Ad
Ad
Ad
Tag

fisica

Browsing

Giorgio Parisi è Nobel per la Fisica 2021

L’assegnazione del Premio al docente Sapienza, resa pubblica oggi alle 11.45, corona una carriera di scienziato costellata di successi e riconoscimenti.

Giorgio Parisi Nobel per la Fisica 2021

Giorgio Parisi è Nobel per la Fisica.
L’assegnazione del Premio, resa pubblica oggi alle ore 11.45, è giunta con la seguente motivazione: “Per la scoperta del legame tra il disordine e le fluttuazioni nei sistemi fisici dalla scala anatomica a quella planetaria”. 

“Quella di oggi è un’emozione difficile da tradurre in parole, è un orgoglio immenso, per la Sapienza, per la comunità scientifica e per il nostro Paese – sottolinea la Rettrice Antonella Polimeni – Giorgio Parisi è un gigante, uno di quelli sulle cui spalle le generazioni future si siederanno per scrutare l’orizzonte della scienza e fare un passo ulteriore verso la conoscenza”


Lo studioso, professore ordinario di Fisica Teorica alla Sapienza di Roma, già Presidente dell’Accademia dei Lincei, è il 6° italiano a ottenere l’ambito riconoscimento nel campo della Fisica, dopo Guglielmo Marconi (1908), Enrico Fermi (1938), Emilio Segre (1959), Carlo Rubbia (1984), Riccardo Giacconi (2002).

Nel 2021, il fisico italiano è stato insignito del Premio Wolf ed è entrato, primo esponente dell’accadmia italiana, nella Clarivate Citation Laureates per “le scoperte rivoluzionarie relative alla cromodinamica quantistica e lo studio dei sistemi disordinati complessi”.

Focus

Giorgio Parisi è professore ordinario di Fisica Teorica alla Sapienza Università di Roma, ricercatore associato all’INFN Istituto Nazionale di Fisica Nucleare ed è stato Presidente dell’Accademia dei Lincei (2018-2021). Nato a Roma nel 1948, Parisi ha completato i suoi studi alla Sapienza Università di Roma dove si è laureato in fisica nel 1970 sotto la guida di Nicola Cabibbo. Ha iniziato la sua carriera scientifica ai Laboratori Nazionali di Frascati dell’INFN, prima come membro del CNR (1971-1973) e successivamente come ricercatore dell’INFN (1973-1981). Durante questo periodo ha trascorso lunghi soggiorni all’estero, prima alla Columbia University di New York (1973-1974), all’Institut des Hautes Études Scientifiques a Bures-sur-Yvettes (1976-1977), all’École Normale Superieure di Parigi (1977-1978). Nella sua carriera scientifica, Giorgio Parisi ha dato molti contributi determinanti e ampiamente riconosciuti in diverse aree della fisica: in fisica delle particelle, meccanica statistica, fluidodinamica, materia condensata, supercomputer. Ha, inoltre, scritto articoli su reti neurali, sistema immunitario e movimento di gruppi di animali. È stato vincitore di due advanced grant dell’ERC European Reasearch Council, nel 2010 e nel 2016, ed è autore di oltre seicento articoli e contributi a conferenze scientifiche e di quattro libri. Le sue opere sono molto conosciute.

Riconoscimenti. Nel 1992 gli è stata conferita la Medaglia Boltzmann (assegnata ogni tre anni dalla IUPAP International Union of Pure and Applied Physics per nuovi risultati in termodinamica e meccanica statistica) per i suoi contributi alla teoria dei sistemi disordinati, e la Medaglia Max Planck nel 2011, dalla società tedesca di fisica Deutsche Physikalische Gesellschaft. Ha ricevuto i premi Feltrinelli per la Fisica nel 1987, Italgas nel 1993, la Medaglia Dirac per la fisica teorica nel 1999, il premio del Primo Ministro italiano nel 2002, Enrico Fermi nel 2003, Dannie Heineman nel 2005, Nonino nel 2005, Galileo nel 2006, Microsoft nel 2007, Lagrange nel 2009, Vittorio De Sica nel 2011, Prix des Trois Physiciens nel 2012, il Nature Award Mentoring in Science nel 2013, High Energy and Particle Physics dell’EPS European Physical Society nel 2015, Lars Onsager dell’APS American Physical Society nel 2016. Nel 2021 ha ricevuto il prestigioso Wolf Prize per la Fisica.  Sempre nel 2021, è entrato, primo esponente dell’accademia italiana, nella Clarivate Citation Laureates.   È membro dell’Accademia dei Quaranta, dell’Académie des Sciences, dell’Accademia Nazionale delle Scienze degli Stati Uniti, dell’Accademia Europea, dell’Academia Europea e dell’American Philosophical Society.

 

Testo e foto dal Settore Ufficio stampa e comunicazione Sapienza Università di Roma

QUEGLI SCONTRI E FUSIONI ALL’ALBA DELL’UNIVERSO CHE HANNO AIUTATO LE GALASSIE A CRESCERE

Un team internazionale di astronomi, coordinato da Michael Romano, dottorando presso l’Università degli Studi di Padova e associato all’Istituto Nazionale di Astrofisica (INAF), ha scoperto che circa il 40% delle galassie nell’Universo primordiale si trova in sistemi in fase di fusione. Viene così confermato lo scenario secondo cui, nelle prime fasi della loro evoluzione, le galassie hanno accresciuto in modo significativo la loro massa fondendosi tra loro.

scontri galassie universo
Quegli scontri e fusioni all’alba dell’universo che hanno aiutato le galassie a crescere. Due galassie a spirale; un simile fato è quello che si ipotizza per la nostra Via Lattea, che gli scienziati ritengono avrà una simile interazione con la vicina galassia di Andromeda

Tra gli eventi più spettacolari che si possono osservare nell’Universo locale ci sono sicuramente gli “scontri tra galassie” (galactic mergers, in gergo tecnico): questi avvengono quando due o più galassie si avvicinano a tal punto da iniziare a spiraleggiare l’una sull’altra a causa della gravità, fino a fondersi in un’unica galassia più grande. Se le due galassie hanno più o meno lo stesso numero di stelle (quindi la stessa massa stellare), la galassia risultante avrà circa il doppio della massa di quelle individuali: questo infatti è il meccanismo più veloce con cui le galassie possono crescere. Tuttavia, solo l’1% delle galassie nell’Universo locale sono osservate nell’atto di fondersi: al giorno d’oggi le galassie crescono prevalentemente perché accrescono gas freddo trasformandolo in stelle (il cosiddetto meccanismo di “formazione stellare”).

Nonostante sia noto già da tempo che gli eventi di mergers fossero più frequenti nel passato, la loro identificazione nell’Universo lontano è resa più complicata dalla presenza delle polveri interstellari, che impediscono alla luce prodotta da stelle giovani di raggiungere i classici telescopi ottici, e dalla difficoltà di questi telescopi di rilevare il moto delle galassie stesse.

Michael Romano

In un articolo appena pubblicato sulla rivista «Astronomy&Astrophysics» che vede come primo autore Michael Romano, dottorando presso l’Università di Padova e associato all’Istituto Nazionale di Astrofisica, il team ALPINE (ALMA Large Program to INvestigate C+ at Early times) riporta la scoperta di dozzine di galactic mergers nell’Universo primordiale grazie alle potenti antenne dell’interferometro ALMA (Atacama Large Millimeter/submillimeter Array), in Cile. Il radiotelescopio ALMA è infatti in grado di osservare la luce oscurata dalla polvere individuando galassie che altrimenti risulterebbero essere completamente invisibili, e di svelarne la struttura tridimensionale.

Il programma ALPINE, coordinato tra gli altri da Paolo Cassata, professore dell’Università degli Studi di Padova, ha studiato nel dettaglio un campione di un centinaio di galassie risalenti a quando l’Universo aveva “solo” un miliardo di anni. Grazie ad ALMA, è stato possibile rilevare la luce proveniente da queste galassie lontane ed emessa da un particolare ione del Carbonio, detto C+. Gli atomi di Carbonio infatti, vengono “ionizzati” dalla luce ultravioletta prodotta da stelle appena nate all’interno di nubi di polvere, emettendo luce ad una ben determinata frequenza. Tale “radiazione”, al contrario di quella ultravioletta, è in grado di viaggiare indisturbata attraverso la coltre di polvere che la circonda, fino a raggiungere le antenne di ALMA. La presenza di atomi di C+ fornisce quindi informazioni sul tasso di formazione stellare all’interno delle galassie e sulla loro morfologia.

Paolo Cassata

«Grazie al progetto ALPINE, siamo riusciti a osservare la struttura tridimensionale di queste galassie primordiali a diverse frequenze, identificando anche le componenti più polverose grazie all’emissione del C+, celate in precedenza persino agli occhi dei più potenti telescopi ottici, come l’Hubble Space Telescope – afferma Michael Romano -. Abbiamo scoperto che, 12 miliardi di anni fa, i mergers erano circa 40 volte più frequenti di oggi, fornendo un contributo significativo alla crescita in massa delle galassie nell’Universo lontano.

«Questa analisi ha permesso di stimare quante volte una galassia simile alla Via Lattea si sia scontrata con altre galassie vicine durante la sua evoluzione fino ad oggi – aggiunge Paolo Cassata -. Troviamo che, tipicamente, tali galassie possono subire fino a una decina di merging in circa 13 miliardi di anni, contribuendo alla formazione delle strutture che osserviamo attualmente nel nostro “vicinato cosmico».

«Con ALPINE abbiamo stimato per la prima volta la frazione di coppie di galassie nell’Universo primordiale che si stanno fondendo, o che sono in rotta di collisione, tramite misurazioni del C+. Questo ci ha permesso di confrontare il processo di crescita delle galassie dovuto a tali fusioni, con quello guidato dalla formazione stellare. I risultati del nostro lavoro evidenziano che la conversione di gas in stelle è il meccanismo primario che permette alle galassie di aumentare la propria massa, sebbene il contributo dovuto ai merging acquisti una sempre maggiore importanza con l’avvicinarsi agli albori dell’Universo, dove diventa almeno maggiore del 10% o, in alcuni casi, addirittura paragonabile al processo di formazione stellare – conclude Michael Romano -. In futuro, saremo sicuramente in grado approfondire il problema della crescita ed evoluzione delle galassie primordiali grazie ad ulteriori osservazioni ad alta risoluzione con ALMA e all’imminente lancio del James Webb Space Telescope».

 

Testo e foto dagli Uffici Stampa Università di Padova e Istituto Nazionale di Astrofisica sullo studio relativo a scontri e fusioni tra galassie all’alba dell’universo.

APRE IL MUSEO “GIOVANNI POLENI” DELL’UNIVERSITÀ DI PADOVA

LA STORIA DELLA FISICA TRA PADOVA E IL MONDO

 

È dedicato a Giovanni Poleni (1683 – 1761) il Museo della Fisica dell’Università di Padova. Poleni – stimato da Eulero, Newton, Leibniz e Cassini – fu membro delle principali accademie europee e i suoi contributi scientifici sono innumerevoli. All’Università di Padova gli vengono nel tempo affidate ben cinque cattedre nelle discipline dell’astronomia, della filosofia naturale, della matematica, della fisica e della nautica.

Giovanni Poleni Museo
Ritratto di Giovanni Poleni. Immagine McTutor History of Mathematics, in pubblico dominio

Il Museo “Giovanni Poleni” dell’Università di Padova propone un vero e proprio “viaggio nel tempo”, dal Gabinetto di Fisica avviato a Padova da Giovanni Poleni nel 1739, fino alle ultime ricerche nel campo della Fisica. Una presentazione raffinata, coinvolgente ed emozionante, volta a mettere in risalto non solo le mille storie collegate ai vari strumenti, ma anche la bellezza di molti oggetti, che vengono esposti quasi come opere d’arte. L’idea è di portare il visitatore nel cuore del Gabinetto di Fisica di Padova, dal ‘700 in poi, fino a presentare il lavoro dei fisici di oggi in una piccola sezione temporanea dove via via saranno esposti strumenti del XXI secolo. Per l’inaugurazione, sarà esposto un pezzo di CMS, uno dei rivelatori dell’LHC del CERN di Ginevra.

Gli oggetti sono i protagonisti assoluti del Museo “Giovanni Poleni”: ognuno di loro narra molteplici storie che il nuovo allestimento vuole portare alla luce. Tra i moltissimi in esposizione: lo strumento usato da Poleni nella verifica della statica e nel restauro della cupola di S. Pietro in Vaticano, i termometri firmati da Angelo Bellani, il modello di battipalo con cui fu ricostruito a metà del Settecento il palladiano ponte di Bassano, uno ottocentesco di macchina a vapore pensato per la manifattura di tabacchi di Venezia, una delle prime cellule fotovoltaiche inventata e realizzata da Augusto Righi nel 1888, una straordinaria raccolta di radiografie realizzate da Giuseppe Vicentini tra il 16-18 gennaio 1896 solo due settimane dopo l’invenzione dei Raggi X, strumenti  per studiare i raggi cosmici e tanti altri quali microscopi, galvanometri, strumenti per lo studio della rifrazione e delle leggi della Fisica.

Busto di Giovanni Poleni. Il busto fa parte del Panteon Veneto, conservato presso Palazzo Loredan di Campo Santo Stefano a Venezia. Autore Luigi Baldin, immagine Istituto Veneto di Scienze, Lettere ed Arti, CC BY 4.0

Testo dall’Ufficio Stampa dell’Università di Padova.

Possibili indizi di nuova fisica nei primi risultati di Muon g-2

muon new physics muon nuova fisica

Una nuova e precisa misura delle proprietà magnetiche del muone – particella elementare appartenente alla famiglia dei leptoni, molto simile all’elettrone, ma con una massa circa 200 volte maggiore – fornisce nuova evidenza a favore dell’esistenza di fenomeni fisici non descritti dal Modello Standard, la teoria di riferimento per la spiegazione dei processi subatomici. L’atteso risultato, ottenuto al temine della prima campagna di analisi dei dati acquisiti dall’esperimento Muon g-2, è stato annunciato oggi, mercoledì 7 aprile, nel corso di una presentazione svoltasi presso il Fermi National Accelerator Laboratory (FermiLab) di Batavia, vicino Chicago, il centro statunitense per le ricerche in fisica delle particelle, che ospita l’esperimento. La collaborazione internazionale responsabile di Muon g-2, di cui l’INFN è uno dei principali membri sin dalla sua nascita, è riuscita a ottenere una misura del cosiddetto momento magnetico anomalo del muone con una precisione senza precedenti, confermando le discrepanze con le previsioni del Modello Standard già evidenziate in un precedente esperimento condotto al Brookhaven National Laboratory, vicino New York, e conclusosi nel 2001.

La presente misura di Muon g-2 raggiunge una significatività statistica di 3.3 sigma, o deviazioni standard, e la sua combinazione con il risultato dell’esperimento predecessore porta la significatività della discrepanza a 4,2 sigma, poco meno delle 5 sigma considerate la soglia per poter annunciare una scoperta. Questo risultato fondamentale rappresenta un importante ed entusiasmante indizio della possibile presenza di forze o particelle ancora sconosciute, questione che da decenni alimenta discussioni tra i ricercatori.

“La misura di altissima precisione che abbiamo ottenuto con il nostro esperimento era da lungo tempo attesa da tutta la comunità internazionale della fisica delle particelle. In attesa dei risultati delle analisi sui vari set di dati acquisiti recentemente dall’esperimento e su quelli che verranno raccolti nel prossimo futuro, ci offre già un possibile spiraglio verso una nuova fisica”, afferma Graziano Venanzoni co-portavoce dell’esperimento Muon g-2 e ricercatore della Sezione INFN di Pisa. “L’INFN può ritenersi orgoglioso di questa impresa, avendo svolto un ruolo determinate in tutto l’esperimento. Un successo in buona parte merito dei giovani ricercatori i quali, con il loro talento, idee ed entusiasmo, hanno consentito di ottenere questo primo importante risultato”.

I muoni, che sono generati naturalmente nell’interazione dei raggi cosmici con l’atmosfera terrestre, possono essere prodotti in gran numero dall’acceleratore del Fermilab e iniettati all’interno dell’anello di accumulazione magnetico di Muon g-2, del diametro di 15 metri, dove vengono fatti circolare migliaia di volte con velocità prossima a quella della luce. Come gli elettroni, anche i muoni sono dotati di spin e possiedono un momento magnetico, ovvero producono un campo magnetico del tutto analogo a quello di un ago di bussola. All’interno dell’anello di Muon g-2, il momento magnetico dei muoni acquista un moto di precessione attorno alla direzione del campo magnetico, analogo a quello di una trottola in rotazione. L’esperimento misura con altissima precisione la frequenza di questo moto di precessione dei muoni. Il Modello Standard prevede che per ogni particella il valore del momento magnetico sia proporzionale a un certo numero, detto ‘fattore giromagnetico g’, e che il suo valore sia leggermente diverso da 2, da qui il nome ‘g-2’ o ‘anomalia giromagnetica’ dato a questo tipo di misura. Il risultato di Muon g-2 evidenzia una differenza tra il valore misurato di ‘g-2’ per i muoni e quello previsto dal Modello Standard, la cui previsione si basa sul calcolo delle interazioni dei muoni con particelle “virtuali” che si formano e si annichilano continuamente nel vuoto che li circonda. La discrepanza tra il risultato sperimentale e il calcolo teorico potrebbe quindi essere dovuta a particelle e interazioni sconosciute di cui il Modello Standard non tiene conto. Con il risultato presentato oggi, ottenuto grazie al primo set di dati raccolti da Muon g-2 (Run 1), l’esperimento ha quindi compiuto un importante passo verso la conferma dell’esistenza di fenomeni di nuova fisica.

Per misurare con precisione il fattore giromagnetico del muone c’è bisogno di acquisire dati altrettanto precisi sulla precessione dello spin di questa particella. Il muone decade molto rapidamente producendo un neutrino, un antineutrino e un elettrone, che viene emesso preferibilmente lungo la direzione dello spin del muone. L’esperimento Muon g-2, utilizzando i 24 calorimetri di cui è dotato, misura energia e tempo di arrivo degli elettroni di decadimento e da questi dati estrae la frequenza di precessione dello spin. “La misura di precisione richiede una sofisticata, continua calibrazione dei calorimetri, ovvero l’iniezione di brevi impulsi laser che ne garantiscano la stabilità della risposta, fino a 1 parte su 10.000”, spiega Michele Iacovacci, ricercatore della collaborazione Muon g-2 e della Sezione INFN di Napoli.

Realizzato in Italia, in collaborazione con l’Istituto Nazionale di Ottica del CNR, e finanziato dall’INFN, l’innovativo sistema di calibrazione laser ha rappresentato un notevole passo in avanti rispetto a quelli precedentemente in uso ed è stato uno degli ingredienti fondamentali per ottenere il risultato oggi pubblicato su Physical Review Letter.

Oltre allo sviluppo e alla realizzazione di questo sistema l’INFN, tra i fondatori della collaborazione, ha svolto e continua a svolgere un ruolo centrale all’interno dell’esperimento Muon g-2, composta da 200 scienziati provenienti da 35 istituzioni di 7 diversi paesi.

“Possiamo essere fieri del contributo che l’INFN ha saputo offrire a questa importante scoperta, sia nella fase di ideazione e costruzione dell’apparato, che ha visto attive le strutture dell’INFN di Napoli, Pisa, Roma Tor Vergata, Trieste, Udine, e dei Laboratori Nazionali di Frascati, sia in quella successiva di analisi, con contributi originali da parte di validissimi giovani ricercatori”, afferma Marco Incagli, della sezione INFN di Pisa, responsabile nazionale di Muon g-2.

 

Approfondimenti:

Precisamente anomalo
La misura del momento magnetico del muone
di Luca Trentadue
in Asimmetrie 23 Muone

Una vita da mediano
Storia della più elegante, eclettica e robusta tra le particelle
di Filippo Ceradini
in Asimmetrie 23 Muone

Un mare di antimateria
L’equazione di Dirac, dalla meccanica quantistica al modello standard
di Graziano Venanzoni
in Asimmetrie 19 Equazioni

 

Comunicato Stampa dall’Istituto Nazionale di Fisica Nucleare

Un cristallo che ospita un effetto domino tridimensionale

percolazione frattale cristallo
Osservazione in tempo reale della percolazione frattale in un cristallo ferroelettrico KTN utilizzando luce laser.

Un team di ricercatori del Dipartimento di Fisica dell’Università Sapienza e del Dipartimento di Fisica Applicata della Hebrew University of Jerusalem ha ripreso stereoscopicamente in tempo reale la percolazione frattale in un cristallo. La scoperta, pubblicata su Physical Review Letters, aiuta a comprendere il comportamento di materiali innovativi per l’immagazzinamento di informazioni ed energia.

La percolazione è alla base della comprensione di una vasta gamma di fenomeni di importanza critica e molto diversi tra di loro, come ad esempio il modo in cui si espandono gli incendi, la desertificazione, la diffusione di un’infezione, oppure la propagazione dell’attività cerebrale.

Questo modello permette non solo di comprendere diversi fenomeni (come sistemi) in modo qualitativo, ma anche di fare delle predizioni quantitative. Permette infatti di descrivere in modo statistico le connessioni a lunga distanza tra sistemi contenenti numerosi oggetti (collegati tra loro da relazioni aleatorie a corta distanza) e di definirne il comportamento.

Nei solidi, come i cristalli, si pensa che la percolazione sia il meccanismo di base che regola il passaggio da uno stato macroscopico a un altro, come una sorta di effetto domino. Finora questa è stata osservata in modo diretto in sistemi planari, ma mai all’interno di un mezzo tridimensionale.

Un team di ricercatori del Dipartimento di Fisica della Sapienza Università di Roma e del Dipartimento di Fisica Applicata della Hebrew University of Jerusalem è stato in grado di osservare, utilizzando tecniche di imaging ortografico con luce laser, fenomeni di percolazione all’interno di un supercristallo ferroelettrico

I risultati dello studio sono stati pubblicati sulla rivista Physical Review Letters.

Il cristallo trasparente utilizzato dai ricercatori ha proprietà fisiche molto specifiche: solo un indice di rifrazione gigante consentirebbe infatti al fascio di luce bianca di propagarsi al suo interno senza diffrazione e senza dispersione, senza quindi avere una progressiva perdita delle informazioni inizialmente codificate nell’onda. 

“Al centro della percolazione osservata – spiega Eugenio Del Re del Dipartimento di Fisica della Sapienza, coordinatore dello studio – c’è un comportamento governato da dimensioni frattali, caratterizzato cioè da oggetti che si ripetono allo stesso modo su diverse scale di ingrandimento, come la forma autoreplicante del cavolfiore. All’interno del supercristallo la diffusione avviene cioè in modo autosimilare”.

L’analisi condotta permette di prevedere quando un sistema specifico raggiungerà la cosiddetta soglia di percolazione, ovvero quando la trasmissione di una fase diventa diffusa e non più controllabile. I risultati dello studio aprono così nuovi scenari per l’immagazzinamento di informazioni e di energia nei campi della fotonica e dell’elettronica.

Riferimenti:

Direct Observation of Fractal-Dimensional Percolation in the 3D Cluster Dynamics of a Ferroelectric Supercrystal – Ludovica Falsi, Marco Aversa, Fabrizio Di Mei, Davide Pierangeli, FeiFei Xin, Aharon J. Agranat and Eugenio Del Re – Phys. Rev. Lett. 126, 037601 (2021) https://doi.org/10.1103/PhysRevLett.126.037601

Testo e immagine dal Settore Ufficio stampa e comunicazione Sapienza Università di Roma.

A GIORGIO PARISI IL PRESTIGIOSO WOLF PRIZE PER LA FISICA 2021

Il fisico teorico Giorgio Parisi, ricercatore dell’INFN Istituto Nazionale di Fisica Nucleare, professore alla Sapienza Università di Roma e Presidente dell’Accademia Nazionale dei Lincei, è stato insignito del prestigioso Wolf Prize per la fisica 2021 “per le sue scoperte pionieristiche nella teoria quantistica dei campi, in meccanica statistica e nei sistemi complessi”.

Giorgio Parisi Wolf Prize 2021
Giorgio Parisi, vincitore del Wolf Prize per la Fisica 2021

“Sono estremamente contento e onorato per aver ricevuto questo premio prestigioso, – commenta Giorgio Parisi – non solo per essere stato inserito in una compagnia molto prestigiosa, nella quale ritrovo molti amici, ma anche per essere stato messo in relazione diretta con Riccardo Wolf, persona che ammiro moltissimo per le sue capacità scientifiche e il grande impegno civile”. “Il merito di questo premio va anche a tantissimi collaboratori che ho avuto, con i quali ci siamo divertiti nel cercare di svelare quelli che una volta si chiamavano i ‘misteri della natura’”. Conclude Parisi.

“Il premio assegnato a Giorgio Parisi è motivo di orgoglio per tutta la Comunità della Sapienza – dichiara la rettrice Antonella Polimeni – e sono lieta di esprimere le mie più fervide congratulazioni  per questo ulteriore prestigioso tassello nel percorso di un’eccellenza della ricerca italiana”.

Il Wolf Prize è stato istituito dalla Fondazione Wolf di Israele nel 1978 come riconoscimento per gli scienziati e gli artisti che hanno prodotto “risultati nell’interesse dell’umanità e relazioni amichevoli tra le persone, indipendentemente dalla nazionalità, razza, colore, religione, sesso o opinioni politiche”. Tra coloro che hanno vinto il Wolf Prize in fisica vi sono Giuseppe Occhialini, Bruno Rossi, Riccardo Giacconi, Leon Lederman, Roger Penrose, Stephen Hawking, Peter Higgs, per citare solo alcuni degli scienziati più noti.

Giorgio Parisi Wolf Prize 2021
Giorgio Parisi, vincitore del Wolf Prize per la Fisica 2021

Giorgio Parisi è professore ordinario di Fisica Teorica alla Sapienza Università di Roma, ricercatore associato all’INFN Istituto Nazionale di Fisica Nucleare e dal 2018 Presidente dell’Accademia dei Lincei. Nato a Roma nel 1948, Parisi ha completato i suoi studi alla Sapienza Università di Roma dove si è laureato in fisica nel 1970 sotto la guida di Nicola Cabibbo. Ha iniziato la sua carriera scientifica ai Laboratori Nazionali di Frascati dell’INFN, prima come membro del CNR (1971-1973) e successivamente come ricercatore dell’INFN (1973-1981). Durante questo periodo ha trascorso lunghi soggiorni all’estero, prima alla Columbia University di New York (1973-1974), all’Institut des Hautes Etudes Scientifiques a Bures-sur-Yvettes (1976-1977), all’Ecole Normale Superieure di Parigi (1977-1978). Nella sua carriera scientifica, Giorgio Parisi ha dato molti contributi determinanti e ampiamente riconosciuti in diverse aree della fisica: in fisica delle particelle, meccanica statistica, fluidodinamica, materia condensata, supercomputer. Ha, inoltre, scritto articoli su reti neurali, sistema immunitario e movimento di gruppi di animali. È stato vincitore di due advanced grant dell’ERC European Reasearch Council, nel 2010 e nel 2016, ed è autore di oltre seicento articoli e contributi a conferenze scientifiche e di quattro libri. Le sue opere sono molto conosciute.

Riconoscimenti. Nel 1992 gli è stata conferita la Medaglia Boltzmann (assegnata ogni tre anni dalla IUPAP International Union of Pure and Applied Physics per nuovi risultati in termodinamica e meccanica statistica) per i suoi contributi alla teoria dei sistemi disordinati, e la Medaglia Max Planck nel 2011, dalla società tedesca di fisica Deutsche Physikalische Gesellschaft. Ha ricevuto i premi Feltrinelli per la Fisica nel 1987, Italgas nel 1993, la Medaglia Dirac per la fisica teorica nel 1999, il premio del Primo Ministro italiano nel 2002, Enrico Fermi nel 2003, Dannie Heineman nel 2005, Nonino nel 2005, Galileo nel 2006, Microsoft nel 2007, Lagrange nel 2009, Vittorio De Sica nel 2011, Prix des Trois Physiciens nel 2012, il Nature Award Mentoring in Science nel 2013, High Energy and Particle Physics dell’EPS European Physical Society nel 2015, Lars Onsager dell’APS American Physical Society nel 2016. È membro dell’Accademia dei Quaranta, dell’Académie des Sciences, dell’Accademia Nazionale delle Scienze degli Stati Uniti, dell’Accademia Europea, dell’Academia Europea e dell’American Philosophical Society.

Testo e immagini dal Settore Ufficio stampa e comunicazione Sapienza Università di Roma

Futuro Remoto 2020 – XXXIV edizione – Pianeta, tra cambiamenti epocali e sfide globali

La ricerca scientifica e tecnologica rappresenta un punto cardine con cui preservare e migliorare il benessere dell’uomo, degli animali e dell’ambiente. Il suo ruolo indiscusso non è sempre in connessione con i cittadini, a discapito di un sapere scientifico che dovrebbe essere accessibile a tutti, soprattutto in un momento storico nel quale le informazioni scorrono in maniera disordinata e rapida, distorcendo spesso la realtà. Quest’anno più di qualsiasi altro ci ha dimostrato uno degli effetti dei cambiamenti che il Pianeta Terra sta subendo, ovvero la pandemia da Covid-19, un fenomeno altamente ripetibile in futuro.

Mostra Missione Antartide alla XXXIV edizione di Futuro Remoto

Futuro Remoto, giunto alla XXXIV edizione, ha come filo conduttore quello di creare una rete di conoscenze tra scienza e pubblico, con più di 300 eventi in programma, tra mostre, rubriche speciali ed incontri internazionali in streaming per discutere dei cambiamenti climatici, della salute del Pianeta e della pandemia da Covid-19. Il festival è promosso da Città della Scienza di Napoli, con il sostegno della Regione Campania, la co-organizzazione delle sette Università della Campania e la collaborazione dell’Istituto Nazionale di Astrofisica-Inaf, del Consiglio Nazionale delle Ricerche-CNR, del Programma Nazionale di Ricerca in Antartide, dell’Ambasciata italiana in Messico, del consolato Generale Usa di Napoli e dell’Unione Industriali di Napoli.

Futuro Remoto XXXIV edizione
La locandina della XXXIV edizione di Futuro Remoto

 

L’evento inaugurale tenutosi il 20 Novembre ha dato inizio, a pieno ritmo, al festival con una diretta tenuta da Riccardo Villari, Presidente Fondazione IDIS – Città della Scienza, che introduce il saluto del Ministro MIUR Gaetano Manfredi e di Valeria Fascione, assessore alla ricerca, innovazione e startup della Regione Campania, i quali ricordano lo spirito di Futuro Remoto come luogo dove far crescere la cultura nella collettività con l’incontro tra scienza e pubblico.

 

Città della Scienza propone da anni il festival come una realtà che possa trasferire il sapere e la conoscenza scientifica ai cittadini, creando una vetrina per la ricerca, affinché si abbia una maggiore consapevolezza sulla salute dell’uomo e, in questo caso, del Pianeta Terra.

È seguito il talk introdotto da Luigi Nicolais – Coordinatore CTS Fondazione IDIS – Città della Scienza – e moderato da Luca Carra – direttore di Scienzainrete – in cui sono intervenuti illustri studiosi. Da Piero Genovesi, zoologo, ecologo specializzato in biodiversità a Filippo Giorgi, fisico e climatologo parte del Gruppo intergovernativo sul cambiamento climatico (IPPC). Sono intervenuti poi Roberto Danovaro, ecologo e biologo marino presidente della Stazione zoologica Anton Dohrn, Patrizia Caraveo, astrofisica la quale mette in risalto il tema dell’inquinamento luminoso, e Paolo Vineis, medico epidemiologo e docente all’Imperial College di Londra in salute globale. Egli risponde al tema dell’emergenza ambientale come fattore influente sulla salute dell’uomo insieme alle diseguaglianze sociali.

Al termine dell’inaugurazione, sono intervenuti i rettori delle Università della Campania insieme a Marcella Marconi – Direttore Osservatorio Astronomico di Capodimonte, Luisa Franzese – Ufficio scolastico regionale per la Campania e Massimo Inguscio – Presidente CNR.

 

La settimana successiva è iniziata ancor più a pieno ritmo, con nomi noti al grande pubblico, come Ilaria Capua. La virologa di fama mondiale per gli studi sull’influenza aviaria e i dibattiti riguardo la scienza open-source, ha partecipato alla live moderata da Luca Carra, discutendo su approcci atti a migliorare le metodiche con cui affrontare eventi tra cui quelli pandemici. Durante il talk si sono proposti temi contenuti del suo libro “Salute circolare: una rivoluzione necessaria”, come l’importanza dell’interdisciplinarietà nella ricerca scientifica utile a creare equilibri nuovi e virtuosi rendendola più sostenibile e convergente. Il concetto di salute è da considerare come un punto di connessione tra uomo, animali ed ambiente e le conoscenze trasversali virando l’approccio verticale alla complessità dei problemi.

Nel pomeriggio di Lunedì 23 è seguito un talk di approfondimento a ricordi dei 40 anni dal terremoto dell’Irpinia-Lucania, uno dei più forti che si ricordino in Italia. Giorgio Della Via a moderare insieme a Maddalena De Lucia, addetta alla divulgazione presso l’Osservatorio vesuviano, hanno introdotto gli argomenti trattati ed i relatori, i quali si sono tutti trovati a vivere in prima persona il fenomeno sismico ed in un secondo momento a studiarlo. Mario Castellano, dirigente tecnologo dell’Osservatorio Vesuviano sezione Napoli dell’ INGV, Girolamo Milano, ricercatore geofisico dell’Osservatorio Vesuviano e Giuliana Alessio, ricercatore presso l’Istituto nazionale di Geofisica e Vulcanologia, hanno raccontato il tipo di sisma, come fu studiato, le cause e gli aspetti tecnici del terremoto dell’Irpinia. La rete sismica del Meridione era composta da una serie di stazioni il cui numero fu ampliato sul territorio per aumentare le informazioni da raccogliere ed analizzare meglio il fenomeno anche ai finiti studi successivi riguardo la dinamica sismica. Il terremoto del 1980 è stato un momenti di svolta per capire i meccanismi alla base e per confermare, il termini di prevenzione, l’aspetto edile come unica chiave per limitare i danni.

 

Nella mattina di Martedì 24 si è tenuta una live molto interessante, dal titolo “Istruzione, Ricerca e Medicina in Africa” durante la quale sono intervenuti Pasquale Maffia, professore associato in immunologia presso l’Università degli Studi di Napoli Federico II, Mayowa Ojo Owolabi, Preside della Facoltà di Medicina di Ibadan in Nigeria, Ntobeko Ntusi, Preside della Facoltà di Medicina presso l’Università di Cape Town e Wilson Mandala Oda, Professore alla Malawi University of Science and Technology e al College of Medicina dell’Università del Malawi. Si è discusso sul tema pandemia da Covid-19 in Africa, su come è stata affrontata e sul suo andamento in associazione ad un approccio più precario riguardo le campagna di vaccinazione, oltre all’importanza dell’istruzione e dell’università nella risoluzione di problematiche sanitarie, ricerca scientifica e medicina.

Per giovedì 26 gli appuntamenti sono stati tanti, tra cui alle ore 15:00 un talk dal titolo “+Innovation +Green +Future. Tecnologie digitali e processi Industriali Virtuosi di sostenibilità ambientale”. Luigi Nicolais introduce Riccardo Villari, Presidente della Fondazione IDIS, Valeria Fascione, assessore alla ricerca, innovazione e startup della Regione Campania e Maurizio Manfellotto, presidente Unioni Industriali Napoli, i quali hanno riflettuto sul tema della sostenibilità con un richiamo all’assetto politico e sociale che la gestisce.

Il primo intervento è stato di Reimung Neugebauer, Presidente del Fraunhofer – Gesellschaft, la più grande organizzazione di ricerca applicata in Europa. Illustrata la diffusione dei centri in Europa ed in Italia, tra cui con l’Università degli studi di Napoli Federico II, e l’aspetto strategico ed economico del “Fraunhofer model”. Si è sottolineato come sia fondamentale realizzare la sostenibilità e mirare a creare strategie innovative per raggiungere quest’obiettivo, coinvolgendo le industrie.

A seguire Pietro Palatino, Presidente di MediTech Competence Centre I4.0, che ha richiamato il concetto di economia circolare applicata all’industria. Sono intervenuti anche Marco Zigon, Presidente di GETRA, azienda che appartiene alla filiera di produzione e distribuzione dell’energia elettrica; Massimo Moschini, Presidente e Amministratore Delegato Laminazione Sottile e Maria Cristina Piovesana, Vicepresidente Confindustria per l’Ambiente, la Sostenibilità e la Cultura.

Nel pomeriggio di Giovedì 26, un altro appuntamento ha visto come protagonista Barbara Gallavotti, biologa ed autrice di programmi come SuperQuark e Ulisse. La giornalista scientifica ha discusso la paura che l’uomo ha di non poter controllare la scienza, insieme a Giulio Sandini, bioingegnere dell’IIT, a Claudio Franceschi, immunologo dell’Istituto di Scienze Neurologiche di Bologna, a Maurizio Mori, professore di bioetica presso l’Università di Torino e a Gennaro Carillo, filosofo dell’Università SuorOrsola Benincasa di Napoli.

Nella live del titolo “Da Frankenstein al futuro”, la Gallavotti ha raccontato di Mary Shelley e di Frankestein, un corpo che da vita alla paura che la scienza non sia sotto il controllo dell’uomo. Nel talk si è affrontato in maniera interdisciplinare come queste paure siano traslate alla nostra epoca ed al futuro, toccando punto come l’aspettativa di vita, la trasmissione della vita umana ed il non adattamento dell’uomo al mondo.

A cornice dei vari eventi, Venerdì 20, Domenica 22, Lunedì 23, Mercoledì 25 e Sabato 28 il pirata Barbascura X ha tenuto live con ospiti importanti, tutte visionabili sul suo canale Twitch o su YouTube.

Tanti altri eventi si sono articolati in rubriche speciali, mostre virtuali, laboratori virtuali e talk, disponibili sulla pagina Facebook o sul canale YouTube.

Lidar e rifugio, foto dalla mostra Missione Antartide alla XXXIV edizione di Futuro Remoto. Foto copyright B. Healey, ESA, IPEV, PNRA

 

Si ringrazia Futuro Remoto – Città della Scienza per le foto.

Un team di ricercatori del Dipartimento di Fisica della Sapienza Università di Roma, dell’Istituto dei Sistemi Complessi del CNR e dell’Università Cattolica di Roma ha sviluppato un sistema di intelligenza artificiale che, inglobando il tumore in una rete neurale, è capace di monitorare il metabolismo e la crescita delle cellule cancerose e, in maniera del tutto non invasiva, gli effetti delle chemioterapie. I risultati del lavoro sono stati pubblicati sulla rivista Communications Physics

reti neurali cancro
La figura mostra l’evoluzione temporale del campione tumorale usato nella rete ottica

L’intelligenza artificiale sta cambiando non solo molti aspetti della vita quotidiana, ma anche il modo di “fare scienza”, stimolando nuovi esperimenti e suggerendo strade di ricerca finora inesplorate.

Così i sistemi di intelligenza artificiale diventano sempre più avveniristici, interdisciplinari e neuromorfici (ovvero simili ai sistemi viventi) e trovano applicazione nei più disparati settori, come l’elettronica, l’informatica, la simulazione e le diverse branche della medicina. I nuovi modelli sono sviluppati per imitare il cervello umano, sia nel funzionamento, con un consumo di energia molto ridotto per l’apprendimento, sia nella struttura, utilizzando materiali biologici.

Il team di ricercatori coordinato da Claudio Conti del Dipartimento di Fisica della Sapienza e Direttore dell’Istituto dei sistemi complessi del CNR, in collaborazione con Massimiliano Papi della Università Cattolica del Sacro Cuore di Roma, ha realizzato una rete neurale ottica che ingloba al suo interno delle cellule tumorali viventi che crescono e si moltiplicano nel tempo. Si tratta di un dispositivo ibrido, formato da tessuti viventi e parti fisiche, come lenti, specchi e computer tradizionali, che evolve nel tempo e può essere addestrato per fornire informazioni sulle cellule tumorali, il loro metabolismo e l’effetto di chemioterapia e altri trattamenti.

Nello studio, sviluppato nell’ambito del progetto PRIN “PELM: Photonic Extreme Learning Machine” e pubblicato sulla rivista Communications Physics, i ricercatori hanno utilizzato cellule tumorali di glioblastoma, un tumore gravissimo del cervello, che sono state inserite nel dispositivo ottico. Fasci laser sono stati opportunamente addestrati per attraversare le cellule tumorali, che si comportano come dei nodi di una rete neurale. A questo punto il sistema di intelligenza artificiale, agisce come una vera e propria rete neurale biologica, memorizza ed elabora i dati e successivamente codifica le informazioni contenute nella luce estratta dalle cellule tumorali.

reti neurali cancro
Lo schema della rete neurale ottica usata negli esperimenti

Ma non solo, la rete neurale vivente può riconoscere gli stimoli esterni e reagire ai cambiamenti: aggiungendo alcune dosi di farmaci chemioterapici i ricercatori hanno dimostrato la capacità del modello di calcolare l’efficacia della terapia contro il glioblastoma.

La rete neurale, opportunamente addestrata, evidenzia infatti cambiamenti nel tumore non rivelabili con i metodi tradizionali, come la microscopia o le tecniche fisico-chimiche, e inoltre fornisce nuove informazioni sulla dinamica dell’evoluzione temporale e sugli effetti della temperatura, prima ottenibili solo attraverso tagli o modifiche invasive ai campioni tumorali. Il potenziale di tale tecnica sta nelle importanti ricadute applicative nel campo delle nuove tecnologie impiegate nella cura del cancro e in particolare nella nanomedicina.

“Si tratta di un’applicazione originale e innovativa dei nuovi concetti di Deep Learning alla fisica – spiega Claudio Conti. L’idea è che possiamo usare questi modelli matematici non solo per fare operazioni semplici come il riconoscimento delle immagini, ma anche fare esperimenti decisamente non convenzionali, che sfruttano la fisica e la biofisica con un approccio interdisciplinare”.

Riferimenti:

Living optical random neural network with three dimensional tumor spheroids for cancer morphodynamics – D.Pierangeli, V.Palmieri, G.Marcucci, C.Moriconi, G.Perini, M.DeSpirito, M.Papi, C.Conti – Communications Physics (2020) DOI: https://doi.org/10.1038/s42005-020-00428-9

 

Testo e immagini dalla Sapienza Università di Roma

ASTROFISICI SCOPRONO CHE IL “MODELLO UNIFICATO”

DELLE GALASSIE ATTIVE NON È COMPLETAMENTE VERIFICATO 

I risultati del lavoro del team internazionale guidato dal prof. Francesco Massaro di UniTo rilanciano l’eterno dibattito tra Mendel e Darwin per le radio galassie e gli oggetti di tipo BL Lac

La galassia attiva Hercules A: foto Hubble Telescope sovrapposta all’immagine radio del Very Large Array (VLA). Foto Credits: NASA, ESA, S. Baum and C. O’Dea (RIT), R. Perley and W. Cotton (NRAO/AUI/NSF), and the Hubble Heritage Team (STScI/AURA)  – http://www.spacetelescope.org/images/opo1247a/, CC BY 3.0

Un gruppo internazionale di astrofisici italiani guidato dal Prof. Francesco Massaro del Dipartimento di Fisica dell’Università degli Studi di Torino, associato sia all’Istituto Nazionale di Astrofisica che all’Istituto Nazionale di Fisica Nucleare, ha dimostrato – in un articolo pubblicato dalla rivista internazionale Astrophysical Journal Letters  che le previsioni del modello unificato delle galassie attive, per una particolare classe di sorgenti conosciute come oggetti di tipo BL Lac, non sono verificate.

Immagine ottica di BL Lac PKS 2155-304. Foto di Rfalomo – [1], in pubblico dominio
Nel nostro Universo esistono galassie denominate “attive” perché presentano un nucleo almeno cento volte più brillante dei miliardi di stelle che le costituiscono. Per oltre 30 anni, gli astrofisici avevano pensato che le differenze osservate tra le diverse classi di galassie attive fossero da imputare, in prevalenza, a un solo unico parametro: l’orientazione della struttura interna rispetto alla linea di vista. In accordo con quello che viene definito il modello unificato, tutte le galassie attive sarebbero “geneticamente” simili e l’angolo rispetto alla linea di vista l’unico parametro che le fa apparire diverse.

“Se il modello unificato è, almeno all’ordine zero, corretto – spiega il Prof. Massaro –, l’ambiente su grande scala dove la galassia attiva si trova è una proprietà che non dipende da come la si guarda. Quindi oggetti che possono apparire con diverse proprietà osservate perché semplicemente visti con una diversa inclinazione, se intrinsecamente uguali, dovranno risiedere in un ambiente che ha le stesse caratteristiche”.

Questo è proprio il caso delle radio galassie di tipo FRI, considerate sorgenti intrinsecamente uguali agli oggetti di tipo BL Lac. I loro getti di plasma si espandono ben al di fuori della loro galassia ospite su scale dei milioni di anni luce. In accordo con il modello unificato si è sempre pensato che una radio galassia di tipo FRI il cui getto puntasse in direzione della Terra corrispondesse a una sorgente classificabile come BL Lac. Il Prof. Massaro e il suo team internazionale hanno invece mostrato che l’ambiente in cui risiedono BL Lac e radio galassie FRI è estremamente diverso e pertanto le due classi di sorgenti non sono assimilabili.

“Ma il lavoro non è finito qui – aggiunge il Dott. Alessandro Capetti dell’Osservatorio Astrofisico di Torino anch’egli autore dell’articolo – il nostro studio ci ha anche permesso di dimostrare che gli oggetti di tipo BL Lac sembrano essere intrinsecamente simili a una classe differente di radio galassie, estremamente compatte, i cui getti non sono così estesi da essere visti in banda radio su scale ben al di fuori della galassia ospite”.

“Siamo estremamente soddisfatti dei risultati ottenuti e continueremo su questa linea di ricerca – continua il Prof. Massaro –, stiamo infatti cercando di dare una risposta definitiva al quesito sulle proprietà osservate nelle radio sorgenti e alla loro evoluzione, se dipendano dall’ambiente su grande scale in cui nascono, vivono e muoiono oppure se parametri intrinseci, come l’angolo rispetto alla linea di vista, siano sufficienti a caratterizzarle. Un po’ come il dibattito tra Darwin e Mendel visto in ambito astrofisico dove al momento le opinioni del primo sembrano prevalere”.

Hanno contribuito all’analisi e alla stesura del lavoro il Dott. R. D. Baldi dell’Istituto di Radio Astronomia, il Dott. R. Campana dell’Osservatorio di Astrofisica e Scienza dello Spazio di Bologna e il Dott. I. Pillitteri dell’Osservatorio Astronomico di Palermo, tutte sedi dell’Istituto Nazionale di Astrofisica, e infine il Dott. A. Paggi, dell’Università degli studi di Torino e il Dott. A. Tramacere dell’Università di Ginevra. La ricerca, portata avanti in questi anni, è stata finanziata dalla Compagnia di San Paolo e dal Consorzio Interuniversitario per la fisica Spaziale (CIFS) ed è stata realizzata nell’ambito del finanziamento relativo ai “Dipartimenti di Eccellenza 2018 – 2022” del MIUR (L. 232/2016) ricevuto dal Dipartimento di Fisica dell’Università degli studi di Torino.


Testo e immagini dall’Ufficio Stampa dell’Università degli Studi di Torino

Tra i risultati presentati all’ultima conferenza ICHEP (40th ICHEP conference), spicca l’annuncio di due esperimenti del CERN, ATLASCMS di nuove misure che mostrano il decadimento del bosone di Higgs in due muoni. Il muone è una copia più  pesante dell’elettrone, una delle particelle elementari che costituiscono la materia dell’Universo. Gli elettroni sono classificati come particelle di prima generazione mentre i muoni appartengono alla seconda generazione.

decadimento bosone di Higgs CERN CMS ATLAS Roberto Carlin
Il decadimento del bosone di Higgs in due muoni, così come registrato dai due esperimenti CERN, CMS (a sinistra) e ATLAS (destra). Immagine: CERN

Il processo di decadimento del bosone di Higgs in muoni, secondo la teoria del Modello Standard, è molto raro (un bosone di Higgs su 5000 decade in muoni). Questi risultati sono molto importanti dal momento che indicano per la prima volta che il bosone di Higgs interagisce con particelle elementari della seconda generazione.

Abbiamo intervistato Roberto Carlin, ricercatore dell’INFN e professore dell’Università di Padova che attualmente è il portavoce dell’esperimento CMS (Compact Muon Solenoid) e gli abbiamo posto alcune domande su questo annuncio e sul prossimo futuro dell’esperimento CMS.

 

Un decadimento molto raro del bosone di Higgs al CERN

Recentemente la collaborazione CMS ha annunciato i rilevamenti di un decadimento molto raro del bosone di H –> mumu. Per quale motivo è così importante questa misura?

La materia di cui siamo fatti è formata da elettroni e quark di tipo “up” e “down”, i costituenti dei protoni e dei neutroni. Queste sono le particelle della cosiddetta “prima generazione”. Esistono particelle con massa più grande che compaiono nelle interazioni ad alte energie, e sono instabili, decadendo alla fine nelle particelle più leggere: il muone appunto, una specie di elettrone duecento volte più pesante, che con i quark “strange” e “charm” costituiscono la seconda generazione.

Ne esiste una terza, ancora più pesante, con il tau ed i due quark bottom e top. Sappiamo che è così ma non sappiamo perché. Non sappiamo perché ci siano tre famiglie e perché abbiano masse così diverse. Il quark top, la particella più pesante che conosciamo, ha una massa poco più di 170 volte quella di un atomo di idrogeno e circa 350 mila volte quella di un elettrone.

Però sappiamo che nel Modello Standard, l’attuale teoria che descrive le particelle elementari e le loro interazioni, la massa delle particelle è generata dalla loro interazione con il campo di Higgs. Quindi studiare l’accoppiamento delle particelle con il bosone di Higgs significa studiare il meccanismo che fornisce loro la massa, e potrebbe gettare luce sulle ragioni di tanta diversità.

Dalla terza generazione alla seconda

Finora, dopo la scoperta del bosone di Higgs che data al 2012, si sono studiati i suoi accoppiamenti con le particelle pesanti, di terza generazione: tau, top, bottom (oltre che quelli con i bosoni vettori più pesanti, W e Z, particelle che mediano la forza elettro-debole). E il motivo è chiaro, più pesante la particella, più grande è l’accoppiamento con il bosone di Higgs, e quindi più facile misurarlo. Con questa nuova misura per la prima volta abbiamo avuto indicazioni sull’accoppiamento con i muoni, particelle della seconda generazione, più leggere, ottenendo risultati in accordo, entro le incertezze sperimentali, con le previsioni del Modello Standard.

Una misura molto difficile, solo un bosone di Higgs su 5000 decade in una coppia di muoni, mentre più della metà delle volte decade in una coppia di quark bottom. Il risultato è molto importante e niente affatto scontato: a priori il meccanismo che fornisce massa alle particelle di diversa generazione potrebbe essere più complesso coinvolgendo, per esempio, diversi bosoni di Higgs.

Peter Ware Higgs, insignito del Nobel della Fisica nel 2013, predisse negli anni ’60 l’esistenza del bosone che oggi ne porta il nome. Oggi con l’esperimento CMS del CERN, si rileva un raro decadimento del bosone di Higgs in due muoni. Foto Flickr di Bengt Nyman, CC BY 2.0

Evidenza o Scoperta?

Nell’annuncio si sottolinea che la significatività è di “soli” 3 sigma. Ci potrebbe spiegare per quale motivo 3 sigma non sono sufficienti e quando si pensa di raggiungere la soglia dei 5 sigma?

Intanto direi “già” 3 sigma, non “soli”. Perché una misura di questa significatività non era attesa così presto, ci si aspettava di arrivarci utilizzando anche i dati del “Run 3”, previsto tra il 2022 ed il 2024. Invece la gran mole dei dati forniti negli anni passati da LHC, la grande efficienza e qualità della rivelazione e ricostruzione di muoni in CMS, e l’impiego di strumenti di deep learning, ovvero le tecniche sviluppate nel campo dell’intelligenza artificiale, hanno permesso questo eccellente risultato. Il problema di questa misura è che non solo il segnale è molto raro, abbiamo detto che solo un bosone di Higgs su 5000 decade in due muoni, ma anche che esistono processi diversi che possono imitare il segnale cercato (eventi di fondo), e questi sono migliaia di volte più frequenti del segnale.

Una significatività di 3 sigma viene chiamata “evidenza” e significa che, in assenza di segnale, fluttuazioni degli eventi di fondo potrebbero generare un contributo simile a quanto osservato (e quindi un falso segnale) una volta su 700. Una probabilità piccola ma non piccolissima. Lo standard che ci siamo dati per una “osservazione”, al di là di ogni ragionevole dubbio, è di 5 sigma, che rappresenta una probabilità di una volta su qualche milione.

Per arrivare ciò serviranno circa il triplo dei dati attualmente disponibili. Speriamo che il Run 3 ci darà tanto, contiamo almeno di raddoppiare i dati, anche se siamo abituati a risultati migliori dell’atteso. In ogni caso una combinazione dei risultati di ATLAS e CMS alla fine Run 3 dovrebbe permetterci di arrivare a questa nuova soglia.

Una conferma del Modello Standard

Ci sono stati casi di misure a 3 sigma che poi, con l’aumentare del campione di indagine, si sono rivelate semplici fluttuazioni statistiche?

Certamente. Abbiamo detto che con 3 sigma si parla di probabilità pari una volta su 700. Poiché in questi esperimenti facciamo molte misure diverse (CMS ha recentemente celebrato i 1000 articoli scientifici), simili fluttuazioni accadono. Nel caso una fluttuazione di 3 sigma punti a un fenomeno nuovo, inaspettato, siamo perciò molto cauti. Qui si tratta di una misura, molto importante, che conferma entro le incertezze sperimentali quanto previsto dal Modello standard, il risultato inaspettato sarebbe stato la mancanza del segnale, non la sua presenza.

Muon Collider

Se questa scoperta venisse confermata, avremmo una conferma sperimentale dell’accoppiamento del bosone H con leptoni della seconda famiglia. Questa potrebbe avere influenza per lo sviluppo di un acceleratore basato sullo scontro di muoni invece che elettroni?

Queste prime misure indicano che l’accoppiamento del bosone di Higgs con i muoni è compatibile con quello atteso. In questo caso, assumendo valido il Modello Standard, la probabilità di produrre direttamente (in modo risonante) bosoni di Higgs in un collisore di muoni sarebbe circa 40 mila volte maggiore di quella, troppo piccola, che si avrebbe in un collisore di elettroni, e questo renderebbe possibile misurare alcune quantità, come la massa del bosone di Higgs, con altissima precisione.

Aggiornamento del rivelatore CMS

L’acceleratore LHC (Large Hadron Collider) dovrebbe ripartire tra qualche mese, dopo un anno di riposo. Che miglioramenti sono stati apportati al rivelatore CMS in questo periodo?

Il numero di miglioramenti è molto grande. Tra questi, l’elettronica del rivelatore di vertice, il più preciso e vicino al punto di interazione, sta ricevendo vari aggiornamenti approfittando della necessità programmata di rimpiazzarne lo strato interno, il più soggetto a danneggiamenti da radiazioni. Anche l’elettronica del calorimetro per adroni è stata completamente sostituita, aumentandone significativamente le prestazioni.

Inoltre, abbiamo cominciato a installare rivelatori che sono previsti nel piano di aggiornamento per il futuro “High-Luminosity LHC”. In particolare due dischi di rivelatori di muoni basati sulla nuova tecnologia GEM (Gas Electron Multiplier). Avremo quindi un rivelatore ancora migliore, adatto a gestire in maniera ottimale l’alta intensità di collisioni tra protoni che LHC si prepara a fornire (anche lo stesso LHC ha significativi aggiornamenti in questo periodo).

L’impatto del COVID-19

L’emergenza COVID-19 ha costretto università ed enti di ricerca a nuove forme di lavoro a distanza. Vi sono state conseguenze, come ritardi nella programmazione della ripartenza di LHC o negli aggiornamenti al rivelatore?

CMS è una grande collaborazione internazionale, con istituti da 55 paesi di tutto il mondo, e siamo quindi già abituati a lavorare in rete. Praticamente tutti i nostri meeting sono da anni in videoconferenza per facilitare l’accesso remoto. Quindi la transizione a una modalità di telelavoro per alcune  attività, in particolare l’analisi dei dati, è stata forse più facile che in altri contesti. Anche se con difficoltà innegabili, per esempio per persone che hanno dovuto gestire figli a casa. Naturalmente altre attività di aggiornamento dei rivelatori, previste in questo periodo, hanno subito dei ritardi a causa della chiusura del CERN.

Alla fine del lockdown il management degli esperimenti, degli acceleratori e del CERN si è riunito e abbiamo deciso un nuovo programma, che vede la ripresa di LHC ad inizio 2022 invece che a metà 2021. Siamo tuttavia riusciti a ottimizzare i periodi seguenti cosicché la quantità di dati prevista nel prossimo periodo prima della nuova chiusura nel 2025, prevista per installare il grande aggiornamento di “high lumi LHC”, non ne risentirà e ci consentirà di continuare il nostro vastissimo programma di studi, ottenendo sicuramente nuovi importanti risultati.