino – ma già dopo un paio di anni la macchina era molto performante. Queste misure sono state fatte nell’arco di un anno, in tre occasioni diverse, per controllare la riproducibilità di questo effetto mai osservato prima”.

Le attività di Stefano Bonetti si inseriscono in un contesto più ampio di investimento da parte dell’ateneo veneziano nella ricerca scientifica e nella didattica del Dipartimento di Scienze Molecolari e Nanosistemi. Lo stesso dipartimento lancia a partire da quest’anno accademico il corso di laurea in Ingegneria Fisica, coordinato proprio da Bonetti, lui stesso ingegnere fisico: “La scienza evolve sempre, e chissà che cosa esploreremo tra dieci anni, ma l’idea del nuovo corso di laurea è proprio quella di preparare una nuova generazione di scienziati e scienziate che saranno pronti alle sfide del futuro”.

L’articolo:

Inertial spin dynamics in ferromagnets

Nature Physicshttps://www.nature.com/articles/s41567-020-01040-y

Testo dall’Università Ca’ Foscari Venezia

Onde gravitazionali: le nuove sensazionali scoperte del team internazionale di ricercatori Virgo e LIGO 

Il ruolo degli scienziati UNIPG  

onde gravitazionali Virgo LIGO
Helios Vocca e Roberto Rettori


Si è svolta oggi presso il Rettorato dell’Università degli Studi di Perugia la conferenza stampa di presentazione ai giornalisti umbri delle nuove, sensazionali scoperte scientifiche realizzate dai ricercatori dei progetti Virgo e LIGO.

onde gravitazionali Virgo LIGO
Helios Vocca e Roberto Rettori

All’incontro con i giornalisti – realizzato in contemporanea con l’omologo evento internazionale che ha visto collegati i vari gruppi di ricerca in modalità streaming – erano presenti i professori Helios Vocca, Delegato del Rettore per il settore Ricerca, Valutazione e Fund-raising e Roberto Rettori, Delegato del Rettore per il settore Orientamento, Tutorato e Divulgazione scientifica, insieme a numerosi Delegati Rettorali e Direttori dei Dipartimenti dello Studium.

Onde gravitazionali Virgo LIGO

I ricercatori dei progetti Virgo e LIGO hanno annunciato l’osservazione della fusione di un sistema binario di massa straordinariamente grande: due buchi neri di 66 e 85 masse solari, hanno prodotto alla fine un buco nero di circa 142 masse solari. Il buco nero finale è il più massiccio rivelato finora per mezzo delle onde gravitazionali. Si trova in una regione di massa entro cui non è mai stato osservato prima un buco nero, né con onde gravitazionali né con osservazioni elettromagnetiche, e potrebbe servire a spiegare la formazione dei buchi neri supermassicci. Inoltre, il componente più pesante del sistema binario iniziale si trova in un intervallo di massa proibito dalla teoria dell’evoluzione stellare e rappresenta una sfida per la nostra comprensione degli stadi finali della vita delle stelle massicce.

Helios Vocca

“Il risultato di oggi è per noi fonte di enorme soddisfazione – dichiara il professore Helios Vocca, responsabile del gruppo Virgo Perugia – perché si tratta di una nuova scoperta realizzata grazie ad un detector che è frutto anche del lavoro realizzato dal gruppo Virgo Perugia in trent’anni di attività: un impegno, quello del team perugino, che è stato ampiamente riconosciuto a livello internazionale e che ci vede coinvolti nel management sia del progetto Virgo, sia del nuovo esperimento  giapponese ‘Kagra’, guidato da Takaaki Kajita, premio Nobel per la Fisica nel 2015 e laureato honoris causa del nostro Ateneo. Del nostro gruppo, inoltre – aggiunge Vocca – fa parte anche il dottor Michele Punturo, della sezione INFN di Perugia, attualmente Principal Investigator dell’esperimento ‘Einstein Europe’, il futuro detector europeo per le onde gravitazionali.

Il team di Perugia possiede competenze uniche al mondo – spiega il professor Vocca – in particolare sulle sospensioni degli specchi degli interferometri. In virtù di questa altissima specializzazione, stiamo lavorando insieme ad altri colleghi di vari Paesi europei e giapponesi per creare un laboratorio internazionale proprio a Perugia o comunque in Umbria, al fine di sfruttare le ricadute tecnologiche dei rilevatori di onde gravitazionali in altri settori, quali ad esempio quello del rischio sismico, affinché le avanzatissime tecnologie utilizzate nello spazio servano al miglioramento della vita dei cittadini.

Il tutto, inoltre, – conclude il professor Helios Vocca – avrà un’importante valenza per i nostri studenti: stiamo infatti puntando a costruire, in questo ambito scientifico, un’offerta didattica innovativa interuniversitaria, ovvero corsi di laurea realizzati in partnership con altri Atenei del centro-Italia, per dar vita a una ‘scuola’ che sia davvero unica persino a livello internazionale”.

Roberto Rettori

“In questo periodo di emergenza, nel rispetto delle direttive ministeriali, l’Università degli Studi di Perugia non ha mai interrotto né l’attività didattica né quella di ricerca – ha sottolineato il professore Roberto Rettori -. L’esperimento Virgo, che per l’unità di Perugia è coordinato dal professor Helios Vocca del Dipartimento di Fisica e Geologia, ne è una chiara dimostrazione.

I risultati che i nostri eccellenti ricercatori ottengono in tutte le discipline, permettono al nostro Ateneo di crescere e sempre di più diventare un punto di riferimento in Italia e nel mondo, promuovendo quindi Perugia e il suo territorio. Attraverso le numerose iniziative di divulgazione della ricerca che stiamo organizzando in tutta la regione, l’Università degli Studi di Perugia esce dalle sue mura, arriva alla popolazione e diventa suo patrimonio da difendere e valorizzare. Ringrazio il Magnifico Rettore, Professore Maurizio Olivieroper il supporto costante che offre a tali iniziative nonché tutti i colleghi per il loro lavoro. L’Ateneo di Perugia è soprattutto il luogo accogliente della conoscenza dove i giovani possono realizzare le loro passioni e costruire il loro futuro”.

La Sala Dessau all’Università di Perugia

Perugia, 2 settembre 2020

 

Virgo e LIGO svelano nuove e inattese popolazioni di buchi neri

Helios Vocca e Roberto Rettori

Virgo e LIGO hanno annunciato l’osservazione della fusione di un sistema binario di massa straordinariamente grande: due buchi neri di 66 e 85 masse solari, hanno prodotto alla fine un buco nero di circa 142 masse solari. Il buco nero finale è il più massiccio rivelato finora per mezzo delle onde gravitazionali. Si trova in una regione di massa entro cui non è mai stato osservato prima un buco nero, né con onde gravitazionali né con osservazioni elettromagnetiche, e potrebbe servire a spiegare la formazione dei buchi neri supermassicci. Inoltre, il componente più pesante del sistema binario iniziale si trova in un intervallo di massa proibito dalla teoria dell’evoluzione stellare e rappresenta una sfida per la nostra comprensione degli stadi finali della vita delle stelle massicce.

Gli scienziati delle collaborazioni internazionali che sviluppano e utilizzano i rivelatori Advanced Virgo presso lo European Gravitational Observatory (EGO) in Italia e i due Advanced LIGO negli Stati Uniti hanno annunciato l’osservazione di un buco nero di circa 142 masse solari, che è il risultato finale della fusione di due buchi neri di 66 e 85 masse solari. I componenti primari e il buco nero finale si trovano tutti in un intervallo di massa mai visto prima, né con onde gravitazionali né con osservazioni elettromagnetiche. Il buco nero finale è il più massiccio rivelato finora per mezzo di onde gravitazionali. L’evento di onda gravitazionale è stato osservato dai tre interferometri della rete globale il 21 maggio 2019. Il segnale (chiamato GW190521) è stato analizzato dagli scienziati, che stimano che la sorgente disti circa 17 miliardi di anni luce dalla Terra. Due articoli scientifici che riportano la scoperta e le sue implicazioni astrofisiche sono stati pubblicati oggi su Physical Review Letters e Astrophysical Journal Letters,
rispettivamente.

“Il segnale osservato il 21 maggio dello scorso anno è molto complesso e, dal momento che il sistema è così massiccio, lo abbiamo osservato per un tempo molto breve, circa 0.1 s”, dice Nelson Christensen, directeur de recherche CNRS presso ARTEMIS a Nizza in Francia e membro della Collaborazione Virgo. “Non assomiglia molto ad un sibilo che cresce rapidamente in frequenza, che è il tipo di segnale che osserviamo di solito: assomiglia piuttosto ad uno scoppio, e corrisponde alla massa più alta mai osservata da LIGO e Virgo.” Effettivamente, l’analisi del segnale – basata su una potente combinazione di modernissimi modelli fisici e di metodi di calcolo – ha rivelato una gran quantità di informazione su diversi stadi di questa fusione davvero unica.

Questa scoperta è senza precedenti non solo perché stabilisce il record di massa tra tutte le osservazioni fatte finora da Virgo e LIGO ma anche perché possiede altre caratteristiche speciali. Un aspetto cruciale, che ha attratto in particolare l’attenzione degli astrofisici, è che il residuo finale appartiene alla classe dei cosiddetti “buchi neri di massa intermedia” (da cento a centomila masse solari). L’interesse verso questa popolazione di buchi neri è collegato ad uno degli enigmi più affascinanti e intriganti per astrofisici e cosmologi: l’origine dei buchi neri supermassicci. Questi mostri giganteschi, milioni di volte più pesanti del Sole e spesso al centro delle galassie, potrebbero essere il risultato della fusione di buchi neri di massa intermedia.

Fino ad oggi, pochissimi esempi di questa categoria sono stati identificati unicamente per mezzo di osservazioni elettromagnetiche, e il residuo finale di GW190521 è la prima osservazione di questo genere per mezzo di onde gravitazionali. Ed è di interesse ancora maggiore, visto che si trova nella regione tra 100 e 1000 masse solari, che ha rappresentato per molti anni una specie di “deserto dei buchi neri”, a causa della scarsità di osservazioni in questo intervallo di massa.

I componenti e la dinamica della fusione del sistema binario che ha prodotto GW190521 offrono spunti astrofisici straordinari. In particolare, il componente più massiccio rappresenta una sfida per i modelli astrofisici che descrivono il collasso in buchi neri delle stelle più pesanti, quando queste arrivano alla fine della loro vita. Secondo questi modelli, stelle molto massicce vengono completamente distrutte dall’esplosione di supernova, a causa di un processo chiamato “instabilità di coppia”, e si lasciano dietro solo gas e polveri cosmiche. Perciò gli astrofisici non si aspetterebbero di osservare alcun buco nero nell’intervallo di massa tra 60 e 120 masse solari: esattamente dove si trova il componente più massiccio di GW190521. Quindi, questa osservazione apre nuove prospettive nello studio delle stelle massicce e dei meccanismi di supernova.

“Parecchi scenari predicono la formazione di buchi neri nel cosiddetto intervallo di massa di instabilità di coppia: potrebbero risultare dalla fusione di buchi neri più piccoli o dalla collisione multipla di stelle massicce o addirittura da processi più esotici”, dice Michela Mapelli, professore presso l’Università di Padova, e membro dell’INFN Padova e della Collaborazione Virgo. “Comunque, è possibile che si debba ripensare la nostra attuale comprensione degli stadi finali della vita di una stella e i conseguenti vincoli di massa sulla formazione dei buchi neri. In ogni caso, GW190521 è un importante contributo allo studio della formazione dei buchi neri.”

Infatti, l’osservazione di GW190521 da parte di Virgo e LIGO porta la nostra attenzione sull’esistenza di popolazioni di buchi neri che non sono mai stati osservati prima o sono inattesi, e in tal modo solleva nuove intriganti domande sui meccanismi con cui si sono formati. A dispetto del segnale insolitamente breve, che limita la nostra capacità di dedurre le proprietà astrofisiche della sorgente, le analisi più avanzate e i modelli attualmente disponibili suggeriscono che i buchi neri iniziali avessero alti valori di spin, o in altre parole che avessero un’elevata velocità di rotazione.

“Il segnale mostra segni di precessione, una rotazione del piano orbitale prodotta da spin elevati e con un’orientazione particolare”, nota Tito Dal Canton, ricercatore del CNRS presso IJCLab ad Orsay, Francia, e membro della Collaborazione Virgo, “L’effetto è debole e non possiamo esserne certi del tutto, ma se fosse vero darebbe forza all’ipotesi che i buchi neri progenitori siano nati e vissuti in un ambiente cosmico molto dinamico e affollato, come un ammasso stellare denso o il disco di accrescimento di un nucleo galattico attivo.”

Parecchi scenari diversi sono compatibili con questi risultati e anche l’ipotesi che i progenitori della fusione possano essere buchi neri primordiali non è stata scartata dagli scienziati. Effettivamente, noi stimiamo che la fusione abbia avuto luogo 7 miliardi di anni fa, un tempo vicino alle epoche più
antiche dell’Universo.

Rispetto alle precedenti osservazioni di onde gravitazionali, il segnale di GW190521 è molto breve e più difficile da analizzare. La complessa natura di questo segnale ci ha spinto a considerare anche altre sorgenti più esotiche, e queste possibilità sono descritte in un altro articolo che accompagna quello della scoperta. La fusione di un sistema binario di buchi neri resta però l’ipotesi più
probabile.

“Le osservazioni portate avanti da Virgo e LIGO illuminano l’universo oscuro e definiscono un nuovo panorama cosmico”, dice Giovanni Losurdo, che guida Virgo ed è dirigente di ricerca presso l’Istituto Nazionale di Fisica Nucleare in Italia, “E oggi, ancora una volta, annunciamo una scoperta senza precedenti. Continuiamo a migliorare i nostri strumenti per aumentare la loro performance e
per vedere sempre più a fondo nell’Universo.”

Informazioni aggiuntive sugli osservatori di onde gravitazionali:

La Collaborazione Virgo è composta attualmente da circa 580 membri provenienti da 109 istituzioni in 13 diversi paesi, che comprendono Belgio, Francia, Germania, Grecia, Irlanda, Italia, Olanda, Polonia, Portogallo, Spagna e Ungheria. Lo European Gravitational Observatory (EGO) che ospita il rivelatore Virgo si trova vicino a Pisa in Italia ed è finanziato dal Centre National de la Recherche Scientifique (CNRS) in Francia, dall’Istituto Nazionale di Fisica Nucleare (INFN) in Italia, e dal Nikhef in Olanda. Una lista dei gruppi della Collaborazione Virgo è disponibile al link http://public.virgo-gw.eu/the-virgo-collaboration/ . Ulteriori informazioni sono disponibili sul sito web di Virgo http://www.virgo-gw.eu

.LIGO è finanziato dalla National Science Foundation (NSF) e la sua operatività dipende da Caltech e MIT, che hanno concepito e guidato il progetto. Il sostegno finanziario per il progetto Advanced LIGO è venuto dall’NSF, con significativi impegni e contributi da parte tedesca (Max Planck Society), inglese (Science and Technology Facilities Council) e australiana (Australian Research Council-OzGrav). Circa 1300 scienziati di tutto il mondo partecipano all’impresa scientifica della Collaborazione LIGO, che include anche la Collaborazione GEO. Una lista di altri partners è disponibile al link https://my.ligo.org/census.php
.

I RICERCATORI DI PERUGIA A CACCIA DELLE ONDE GRAVITAZIONALI

Un’esperienza ventennale nella descrizione teorica e nello sviluppo di tecnologie per osservare le onde gravitazionali che ha condotto anche a ricadute tecnologiche nel campo delle energie rinnovabili.

onde gravitazionali Virgo LIGO
Helios Vocca e Roberto Rettori

Il gruppo di scienziati di Perugia che lavora all’esperimento Virgo per la rivelazione e lo studio di onde gravitazionali fa parte del Dipartimento di Fisica e Geologia dell’Università di Perugia e della Sezione di Perugia dell’INFN e da circa trent’anni si occupa de i rivelatori delle Onde Gravitazionali. Il gruppo si occupa per lo più di elabora re modelli teorici e tecniche sperimentali per studiare la dinamica dei sistemi fisici non lineari e in particolare p er lo studio del rumore. Si tratta cioè di conoscere le caratteristiche e saper limitare o utilizzare in modo efficiente tutte qu elle vibrazioni che popolano i fenomeni naturali, dalle vibrazioni delle molecole e degli atomi dovute alla temperatura alle vibrazioni macroscopiche che potrebbero disturbare la rivelazione dei segnali che arrivano dal cosmo e che l’esperimento Virgo rivela. Oltre a questo negli ultimi anni ha acquisito competenze di ottica quantistica, di data analisi e modelli stica della Relatività Generale per sistemi compatti.

Il gruppo di ricerca perugino attivo nell’esperimento Virgo è coordinato dal Prof. Helios Vocca (attualmente nel Management Team sia dell’esperimento europeo Virgo che dell’esperimento giapponese Kagra). Sono nel complesso 12, tra scienziati e tecnici, le persone del Dipartimento di Fisica e della Sezione di Perugia dell’Istituto Nazionale di Fisica Nucleare che costituiscono il team coinvolto nell’osservazione e nell’analisi dei dati raccolti sulle onde gravitazionali; fra loro anche il Dott. Michele Punturo responsabile del gruppo di ricerca astroparticellare per la sezione INFN di Perugia e attualmente Principal Investigato dell’esperimento Einstein Telescope, futuro detector europeo per le Onde Gravitazionali.

Le abilità acquisite dal team perugino nello studio delle vibrazioni, da quelle microscopiche a quelle più grandi, ha consentito di apportare un contributo essenziale ai metodi utilizzati per istallare gli specchi e il complesso dei sistemi ottici, cuore dello strumento per l’osservazione delle onde gravitazionali: l’interferometro Virgo. Il rivelatore Virgo istallato a Cascina, nelle campagne poco fuori Pisa, è costituito da due lunghi tubi di tre chilometri l’uno, disposti perpendicolarmente tra loro a formare una elle. All’interno di questi tubi si fa il vuoto e viene fatto correre un raggio laser avanti e indietro attraverso un sistema di specchi. È proprio lo spostamento degli specchi al passaggio dell’onda gravitazionale che ne rileva la presenza. Di conseguenza è cruciale la realizzazione di queste parti dell’apparato. Attraverso una conoscenza accurata del rumore termico, ovvero delle vibrazioni degli atomi e delle molecole che costituisco i materiati di cui sono fatte le parti del rivelatore Virgo, il gruppo di Perugia ha fatto sì che il segnale delle onde gravitazionali non si confondesse con altri disturbi provenienti dall’ambiente. Il gruppo di Perugia si è occupato, sin dalla nascita del progetto Virgo, dello sviluppo del sistema per sospendere gli specchi all’interno delle torri dell’esperimento. Tale sistema è unico perché consente allo specchio di poter oscillare dissipando pochissima energia e quindi rendendolo estremamente sensibile alla rivelazione dei segnali gravitazionali. Il pendolo è costituito da sottilissimi fili prima di acciaio, ora di un particolare vetro: il quarzo fuso. Insieme ai fili è stato ideato e realizzato un sistema originale di ancoraggio degli specchi attraverso tecniche innovative d’incollaggio delle componenti del rivelatore sviluppate tra i laboratori di Perugia e quelli di Glasgow. Queste tecnologie sono alla base dell’aumento di sensibilità che caratterizza il cosiddetto Advanded Virgo.

Le abilità tecniche e le conoscenze teoriche acquisite in questi trent’anni dai fisici dell’Università di Perugia, coinvolti nel progetto Virgo, ha consentito al gruppo di entrare da protagonista anche nell’esperimento giapponese, Kagra (esperimento guidato da una vecchia conoscenza dell’Ateneo perugino, il Prof. Takaaki Kajita premio Nobel in Fisica nel 2015, al quale nel 2017 è stata riconosciuta la laurea Honoris Causa) trasferendo le proprie competenze alla collaborazione asiatica per la realizzazione delle sospensioni criogeniche in zaffiro delle ottiche del rivelatore.

 

 

Testi e foto dall’Ufficio Stampa Università di Perugia

CONDIZIONATORE GONFIA LA BOLLETTA DEL 42%,

AUMENTA IL RISCHIO DI POVERTÀ ENERGETICA

 

Studio di Ca’ Foscari e CMCC combina dati Ocse e Nasa di 8 paesi scoprendo una incidenza del raffrescamento sulle spese familiari superiore a quanto previsto da studi precedenti

condizionatore povertà
Immagine di Mohamed Hassan

VENEZIA, 03/06/2020 – L’uso del condizionatore gonfia notevolmente le bollette elettriche delle famiglie, con importanti conseguenze sulla loro “povertà energetica”. Lo rivela uno studio condotto da un gruppo di ricerca dell’Università Ca’ Foscari Venezia e del Centro Euro-Mediterraneo sui Cambiamenti Climatici (CMCC), appena pubblicato sulla rivista scientifica Economic Modeling.

Studi precedenti realizzati negli Stati Uniti stimano un incremento della spesa familiare per l’energia elettrica legata ai condizionatori intorno all’11%. Analizzando i dati socio-economici di famiglie residenti in altri paesi OCSE (Australia, Canada, Francia, Giappone, Olanda, Spagna, Svezia e Svizzera) e dati climatici della NASA, gli autori di questo nuovo studio hanno calcolato che, in media, l’uso del condizionatore porta a spendere fino al 42% in più per l’energia elettrica, rispetto a chi non ha il condizionatore.

Gli aumenti effettivi dipenderanno da quanti gradi centigradi in più le famiglie dovranno affrontare per via del cambiamento climatico. I consumi elettrici per raffrescamento saranno quindi un nuovo fattore destinato ad aumentare la povertà energetica legata all’elettricità, condizione in cui si trovano le famiglie che spendono più del 5% del loro reddito annuale in bollette elettriche.

Secondo il Buildings Performance Institute Europe, nel 2014 la povertà energetica toccava già il 10-15% delle famiglie europee. Lo studio appena pubblicato delinea invece una situazione ancor più preoccupante.

“Il concetto di povertà energetica, già oggetto di attenzione in Europa, è di norma legato alla possibilità di assicurarsi un livello adeguato di riscaldamento durante i mesi più freddi – spiega Enrica De Cian, professoressa di Economia ambientale a Ca’ Foscari e responsabile del team di ricerca del progetto ERC Energya che ha svolto lo studio. – I nostri dati, tuttavia, suggeriscono di allargare il concetto includendo il ruolo sempre più determinante del raffrescamento estivo. I nuclei familiari più poveri spendono già di norma una porzione ampia del loro budget in beni essenziali, come il cibo e l’elettricità. Quest’ultima voce dovrà aumentare per proteggere i più vulnerabili dal rischio di mortalità o da altri gravi problemi di salute durante le ondate di calore”.

Possedere l’aria condizionata comporta importanti conseguenze sia per la spesa energetica delle famiglie che dei Paesi, anche se permangono grandi differenze: negli Stati Uniti rappresenta l’11% del consumo energetico negli edifici mentre in Europa è solo l’1,2%.

“I dati che abbiamo analizzato rivelano che in Spagna il 18.5% delle famiglie spende più del 5% del proprio budget in elettricità – afferma l’economista cafoscarina. Queste percentuali sono generalmente più alte nei paesi freddi, arrivando al 24.2% in Svezia. In Francia e Svizzera troviamo numeri più bassi: 8% e 5% rispettivamente”. L’Italia non è stata analizzata perché non compresa nel dataset OCSE considerato in questo studio, ma “ci aspettiamo un andamento simile a Francia e Spagna, e lo stiamo verificando negli studi che stiamo svolgendo”.

Chi usa il condizionatore e perché

“L’elemento innovativo di questo lavoro – afferma l’economista Teresa Randazzo, prima autrice dello studio – è che la nostra analisi empirica permette di tenere conto di fattori di scelta che sono di norma difficili da osservare e misurare, come la percezione personale del comfort termico, l’avversione al rischio o la consapevolezza ambientale”.

Lo studio evidenzia in effetti come varie caratteristiche degli individui e dei nuclei familiari portino – o meno – all’adozione dell’aria condizionata nelle case. Ad esempio, la presenza di minori in casa induce ad adottare e ad usare di più i condizionatori.

Ancora, gli individui più istruiti tendono a usare meno i condizionatori, suggerendo che sono più consapevoli dell’impatto dei loro consumi sull’ambiente. Allo stesso modo, le famiglie che sono più inclini al risparmio energetico tendono ad usare meno l’aria condizionata. Viceversa, le famiglie che posseggono numerosi elettrodomestici tendono ad usare di più i condizionatori.

Vivere in aree urbane aumenta la probabilità che si adotti un condizionatore di 9 punti percentuali, un contributo importante, se paragonato al ruolo del clima o del reddito familiare, probabilmente dovuto al fenomeno delle isole di calore urbane”, spiega Malcolm Mistry, responsabile dei dati climatici per il progetto Energy-a, e coautore della ricerca.

L’analisi dei dati su famiglie e clima

Per capire meglio le dinamiche di adozione dell’aria condizionata nei paesi industrializzati e il suo impatto sul bilancio delle famiglie, anche alla luce dei cambiamenti climatici, i ricercatori di Energya hanno esaminato otto paesi OCSE di diverse latitudine: Australia, Canada, Francia, Giappone, Paesi Bassi, Spagna, Svezia e Svizzera.

I ricercatori hanno combinato le informazioni geo-codificate su 3.615 famiglie provenienti da dati dell’OCSE raccolti nel 2011, con dati storici sul clima. “La nostra rielaborazione dei dati climatici NASA-GLDAS calcola i cosiddetti Cooling Degree Days per gli ultimi 49 anni, un indicatore comunemente usato in letteratura per catturare l’intensità e la durata dei periodi particolarmente caldi e i corrispondenti bisogni di raffreddamento”, spiega Malcolm Mistry.

I trend nel mercato dei condizionatori

Spinte in gran parte dal settore residenziale, dal 1990 le vendite annuali dei condizionatori d’aria  sono più che triplicate a livello mondiale, raggiungendo 135 milioni unità nel 2016, secondo gli ultimi dati dell’Agenzia Internazionale per l’Energia. La Cina è in testa, con 41 milioni di condizionatori nelle case private, seguita da 16 milioni negli Stati Uniti e circa 9 milioni sia in Giappone che in Europa. “Secondo il nostro studio, oltre al ruolo determinante del miglioramento del tenore di vita, i cambiamenti climatici aumenteranno i tassi di adozione dell’aria condizionata anche in Europa, con incrementi fino al 21% in Spagna e al 35% in Francia tra soli 20 anni” conclude la professoressa De Cian.

 

Riferimenti

Link all’articolo su Economic Modeling: https://doi.org/10.1016/j.econmod.2020.05.001

 

Testo e grafico dall’Ufficio Comunicazione e Promozione di Ateneo Università Ca’ Foscari Venezia

Cominciamo dando qualche dato fisico del secondo pianeta del sistema solare: Venere.

12103 km e 12742 km. Sono, rispettivamente, i valori dei diametri di Venere e Terra: come vedete, molto simili, ma le somiglianze terminano qua. L’asse di rotazione del pianeta è inclinato di 177°, ciò rende la rotazione di Venere retrograda: su Venere vedremmo sorgere il Sole a Ovest e tramontare ad Est! La rotazione del pianeta su se stesso è molto lenta: il giorno sidereo dura ben 243 giorni terrestri, ma, per via del moto retrogrado, il giorno solare è più corto: 117 giorni terrestri. Il periodo siderale (l’anno venusiano) conta 225 giorni terrestri. Su Venere è interessante anche riportare il valore di un altro dato, il periodo sinodico, ovvero il tempo che impiega il pianeta a ritornare nella stessa posizione rispetto al Sole per noi che lo osserviamo dalla Terra. Esso è di 584 giorni.

Un pianeta osservato da sempre

E proprio i 584 giorni del periodo sinodico di Venere li ritroviamo nel Codice di Dresda, uno dei documenti astronomici più importanti dell’antica civiltà Maya. Osservatori meticolosi del cielo, i Maya avevano calcolato con estrema precisione il moto celeste del pianeta; per loro Venere era una divinità di grande importanza, giocando un ruolo importante nelle vite materiali e spirituali: ad essa offrivano notevoli sacrifici. Anche per i Mexica, altro popolo mesoamericano, questo pianeta aveva un ruolo centralissimo: la leggenda narra che il potente Quetzalcoatl si buttò in una pira, divenendo parte del cielo e una divinità, Venere come stella del mattino, appunto. Nel Mar Mediterraneo, Venere era invece spesso associato ad una divinità femminile, Afrodite per gli antichi Greci, Venere per i Romani; il simbolo astronomico del pianeta è anche quello utilizzato per il sesso femminile; spesso lo si intende come una stilizzazione della mano della dea che regge uno specchio anche se non sarebbe quella la sua vera origine.

Venere è il pianeta più vicino alla Terra, dunque ben visibile nel nostro cielo. È perciò naturale che fosse un punto di riferimento importante per i popoli antichi. Per via della sua vicinanza al Sole, Venere si rende visibile in alcuni periodi dell’anno solo dopo il tramonto e in altri poco prima dell’alba. Questa dualità la ritroviamo presso i popoli antichi, che attribuirono due divinità differenti alle due apparizioni di Venere sin quando i pitagorici arrivarono a capire che le due manifestazioni erano riconducibili allo stesso oggetto celeste. Per esempio, secondo i Mexica, Quetzalcoatl era Venere mattutino, mentre il fratello Xolotl impersonificava Venere della sera. Similmente, presso i latini vi erano Lucifero e Vespero.

Il transito di Venere

Il fatto che Venere sia un pianeta interno dà origine a due fenomeni ben visibili dalla Terra:

  • Venere, come la Luna, ha le fasi. Lo sapeva bene Galileo Galilei, che fu il primo ad osservarle nel 1610.
  • Possiamo ammirarne il transito, ossia il passaggio del disco nero di Venere sulla superficie del Sole.

I transiti di Venere avvengono a coppie, distanziati di 8 anni; ogni coppia si ripresenta a intervalli di 121,5 e 105,5 anni (l’ultimo fu il 6 giugno del 2012 e il prossimo sarà l’11 dicembre 2117). Il grande astronomo Edmund Halley, nel 1691, calcolò le epoche dei successivi 29 transiti di Mercurio e Venere, sino al 2004. Purtroppo, il primo transito di Venere, secondo i suoi calcoli, sarebbe stato nel 1761, quando Halley avrebbe avuto quasi 105 anni… immaginate il suo dispiacere per non poter assistere all’evento!

Perché era così importante il transito di Venere? Secondo il metodo sviluppato da Halley stesso, osservando tale evento da due luoghi diversi (e possibilmente piuttosto distanti), si poteva determinare la distanza Terra-Sole.

Venere
Il transito di Venere nel 2004. Foto di Jan Herold/Klingon, CC BY-SA 3.0

Quando finalmente arrivò il tanto atteso transito, il 6 giugno 1761, le principali nazioni europee organizzarono importanti spedizioni scientifiche per l’osservazione. Fu un’impresa ardua: qualcuno perse la vita nel lungo viaggio in nave per via di naufragi o della guerra tra Francia e Inghilterra, qualcun altro rimase disperso e chi arrivò incolume a destinazione ebbe magari la sfortuna di trovare un cielo nuvoloso.

Alla fine, solo 120 astronomi riuscirono nell’impresa e poterono svolgere il calcolo di Halley, in maniera piuttosto imprecisa, trovando un valore compreso tra 123 e 157 milioni di km (il valore oggi accettato è pari a 149.57 milioni di km).

Un inferno affascinante

Venere
Cratere da impatto nella Lavinia Planitia di Venere. I colori non corrispondono a quelli reali. Foto NASA/JPL, in pubblico dominio

Ma com’è questo pianeta? La definizione più appropriata è “un inferno”. La temperatura media è di 460° C, l’atmosfera è “pesante” (la pressione è quella che potremmo sperimentare a 1000 m sott’acqua), tossica (il 96% è anidride carbonica) e corrosiva (sono presenti nuvole di anidride solforosa che generano piogge acide). La presenza di una spessa coltre di nubi che riflette la luce del Sole rende il pianeta molto brillante, ma ostacola l’osservazione della superficie. Solo nel 1990, con la sonda NASA Magellano, fu possibile vedere attraverso le dense nubi per scoprire un mondo per lo più pianeggiante, con pochissimi crateri da impatto e con più di 1500 vulcani.

L’esplorazione spaziale di Venere cominciò, però, molto prima. La Russia dedicò un intero programma al pianeta, cominciando nel 1961 con la sonda Venera 1. Per alcune delle sedici missioni Venera, era previsto anche un lander, ma, per via delle condizioni estreme del pianeta, la permanenza sul suolo venusiano fu molto breve. Fu il lander della Venera 13 a battere il record di durata, con ben 127 minuti!

Venere
Dalla Terra, Venere è sempre il più brillante dei pianeti del sistema solare. Foto Brocken Inaglory, CC BY-SA 3.0

Video a cura di Inter Nos: Silvia Giomi e Marco Merico