Ad
Ad
Ad
Tag

farmacologia

Browsing

Istituto Italiano di Tecnologia – IIT e Sapienza Università di Roma: realizzati in laboratorio per la prima volta organoidi cerebrali per lo studio della Sindrome dell’X fragile
Questo risultato consentirà di studiare in vitro il meccanismo molecolare della malattia e testare futuri farmaci.

organoidi cerebrali sindrome X fragile
Dettaglio a livello cellulare degli organoidi cerebrali derivati da cellule iPS umane di Controllo viste al microscopio confocale. Credits: Istituto Italiano di Tecnologia – © IIT, all rights reserved

Riprodotti per la prima volta in laboratorio organoidi cerebrali (3D) come modello di studio della Sindrome dell’X Fragile, una malattia ereditaria legata a mutazioni nel gene FMRP localizzato sul cromosoma X, causa di disabilità cognitiva, problemi di apprendimento e relazionali.

Neuroni derivati da cellule iPS umane di Xfragile visti a microscopio confocale per identificazioni delle sinapsi glutammatergiche. Credits: Istituto Italiano di Tecnologia – © IIT, all rights reserved

Lo studio, pubblicato sulla rivista Cell Death and Disease, è il risultato di una collaborazione tutta italiana fra Istituto Italiano di Tecnologia – IIT e Sapienza Università di Roma. In particolare tra Silvia Di Angelantonio e Alessandro Rosa, entrambi docenti Sapienza e ricercatori affiliati presso il centro IIT di Roma “Center for Life Nano & Neuro-Science” coordinato da Giancarlo Ruocco e il gruppo D3Validation dell’Istituto Italiano di Tecnologia di Genova, coordinato da Angelo Reggiani.

organoidi cerebrali sindrome X fragile
Organoidi cerebrali ottenuti da cellule iPS umane di controllo viste al microscopio confocale. Credits: Istituto Italiano di Tecnologia – © IIT, all rights reserved

Gli organoidi 3D sono strutture cellulari tridimensionali artificiali, generate a partire da cellule staminali umane, che riproducono le caratteristiche dei veri organi. Si tratta di modelli in vitro che mostrano condizioni molto simili a quelle umane sia dal punto di vista fisiologico che patologico e che mimano in vitro l’interazione tra cellule. Negli ultimi anni la messa a punto di organoidi cerebrali umani derivati da cellule staminali pluripotenti indotte (cellule iPS, Premio Nobel per la Medicina 2012) ha permesso di ridurre i test condotti su modelli animali e ha aperto nuovi orizzonti per lo studio delle malattie del neuro-sviluppo come autismo e schizofrenia o della nota infezione da Zika virus.

organoidi cerebrali sindrome X fragile
Organoidi cerebrali ottenuti da cellule iPS umane di Xfragile viste al microscopio confocale. Credits: Istituto Italiano di Tecnologia – © IIT, all rights reserved

Le cellule iPS sono cellule staminali che si possono ottenere ‘riprogrammando’ cellule non staminali, per esempio del sangue o della pelle, prelevate da qualunque individuo adulto.

organoidi cerebrali sindrome X fragile
Dettaglio a livello cellulare degli organoidi cerebrali derivati da cellule iPS umane di Xfragile viste al microscopio confocale. Credits: Istituto Italiano di Tecnologia – © IIT, all rights reserved

In questo studio le colture cellulari classiche (2D) e gli organoidi cerebrali (3D) sviluppati a partire da cellule iPS, riproducono in vitro alcune caratteristiche tipiche della sindrome dell’X Fragile, consentendo ai ricercatori di studiare il meccanismo molecolare della patologia e di dimostrare  come la proteina FMRP sia necessaria per supportare correttamente la proliferazione delle cellule neuronali e gliali e per impostare il corretto rapporto eccitazione-inibizione nello sviluppo del cervello umano.

organoidi cerebrali sindrome X fragile
Organoidi cerebrali ottenuti da cellule iPS umane di controllo. Le frecce rosse indicano lo sviluppo di strutture corticali. Credits: Istituto Italiano di Tecnologia – © IIT, all rights reserved

Lo studio su modelli cellulari 3D, inoltre, ha permesso di scoprire uno squilibrio di dimensioni tra organoidi X fragile e organoidi di controllo cioè sani, ma soprattutto uno squilibrio in termini di bilancio eccitazione – inibizione delle cellule di X Fragile a favore dell’ipereccitabilità che si potrebbe ipotizzare essere alla base delle crisi epilettiche, sintomi tipici dei pazienti X Fragile.

organoidi cerebrali sindrome X fragile
Organoidi cerebrali ottenuti da cellule iPS umane di X Fragile. Le frecce rosse indicano lo sviluppo di strutture corticali. Credits: Istituto Italiano di Tecnologia – © IIT, all rights reserved

Questi risultati ampliano le conoscenze sulla Sindrome dell’X Fragile e gettano le basi per lo screening di nuovi farmaci efficaci per questa patologia oltre al riposizionamento di quelli già in uso.

Silvia Di Angelantonio, ricercatrice affiliata presso il centro IIT di Roma “Center for Life Nano & Neuro-Science”. Credits: Istituto Italiano di Tecnologia – © IIT, all rights reserved

 “Ad oggi questo lavoro è il primo a dimostrare la possibilità di studiare la Sindrome dell’X Fragile in organoidi cerebrali e suggerisce che questa piattaforma sperimentale possa essere applicata per modellizzare in vitro la Sindrome dell’X Fragile” dichiara Silvia Di Angelantonio, ricercatrice affiliata presso il centro IIT – Center for Life Nano & Neuro-Science e docente Sapienza.

Alessandro Rosa, ricercatore affiliato presso il centro IIT di Roma “Center for Life Nano & Neuro-Science”
Caption: Alessandro Rosa, ricercatore affiliato presso il centro IIT di Roma. Credits: Istituto Italiano di Tecnologia – © IIT, all rights reserved

“L’uso di organoidi umani per lo studio di malattie come la Sindrome dell’X Fragile presenta notevoli vantaggi per la comprensione dei meccanismi molecolari che ne sono alla base” aggiunge Alessandro Rosa, ricercatore affiliato presso il centro IIT – Center for Life Nano & Neuro-Science e docente Sapienza.

Angelo Reggiani, Ricercatore Istituto Italiano di Tecnologia. Credits: Istituto Italiano di Tecnologia – © IIT, all rights reserved

“La disponibilità di organoidi derivati da cellule umane crea i presupposti per la identificazione di farmaci migliori e, in un futuro prossimo, di terapie sempre più personalizzate sulle necessità del malato” conclude Angelo Reggiani, coordinatore del laboratorio D3Validation dell’Istituto Italiano di Tecnologia.

Neuroni derivati da cellule iPS umane di controllo visti a microscopio confocale per identificazioni delle sinapsi glutammatergiche. Credits: Istituto Italiano di Tecnologia – © IIT, all rights reserved

Riferimenti:

Novel fragile X syndrome 2D and 3D brain models based on human isogenic FMRP-KO iPSCs – Carlo Brighi, Federico Salaris, Alessandro Soloperto, Federica Cordella, Silvia Ghirga, Valeria de Turris, Maria Rosito, Pier Francesca Porceddu, Chiara D’Antoni, Angelo Reggiani, Alessandro Rosa and Silvia Di Angelantonio – Cell Death & Disease https://doi.org/10.1038/s41419-021-03776-8

 

Testo e foto dell’Istituto Italiano di Tecnologia – IIT, Image Library; dal Settore Ufficio stampa e comunicazione Sapienza Università di Roma

La ciber-genetica sincronizza gli orologi delle cellule. Lo rivela la ricerca targata Federico II e Tigem appena pubblicata su Nature Communications

Lo studio, che fa capo ai professori Diego di Bernardo e Mario di Bernardo, dimostra che le cellule possono essere indotte a sincronizzare il proprio ciclo cellulare da un computer attraverso una apposita “interfaccia”. Ciò consentirà, ad esempio, di studiare i meccanismi biologici alla base del ciclo cellulare, la cui regolazione è il principio di molti farmaci antitumorali.

Le cellule, quindi, diventano smart grazie alla ciber genetica.

ciber genetica cellule
Cellule di lievito osservate al microscopio durante un esperimento di sincronizzazione. I segnali in basso mostrano che tutte le cellule osservate crescono all’unisono grazie alla nuova tecnologia sviluppata

I risultati di questa nuova ricerca sono stati pubblicati sulla rivista Nature Communications dal gruppo di ricercatori guidato dal professore Diego di Bernardo del Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale dell’Università degli Studi di Napoli Federico II – DICMAPI e del TIGEM in collaborazione con il gruppo del professore Mario di Bernardo del Dipartimento di Ingegneria Elettrica e delle Tecnologie dell’Informazione -DIETI della Federico II, nell’ambito del progetto europeo FET-OPEN H2020 “COSYBIO” (www.cosy-bio.eu).
La ricerca fortemente inter-disciplinare ricade nell’ambito della “ciber-genetica”, una nuovissima disciplina che integra l’ingegneria biomedica e la teoria dei sistemi nonlineari e dei controlli automatici con la biologia molecolare e cellulare al fine di costruire controllori automatici di processi biologici. Nello specifico i ricercatori hanno dimostrato che è possibile sincronizzare la replicazione cellulare in una popolazione di cellule interfacciandole con un computer, utilizzando tecniche di controllo simili a quelle utilizzate per la sincronizzazioni di reti e circuiti in ingegneria.
Questi nuovi sistemi “cibergenetici” potranno rivoluzionare nelle biotecnologie l’efficienza della produzione di farmaci biologici da cellule. Inoltre in un futuro non troppo lontano le stesse tecnologie potranno essere miniaturizzate per regolare processi biologici e dar vita a veri e proprio “ciberfarmaci” o smart drugs.
Alla ricerca hanno preso parte, tra gli altri, Sara Napolitano dottoranda presso il DICMAPI e Davide Fiore del Dipartimento di Matematica e Applicazioni sempre dell’Università Federico II.

 

L’articolo completo:
Automatic synchronisation of the cell cycle in budding yeast through closed-loop feedback control | Nature Communications

 Testo e immagine dall’Ufficio Stampa Università degli Studi di Napoli Federico II

“E quindi uscimmo a riveder le stelle”: un nuovo studio Sapienza mette in luce il ruolo delle cellule stellate nello sviluppo del nostro cervello 

Un nuovo studio della Sapienza ha evidenziato il ruolo degli astrociti nei processi di sviluppo cerebrale neonatale. I risultati del lavoro, pubblicati sulla rivista Cell Reports permettono di approfondire alcuni meccanismi molecolari di base di molte patologie psichiatriche del neurosviluppo che insorgono nel periodo perinatale, come l’autismo, la schizofrenia o il deficit dell’attenzione, e di individuare nuovi potenziali farmaci.

astrociti cellule stellate sviluppo cervello

Gli astrociti rappresentano un importantissimo contingente strutturale del nostro cervello, più numeroso di circa dieci volte rispetto a quello formato dai neuroni. Queste cellule stellate sono sicuramente meno conosciute dei neuroni, ma non meno importanti da un punto di vista funzionale.

astrociti cellule stellate sviluppo cervello

Un nuovo studio coordinato da Paola Bezzi del Dipartimento di Fisiologia e farmacologia Vittorio Erspamer della Sapienza Università di Roma, realizzato insieme con ricercatori delle Università di Losanna e di Zurigo, mette in luce come la crescita e la maturazione delle cellule stellate subito dopo la nascita sia fondamentale per la sopravvivenza dei neuroni e quindi per la corretta formazione e funzione dei circuiti nervosi nel cervello adulto. I risultati del lavoro sono stati pubblicati sulla rivista Cell Reports.

La funzione cerebrale si basa sull’attività dei circuiti nervosi e sui processi di trasmissione del segnale tra neuroni che avviene in piccole strutture chiamate sinapsi. Appena dopo la nascita, durante il periodo dell’allattamento, i neuroni sono ancora immaturi e le sinapsi sono ancora in via di formazione. Poco si sapeva invece sullo sviluppo e sul ruolo delle cellule stellate nei processi di sviluppo cerebrale neonatale.

I ricercatori hanno sviluppato un nuovo approccio metodologico basato sull’iniezione di coloranti fluorescenti in grado di fornire una visione più dettagliata dell’organizzazione strutturale degli astrociti.

Lo studio ha fatto emergere che la funzionalità dei circuiti neuronali e delle sinapsi dipendono dal corretto sviluppo delle cellule stellate che durante il periodo neonatale hanno una riserva energetica particolarmente sviluppata.

“Abbiamo scoperto che tra le varie funzioni di queste cellule, ce ne è una che è fondamentale per il funzionamento dei neuroni: la produzione di energia – spiega Paola Bezzi della Sapienza. “Gli astrociti sono dei veri e propri “baby-sitter” dei neuroni in via di sviluppo e usano molta energia per svolgere questo ruolo fondamentale.  Usando delle tecniche genetiche di recente sviluppo, abbinate alla colorazione di una singola cellula, abbiamo dimostrato che in caso di malfunzionamento degli organelli deputati alla produzione di energia (i mitocondri), le cellule stellate non si sviluppano, non si prendono cura dei neuroni e così facendo inducono problemi nella formazione e maturazione delle cellule nervose e nelle sinapsi”.

Nel campo delle neuroscienze, l’astrocita rappresenta attualmente uno degli argomenti più entusiasmanti in quanto le ricerche sulla maturazione perinatale del cervello sono alla base della comprensione delle malattie ad esso collegate.

I risultati ottenuti dai ricercatori permettono di approfondire i meccanismi cellulari e molecolari di numerose patologie psichiatriche che insorgono nel periodo perinatale e colpiscono prevalentemente la maturazione dei circuiti nervosi, come l’autismo, la schizofrenia o il deficit dell’attenzione, e di individuare così nuovi potenziali farmaci.

Riferimenti:

Mitochondrial biogenesis in developing astrocytes regulates astrocyte maturation and synapse formation – Tamara Zehnder, Francesco Petrelli, Jennifer Romanos, Franck Polleux, Mirko Santello, Paola Bezzi – Cell Reports (2021) https://doi.org/10.1016/j.celrep.2021.108952

 

Testo e foto dal Settore Ufficio stampa e comunicazione Sapienza Università di Roma sullo studio circa il ruolo delle cellule stellate per lo sviluppo del cervello.

Un nuovo alleato per resistere a quell’incontrollabile desiderio di abbuffarsi di cibo

Lo studio italiano dei gruppi di ricerca della Sapienza e dell’Università di Camerino ha identificato in una molecola, l’oleoiletanolamide, un nuovo strumento farmacologico per prevenire e contrastare il disturbo da alimentazione incontrollata. I risultati del lavoro sono stati pubblicati sulla prestigiosa rivista Neuropsychopharmacology

oleoiletanolamide

Durante questo periodo unico nella storia moderna rifugiarsi nel cibo è per molte persone un modo per sfuggire alle emozioni negative e per gratificarsi attraverso i piaceri della vita. Questo perché molti alimenti, soprattutto quelli ricchi di zuccheri, costituiscono una fonte di energia immediatamente disponibile per l’organismo e allo stesso tempo stimolano la trasmissione dopaminergica nel cervello, il neurotrasmettitore associato alla motivazione e al senso di gratificazione.

Si tratta di una normale risposta fisiologica allo stress che, tuttavia, in molti individui diventa un comportamento compulsivo, incontrollabile e ripetitivo che spesso sfocia in una vera e propria patologia. È il caso del Binge Eating Disorder (BED) il disturbo alimentare più comune, caratterizzato da episodi ricorrenti di abbuffate fuori controllo, analoghe a quelle della bulimia, non seguiti da atti compensatori o di eliminazione (come l’induzione del vomito o l’auto-somministrazione di lassativi). Chi ne è affetto sviluppa nel tempo obesità grave, oltre a un marcato disagio psicologico, caratterizzato da depressione, ansia, bassa autostima o altri problemi che possono influenzare notevolmente la qualità della vita.

I trattamenti più significativi e attualmente disponibili per il BED prevedono una combinazione di psicoterapia e farmacoterapia, quest’ultima generalmente basata su farmaci antidepressivi. Tuttavia, il fatto che il tasso di ricaduta sia ancora molto elevato evidenzia la necessità di individuare strategie più efficaci.

Due gruppi di ricerca coordinati rispettivamente da Silvana Gaetani del Dipartimento di Fisiologia e farmacologia Vittorio Erspamer della Sapienza e da Carlo Cifani della Scuola di Scienze del farmaco e dei prodotti della salute dell’Università di Camerino, hanno identificato in una molecola, l’oleoiletanolamide, un nuovo strumento farmacologico per prevenire e contrastare il disturbo da alimentazione incontrollata. I risultati dello studio sono stati recentemente pubblicati sulla rivista Neuropsychopharmacology.

Il crescente interesse della comunità scientifica per l’oleoiletanolamide, più nota con il suo acronimo OEA, deriva dal suo ruolo ben caratterizzato come segnale di sazietà per il cervello e come regolatore del metabolismo, soprattutto quello dei grassi.  In questo panorama di scoperte chiave sul ruolo dell’OEA, il team Sapienza ha dato negli ultimi quindici anni un significativo contributo.

“Oggi sappiamo – spiegano Adele Romano della Sapienza e Maria Vittoria Micioni Di Bonaventura dell’Università di Camerino, entrambe primi co-autori dello studio – che l’OEA è in grado di prevenire lo sviluppo di un comportamento alimentare anomalo, di tipo binge, e agisce modulando l’attività di circuiti cerebrali che rispondono alle proprietà piacevoli del cibo e/o all’esposizione a una condizione stressante”.

“Le prove scientifiche che abbiamo fornito – aggiunge Silvana Gaetani – sono state ottenute in un modello sperimentale di BED, sviluppato dal team di Carlo Cifani, e sebbene debbano essere confermate in pazienti affetti da BED, fanno ben sperare che l’OEA possa essere effettivamente un nuovo potenziale alleato per la prevenzione o la cura dei disturbi del comportamento alimentare”.

 

Riferimenti:

Oleoylethanolamide decreases frustration stress-induced binge-like eating in female rats: a novel potential  treatment for binge eating disorder – Adele Romano, Maria Vittoria Micioni Di Bonaventura, Cristina Anna Gallelli, Justyna Barbara Koczwara, Dorien Smeets, Maria Elena Giusepponi, Marialuisa De Ceglia, Marzia Friuli, Emanuela Micioni Di Bonaventura, Caterina Scuderi, Annabella Vitalone, Antonella Tramutola, Fabio Altieri, Thomas A. Lutz, Anna Maria Giudetti, Tommaso Cassano, Carlo Cifani and Silvana Gaetani – Neuropsychopharmacology (2020) 0:1–11; https://doi.org/10.1038/s41386-020-0686-z

 

Testo e foto dal Settore Ufficio stampa e comunicazione Sapienza Università di Roma