News
Ad
Ad
Ad
Tag

European Research Council

Browsing

La Sapienza ottiene due nuovi Erc Starting Grant e adotta il Regolamento per sostenere i ricercatori di eccellenza

La Commissione europea ha approvato, nell’ambito della call Erc Starting Grant 2021, due progetti presentati da Principal Investigators della Sapienza. I due Erc, dal valore di circa 1,5 milioni di euro ciascuno, sono stati ottenuti dal progetto NANOWHYR presentato da Marta De Luca del Dipartimento di Fisica, e dal progetto HYQUAKE presentato da Marco Scuderi del Dipartimento di Scienze della Terra. Questo riconoscimento giunge a breve distanza dall’approvazione da parte dell’Ateneo del Regolamento che incentiva i ricercatori coordinatori di progetti di altissimo profilo finanziati dall’Unione Europea o dal Mur.

L’Erc – European Research Council, l’organismo dell’Unione Europea che finanzia i ricercatori di eccellenza, ha approvato, nell’ambito della call Starting Grant 2021, due progetti presentati da Principal Investigators della Sapienza nella categoria Physical Sciences and Engineering.

I due Starting Grant, riservati a ricercatori di eccellenza con esperienza compresa tra i due e i sette anni dopo il conseguimento del PhD e ciascuno dal valore di circa 1,5 milioni di euro, sono stati ottenuti dai progetti NANOWHYR presentato da Marta De Luca, docente del Dipartimento di Fisica, e HYQUAKE presentato da Marco Scuderi, ricercatore del Dipartimento di Scienze della Terra, che vedono Sapienza come Hosting Institution.

Marta De Luca

Il progetto “NANOWHYR – Dots-in-NANOWires by near-field illumination: novel single-photon sources for HYbRid quantum photonic circuits” si propone superare il principale limite alla realizzazione pratica di tecnologie quantistiche, come la computazione e la comunicazione quantistica, con la creazione di nuove sorgenti di fotoni singoli in nanofili (nanowires) semiconduttori.  

Tali sorgenti potranno essere fabbricate su silicio o integrate su di esso dopo la crescita realizzando piattaforme ibride. In entrambi i casi, le sorgenti saranno inserite all’interno di cavità, che hanno il compito di assicurare elevata qualità ed efficienza delle sorgenti. Il progetto NANOWHYR mira ad aprire nuovi orizzonti scientifici e tecnologici nell’ambito della fotonica integrata su silicio.

Marco Scuderi

Il progetto “HYQUAKE – Hydromechanical coupling in tectonic faults and the origin of aseismis slip, quasi-dynamic transients and earthquake rupure” ha l’ambizione di sviluppare una struttura teorica basata su modelli fisici capaci di comprendere e predire in laboratorio i sismi indotti da sovrappressione di fluidi pressurizzati, la cui presenza nel sottosuolo gioca un ruolo fondamentale nella meccanica dei terremoti, come dimostrato recentemente dalla sismicità determinata da attività antropiche umane o dalla scoperta dei cosiddetti terremoti lenti. Il progetto si propone di superare il limite dello sviluppo di modelli fisici che possano descrivere l’accoppiamento idro-meccanico all’origine della genesi di un terremoto.

L’approccio di HYQUAKE è multidisciplinare e integra informazioni provenienti da inediti esperimenti di laboratorio con machine learning, sismologia e modelli numerici 3D. L’obiettivo è quello di produrre dei vincoli quantitativi ai processi fisici chiave, che permettano di combinare le leggi di attrito, la dinamica della localizzazione della deformazione e il flusso di fluidi che sono all’origine della nucleazione di terremoti.

Questo importante risultato conferma le linee d’azione del Regolamento recentemente approvato dalla Sapienza per incentivare professori e ricercatori che, in qualità di Principal Investigator (PI), siano risultati vincitori di specifici progetti nazionali e internazionali di eccellenza, finanziati dall’Unione europea o dal MUR, che abbiano l’Ateneo come Hosting Institution (progetti di ricerca ERC, Azioni Marie Skłodowska Curie-MSCA, borse Levi-Montalcini).

Il Regolamento prevede per i Principal Investigator un incentivo in termini di finanziamento ulteriore, ma anche spazi per le attività di laboratorio; sarà inoltre possibile attivare la chiamata diretta per la copertura di posti di professore e di ricercatore a tempo determinato e la riduzione del carico didattico.

“Il riconoscimento Erc Starting Grant – Principal Investigators – dichiara la rettrice Antonella Polimeni – rappresenta un’ulteriore conferma della qualità dei progetti di ricerca coordinati da giovani studiose e studiosi della Sapienza in diversi ambiti  disciplinari. Il Regolamento varato dall’Ateneo ha proprio lo scopo di supportare e incentivare queste iniziative di ricerca di alto profilo”.

Focus 

Lo European Research Council (ERC) è l’organismo dell’Unione Europea che finanzia progetti di eccellenza legati ad attività di ricerca di frontiera. Sostiene l’eccellenza della ricerca in tutti gli ambiti scientifici e disciplinari, rafforzando il dinamismo e la creatività nella ricerca europea e fornisce finanziamenti competitivi e a lungo termine a progetti di ricerca innovativi, ad alto rischio e ad alto impatto scientifico, condotti da Principal Investigators (PI) con curricula di rilievo a livello internazionale.

Nella call 2021, sono stati premiati 397 giovani ricercatori all’inizio della loro carriera, per un totale di 619 milioni di euro investiti in progetti eccellenti.

I finanziamenti, di circa di 1,5 milioni di euro ciascuno, aiuteranno i giovani ricercatori a lanciare i propri progetti, a formare degli adeguati team e a perseguire le loro idee migliori.

Le proposte selezionate coprono tutte le discipline di ricerca, dalle applicazioni mediche dell’intelligenza artificiale, alla scienza del controllo della materia mediante l’uso della luce.

Quest’anno le ricercatrici hanno vinto circa il 43% delle borse, registrando non solo un aumento del 37% rispetto al 2020, ma anche la quota di donne vincitrici di finanziamenti ERC più alta fino ad oggi.

 

Testo e foto dal Settore Ufficio stampa e comunicazione Sapienza Università di Roma sulla notizia dei due nuovi ERC Starting Grant 2021 a Marco Scuderi e Marta De Luca, e sul Regolamento per sostenere i ricercatori di eccellenza.

SLA: aggiunto un nuovo tassello nella comprensione degli aggregati molecolari nella malattia

Un gruppo di ricercatori della Sapienza e dell’Università degli Studi di Perugia, in collaborazione con l’Istituto italiano di tecnologia (IIT), ha pubblicato sulla rivista iScience uno studio che fa luce su una nuova forma di RNA e sul suo coinvolgimento in malattie neurodegenerative come la Sclerosi laterale amiotrofica. Il lavoro è stato supportato dall’European Research Council e da Fondazione AriSLA.

SLA aggregati molecolari
SLA: aggiunto un nuovo tassello nella comprensione degli aggregati molecolari nella malattia. Foto di Arek Socha

La Sclerosi laterale amiotrofica, nota come SLA, è una malattia neurodegenerativa che colpisce i motoneuroni, le cellule neuronali responsabili dell’innervazione muscolare, la cui degenerazione porta alla paralisi progressiva, culminando in una incapacità motoria e respiratoria.

Nella SLA si identificano due forme, quella familiare dovuta a specifiche mutazioni genetiche, e quella sporadica, la cui patogenesi non è correlata a chiara familiarità congenita e le cui cause sono ancora per lo più sconosciute. Sebbene numerosi studi abbiano permesso di caratterizzare varie proteine coinvolte nella SLA, c’è ancora molto da scoprire sulla complessità dell’insorgenza e progressione della malattia e, soprattutto, sulla sua possibile cura.

Il team di ricercatori del Dipartimento di Biologia e biotecnologie Charles Darwin di Sapienza Università di Roma e del Centro for Life Nano- & Neuro-Science dell’Istituto Italiano di Tecnologia (IIT) a Roma, coordinati da Irene Bozzoni e in collaborazione con Mariangela Morlando dell’Università degli studi di Perugia, ha aggiunto un nuovo tassello nella comprensione di questa patologia, individuando un nuovo componente molecolare degli aggregati patologici caratteristici della SLA, l’RNA circolare circ-Hdgfrp3.

Gli RNA circolari sono così chiamati proprio per la loro forma peculiare che li rende particolarmente resistenti alla degradazione. Essi rappresentano una nuova classe di molecole espresse in tutte le cellule e in particolar modo nel sistema nervoso, dove il loro malfunzionamento è stato associato a diversi stati patologici.

Lo studio, pubblicato sulla rivista iScience, analizza la presenza di questo specifico RNA circolare in associazione alla SLA: più esattamente, esso è stato evidenziato negli aggregati patologici prodotti da mutazioni della proteina FUS associate a una grave forma della malattia. La proteina FUS, infatti, che normalmente è localizzata nel nucleo, a seguito di specifiche mutazioni viene a trovarsi nel citoplasma, dove può aggregarsi formando grosse inclusioni, tipiche della SLA, che sequestrano molti componenti cellulari impedendone la corretta localizzazione e funzione.

Il gruppo di ricerca, impiegando avanzate tecniche di imaging e studiando motoneuroni di modelli animali analizzati in vitro, ha studiato gli effetti delle mutazioni della proteina FUS sulla localizzazione di questo RNA circolare. Mentre in motoneuroni sani esso si muove lungo i prolungamenti dei neuroni, facendo quindi pensare a una importante funzione di spola da e verso la periferia della cellula, in condizioni patologiche questo RNA circolare rimane intrappolato negli aggregati della proteina FUS; ciò indica che la formazione di tali agglomerati patologici può avere un effetto deleterio nelle normali funzioni di spola di questo RNA circolare e contribuire, così, al malfunzionamento dei motoneuroni.

“In questo studio abbiamo definito le caratteristiche di questo RNA – dichiara Irene Bozzoni a capo del gruppo della Sapienza – e descritto le alterazioni che si verificano nei motoneuroni che portano mutazioni della proteina FUS associate alla SLA”.

Questa ricerca, finanziata dall’European Research Council (ERC) e da Fondazione AriSLA, apre nuove interessanti frontiere nella comprensione delle malattie neurodegenerative, rispetto al ruolo degli aggregati patologici e degli RNA in essi contenuti.

Riferimenti:

Circ-Hdgfrp3 shuttles along neurites and is trapped in aggregates formed by ALS-associated mutant FUS – Eleonora D’Ambra, Tiziana Santini, Erika Vitiello, Sara D’Uva, Valentina Silenzi, Mariangela Morlando e Irene Bozzoni – iScience 2021 https://doi.org/10.1016/j.isci.2021.103504

 

Testo dal Settore Ufficio stampa e comunicazione Sapienza Università di Roma

Un arcobaleno di luce per potenziare le telecomunicazioni
Una ricerca condotta dalla Sapienza, in collaborazione con l’Università di Brescia, con l’Istituto Xlim di Limoges in Francia e con la Southern Methodist University di Dallas negli Stati Uniti d’America, ha dimostrato un metodo semplice ed economico per generare fasci laser arcobaleno a spirale, applicabili in diversi ambiti, dalle telecomunicazioni, all’ottica quantistica. Lo studio è pubblicato su Scientific Reports.

arcobaleno laser spirale luce telecomunicazioni

Comprendere esattamente la forma della luce è sempre stata una sfida complessa, fin dai tempi di Newton, che immaginava che la luce solare fosse composta da particelle. Oggi sappiamo che la luce è un’onda elettromagnetica e attribuirle una forma risulta più facile: comunemente, infatti, entriamo in contatto con oggetti luminosi di una forma definita, come ologrammi o fasci laser, che possono essere considerati raggi di luce.

Ma è possibile intervenire su un raggio laser cambiandone la forma: questo accade quando si agisce sul fronte d’onda della radiazione elettromagnetica (ossia nei punti dove la fase dell’onda è costante) ottenendo la cosiddetta luce strutturata che può assumere le più svariate forme (o strutturazioni).

Tra le infinite strutturazioni che è possibile dare alla luce, particolarmente studiate sono quelle a forma di spirale. I fasci laser a spirale, infatti, per le loro caratteristiche uniche, trovano applicazione in campi di frontiera, come la biofisica e le tecnologie quantistiche.

Un nuovo studio pubblicato sulla rivista Scientific Reports e coordinato da Stefan Wabnitz del Dipartimento di Ingegneria dell’informazione, elettronica e telecomunicazioni di Sapienza, propone un metodo per realizzare fasci a forma di spirale a partire da piccoli segmenti di fibre ottiche: sfruttando la geometria cilindrica della fibra ottica per guidare la luce lungo un percorso elicoidale, il fronte d’onda che serve all’emissione di un fascio a spirale, finisce per prodursi spontaneamente. Un metodo economico e semplice, che non richiede alcuna nanofabbricazione: bastano infatti solo alcuni elementi facilmente reperibili, quali un laser, una lente convergente e pochi centimetri di fibra ottica standard.

Il lavoro, sviluppato con la collaborazione dell’Università di Brescia, l’istituto universitario XLIM di Limoges e la Southern Methodist University americana, rientra nel progetto STEMS di Horizon 2020 finanziato dall’European Research Council.

Comunemente la realizzazione di luce strutturata richiede l’uso di sistemi ottici dedicati: è necessario munire di volta in volta un fascio laser del corretto fronte d’onda al fine di generare la strutturazione desiderata. Ciò viene realizzato tramite maschere ad hoc che però hanno funzionalità ancora poco duttili. Esistono anche metodi più flessibili che utilizzano strumenti basati sui cristalli liquidi. Tuttavia, queste tecnologie risultano essere molto costose, oltre che ingombranti.

“Uno degli elementi chiave della nostra ricerca è la linearità del fenomeno – dichiara Stefan Wabnitz – ovvero il fatto che la generazione di fasci a spirale, con questo metodo, prescinda dalla potenza del laser impiegato. Basti pensare – aggiunge Wabnitz – che siamo riusciti a produrre in laboratorio un fascio a spirale utilizzando come sorgente un comune puntatore laser acquistabile nei negozi di elettronica”.

Se invece vengono utilizzati laser ad alta potenza, andando a generare effetti non lineari, è possibile osservare un fenomeno molto particolare sotto il profilo cromatico: la spirale, originariamente di un solo colore, acquista tutte le tonalità, dal rosso al violetto.

“Tali colori spontaneamente si organizzano per formare un arcobaleno di forma spirale – sottolinea Mario Ferraro, ricercatore della Sapienza – Questa peculiare forma multicolore non può essere realizzata con metodi convenzionali, e troverà certamente impiego in diversi campi applicativi, dall’ottica quantistica alle telecomunicazioni”.

Riferimenti:

Rainbow Archimedean spiral emission from optical fibres – Fabio Mangini, Mario Ferraro, Vladimir L Kalashnikov, Alioune Niang, Tigran Mansuryan, Fabrizio Frezza, Alessandro Tonello, Vincent Couderc, Alejandro Aceves, Stefan Wabnitz – Scientific Reports 2021. DOI: https://doi.org/10.1038/s41598-021-92313-w

Testo e foto dal Settore Ufficio stampa e comunicazione Sapienza Università di Roma

Una nuova frontiera per le telecomunicazioni ottiche

Un gruppo di ricercatori del Dipartimento di Ingegneria dell’Informazione, elettronica e delle telecomunicazioni della Sapienza, in collaborazione con l’Università di Brescia e l’Università di Stato russa di Novosibirsk, ha scoperto nuove peculiari proprietà nei solitoni, un particolare tipo di onde luminose in grado di propagarsi indefinitamente nelle fibre ottiche. I risultati dello studio, presentati sulla rivista Communications Physics, aprono la strada a un nuovo tipo di propagazione ottica multimodo, applicabile nelle telecomunicazioni e nei laser a fibra.

telecomunicazioni solitoni
Una nuova frontiera per le telecomunicazioni ottiche; nell’immagine un solitone. Foto Christophe.Finot et Kamal HAMMANI – Laboratoire Interdisciplinaire CARNOT de Bourgogne, UMR 5209 CNRS-Université de Bourgogne, Dijon, Bourgogne, FRANCE Department of Physics of the University of Bourgogne Équipe Solitons, Lasers et Communications Optiques web site, CC BY-SA 2.5

Le fibre ottiche vengono utilizzate per trasmettere energia luminosa in modo guidato e senza interferenze elettromagnetiche. Tale propagazione può avvenire in maniera monomodale o multimodale: nelle fibre monomodali la propagazione del segnale luminoso avviene in un solo modo e rispetto alle fibre multimodali vi è una minore attenuazione e dispersione del segnale.

La ricerca sulla trasmissione di dati in fibre ottiche multimodo risale a circa 40 anni fa, quando venne prevista l’esistenza di impulsi luminosi particolari, detti solitoni spaziotemporali o multimodo, in grado di propagarsi indefinitamente lungo le fibre, grazie a un delicato meccanismo di compensazione tra gli effetti dispersivi e quelli non lineari.

Negli ultimi decenni i solitoni ottici, divenuti mattoni essenziali nel costruire sorgenti di luce laser a impulsi ultracorti, sono stati proposti anche come veicoli ideali per trasmettere dati nelle autostrade dell’informazione a fibra ottica che formano la spina dorsale di internet. Le teorie sviluppate negli anni passati attribuivano ai solitoni nelle fibre multimodo una evoluzione stabile e ripetitiva, man mano che si propagano lungo la fibra, eppure questa evoluzione periodica dell’impulso non è mai stata osservata sperimentalmente.

Oggi, gli studi del gruppo di ricerca coordinato da Stefan Wabnitz del Dipartimento di Ingegneria dell’informazione, elettronica e delle telecomunicazioni (DIET) della Sapienza, sviluppati in seno a un progetto di ricerca avanzata finanziato dal programma europeo Horizon 2020 tramite lo European Research Council (ERC), infrangono le previsioni teoriche comunemente accettate. Nel lavoro, svolto in collaborazione con l’Università di Brescia e l’Università di Stato russa di Novosibirsk e pubblicato sulla rivista Communications Physics, è stato dimostrato per la prima volta a livello sperimentale che i solitoni multimodo non seguono il comportamento periodico, ma, al contrario, tali impulsi evolvono spontaneamente verso delle forme d’onda singolo modo, che cioè si propagano nel modo fondamentale della fibra.

È stato inoltre osservato, in maniera inaspettata, che i solitoni nel propagarsi acquistano una durata temporale fissa, che dipende unicamente dalla lunghezza d’onda della radiazione luminosa iniettata all’ingresso della fibra. La durata temporale caratteristica di questi impulsi luminosi, alle lunghezze d’onda tipiche delle telecomunicazioni, è risultata estremamente piccola (100-200 femtosecondi) e pressoché indipendente dalla durata temporale dell’impulso laser originale, che viene accoppiato all’ingresso della fibra.

Questa ricerca ha fornito anche un supporto teorico e numerico alle osservazioni sperimentali, individuando come condizione essenziale per la formazione di tali impulsi la coincidenza tra tre distinte scale di lunghezza: la lunghezza associata alla non linearità della fibra, quella associata all’allargamento temporale dovuto alla dispersione cromatica, e quella associata allo scorrimento temporale o “walk-off”, ovvero la distanza entro la quale i modi di una fibra si separano temporalmente per effetto della dispersione modale.

Finora, la trasmissione in fibre ottiche multimodo ha permesso di sfruttare la tecnica della multiplazione nel dominio dello spazio (Space Division Multiplexing – SDM) utilizzando ciascun modo della fibra come canale di informazione. Con questo meccanismo, più canali trasmissivi in ingresso condividono la stessa capacità trasmissiva disponibile in uscita, ovvero si combinano più segnali in uno (detto multiplato) trasmesso in uscita su uno stesso collegamento fisico.

“Questo studio – spiega Mario Zitelli della Sapienza, che ha condotto le verifiche sperimentali – apre la possibilità di realizzare un SDM solitonico, con canali realizzati da gruppi di modi con diverse velocità, dove ogni canale trasmette una quantità elementare di informazioni mediante la propagazione di un singolo solitone spaziotemporale, caratterizzato da alta potenza luminosa e forte robustezza.”

“L’impiego di solitoni spaziotemporali di durata fissa – aggiunge Zitelli – potrà permettere di realizzare laser in fibra multimodo particolarmente stabili, grazie alla naturale predisposizione dell’impulso luminoso ad assumere una precisa durata temporale”.

“Il nostro lavoro – conclude Stefan Wabnitz – chiarisce il ruolo dei solitoni spaziotemporali in una fibra multimodo e contribuisce agli sforzi della ricerca sullo sviluppo di nuove tecniche di trasmissione ottica e di nuovi laser, che porteranno a un incremento della capacità di trasmissione in fibra, e allo sviluppo di nuove sorgenti ottiche di impulsi ultracorti ad alta energia”.

Questi risultati aprono la strada a un nuovo tipo di propagazione ottica in fibra multimodo, applicabile nelle telecomunicazioni e nei laser a fibra.

Riferimenti: 

Conditions for walk-off soliton generation in a multimode fiber – Mario Zitelli, Fabio Mangini, Mario Ferraro, Oleg Sidelnikov, Stefan Wabnitz – Communications Physics 2021, 4:182. DOI: https://doi.org/10.1038/s42005-021-00687-0

Testo dal Settore Ufficio stampa e comunicazione Sapienza Università di Roma

Con un finanziamento di 2,5 milioni di euro una nuova strada nel campo dell’immunoterapia – AL PROF. ALBERTO BARDELLI DELL’UNIVERSITÀ DI TORINO L’ERC ADVANCED GRANT 2020

 

Giovedì 22 aprile 2021European Research Council (ERC), organismo dell’Unione Europea che attraverso finanziamenti altamente competitivi sostiene l’eccellenza scientifica, ha pubblicato la lista dei progetti vincitori degli Advanced Grant. Tra le ricerche finanziate con gli ERC Advanced Grant 2020 compare quella del professor Alberto Bardelli, docente del Dipartimento di Oncologia dell’Università di Torino e Direttore del Laboratorio di Oncologia Molecolare all’Istituto di Candiolo IRCCS, che ha presentato il progetto intitolato “Targeting DNA repair Pathways, sparking anticancer immunity (TARGET). Il grant, riservato a scienziate e scienziati consiste in un finanziamento di circa 2,5 milioni di euro.

La competizione per gli ERC è estrema e solo l’8% dei progetti è stato finanziato. Il lavoro presentato dal Prof. Bardelli è uno dei 3 progetti italiani, su un totale di 746 proposte presentate in tutta Europa nella categoria Life Sciences. A livello globale l’Italia si si colloca all’ottavo posto per numero di progetti vinti.

Questo brillante risultato conferma che i ricercatori del nostro Ateneo sono altamente competitivi a livello internazionale. Il prof. Bardelli è impegnato da tempo nello sviluppo della medicina di precisione per i pazienti oncologici e il suo nuovo studio, su come sia possibile costringere le cellule dei tumori ad accendere ‘luci di posizione’ che le rendano visibili al sistema immunitario, può segnare un punto di svolta nella ricerca oncologica, da sempre considerata un’eccellenza di UniTo. L’attenzione della comunità scientifica mondiale al progetto, vincitore di un prestigioso Advanced Grant, conferma l’alto valore della nostra ricerca e i ritorni positivi per la società. Il nostro più sentito ringraziamento va a tutto il team guidato dal prof. Bardelli”, commenta Il Prof Stefano Geuna, Rettore dell’Università di Torino.

Grazie al finanziamento dell’ERC Advanced,” dichiara il Prof. Bardelli “valuteremo sistematicamente se e come l’inattivazione dei geni di riparazione del DNA sia in grado di indurre dei segnali simili a ’luci di posizione’ sulle cellule tumorali, aumentando le probabilità che il sistema immunitario le identifichiLa maggior parte dei tumori sono, infatti, equiparabili agli aerei da combattimento ‘Stealth’ che, essendo invisibili ai radar, non danno modo alla contraerea (il sistema immunitario) di rispondere.  In pratica, per la prima volta sarà possibile studiare come costringere le cellule tumorali ad accendere le ’luci di posizione’ e rendersi visibili alla contraerea del sistema immunitarioPiù in dettaglio, TARGET studierà se l’inattivazione dei meccanismi di riparazione del DNA nelle cellule tumorali possa essere sfruttata a beneficio del paziente, risvegliando la risposta immunitaria antitumorale. Infatti, aggiunge Bardelli, tutto cambierebbe se una tecnologia costringesse i tumori Stealth a diventare visibili e, di conseguenza, aggredibili”.

 

La ricerca

Il progetto nasce dall’osservazione che i tumori in cui il sistema di riparazione del DNA Mismatch Repair (MMR) è alterato hanno tutte le luci di posizione accese e rispondono molto bene  all’immunoterapia. La base molecolare delle caratteristiche cliniche dei tumori con deficit di MMR è rimasta a lungo un mistero. Nel 2017 il Dott. Giovanni Germano, un ricercatore del gruppo guidato dal Prof. Bardelli, ha pubblicato sulla rivista Nature un articolo nel quale si evidenziava che nei casi in cui il MMR è compromesso, il sistema immunitario delle cavie di laboratorio riconosce e attacca il tumore.  Si è scoperto, cioè, che livelli elevati di mutazioni, che a loro volta scatenano l’immunità, innescano l’immunosorveglianza. In pratica, Germano e Bardelli hanno mostrato come sia possibile costringere le cellule dei tumori Stealth ad accendere le ‘luci di posizione’, rendendole visibili al sistema immunitario, che può aggredirle ed eliminarle.

Partendo da questa scoperta, TARGET si propone di utilizzare, tramite blocco farmacologico, le proteine coinvolte nella riparazione del DNA come innovativa terapia antitumorale. Secondo il gruppo di ricerca del Prof. Bardelli, il sistema immunitario può identificare e colpire selettivamente le cellule tumorali che portano alterazioni del DNA.  Questo perché le cellule dei tumori che mancano del meccanismo MMR hanno sulla loro superficie neo-antigeni, cioè ’luci di posizione’ proteiche diverse da quelle delle cellule sane.

L’identificazione dei meccanismi di riparazione del DNA, che quando disabilitati risvegliano il sistema immunitario, potrebbe portare allo sviluppo di una classe completamente nuova di farmaci antitumorali.

Alberto Bardelli ERC Advanced Grant 2020 UniTo
Il progetto del professor Alberto Bardelli, vincitore ERC Advanced Grant 2020

Biografia Alberto Bardelli

Alberto Bardelli è Professore Ordinario del Dipartimento di Oncologia dell’Università di Torino e svolge la propria attività di ricerca presso l’Istituto di Candiolo IRCCS, dove è Direttore del Laboratorio di Oncologia Molecolare. Il suo lavoro è incentrato sullo sviluppo della medicina di precisione per i pazienti oncologici.

Durante il postdoctoral training (1999-2004) presso la Johns Hopkins University (USA), nel gruppo diretto dal Prof. Bert Vogelstein, Bardelli ha sviluppato il primo profilo completo delle mutazioni delle proteine chinasi nel cancro del colon-retto. Bardelli coordina dal 2007 un gruppo di ricerca multidisciplinare composto da genetisti, ingegneri matematici, biologi molecolari, fisici, oncologi medici, patologi e bioinformatici. Il team ha identificato i meccanismi di risposta e resistenza alle terapie anti EGFR, HER2, BRAF e NTRK1 nei tumori del colon-retto.

Il gruppo di Bardelli continuamente trasferisce le proprie scoperte in nuove terapie attraverso innovativi clinical trial (es. HERACLES e ARETHUSA) che coinvolgono attivamente centinaia di pazienti in Italia. Le scoperte del suo gruppo di ricerca hanno inoltre definito una nuova metodologia diagnostica, chiamata biopsia liquida, che tramite un prelievo di sangue, utilizzando il DNA tumorale circolante, permette di monitorare la risposta alle terapie e l’efficacia della chirurgia nei pazienti affetti da tumori colorettali.

Dal 2018 al 2020 il Professor Bardelli è stato Presidente dell’European Association for Cancer Research (EACR). A partire dal 2014 è stato inserito da Web of Science nell’elenco dei ricercatori più citati al mondo. Nel 2016 ha vinto il Grant for Oncology Innovation e nel 2017 l’ESMO Translational Research Award. Nel 2020 è stato insignito del Premio Guido Venosta assegnato da AIRC e conferito dalla Presidenza della Repubblica Italiana per le ricerche volte allo sviluppo di nuovi approcci terapeutici alle neoplasie. È autore di più di 200 articoli scientifici pubblicati su riviste internazionali. Il suo H index, una misura delle citazioni ricevute dai suoi articoli, è pari a 98 e lo pone nella lista dei Top Italian Scientists.

 

 

Testo e foto dall’Università degli Studi di Torino sul progetto del professor Alberto Bardelli, vincitore ERC Advanced Grant 2020.

ERC 2020  – LA RICERCATRICE DI UNITO CHIARA AMBROGIO SI AGGIUDICA IL CONSOLIDATOR GRANT

Alla ricercatrice Chiara Ambrogio del Centro di Biotecnologie Molecolari dell’Università di Torino un finanziamento di 2 milioni di euro per lo studio sulle mutazioni del gene KRAS, tra le principali cause del cancro ai polmoni, al pancreas e al colon

Chiara Ambrogio gene KRAS consolidator grant ERC 2020
La ricercatrice UniTO Chiara Ambrogio, che si è aggiudicata il Consolidator Grant per lo studio del gene KRAS

Mercoledì 9 dicembre 2020, lo European Research Council (ERC), organismo dell’Unione Europea che attraverso finanziamenti competitivi sostiene l’eccellenza scientifica, ha pubblicato la lista dei progetti vincitori dei Consolidator Grant. Tra i lavori finanziati c’è quello di Chiara Ambrogio, ricercatrice del Centro di Biotecnologie Molecolari dell’Università di Torino, che ha presentato il progetto dal titolo “KARMA – Dalla comprensione delle dinamiche della membrana KRAS-RAF alle nuove strategie terapeutiche nel cancro”. Il grant, riservato ai ricercatori che vantano tra i 7 e i 12 anni di esperienza dal completamento del dottorato di ricerca e un ricco curriculum scientifico, consiste in un finanziamento del valore di 2 milioni di euro.

Il progetto della Dott.ssa Ambrogio si concentra sullo studio delle mutazioni del gene KRAS. Tali mutazioni possono innescare una crescita cellulare anomala che, a sua volta, può causare il cancro ai polmoni, al pancreas e al colon. Sebbene le mutazioni KRAS siano state scoperte più di 30 anni fa, una comprensione dettagliata delle proprietà biologiche dei tumori causati da questo gene mutato è ancora lontana. Chiara Ambrogio utilizzerà il suo nuovo finanziamento dell’ERC per indagare i processi che innescano l’iperattivazione di KRAS sulla membrana cellulare. La conoscenza approfondita di questi meccanismi sarà fondamentale per scoprire nuove strategie per trattare i pazienti con tumori causati da mutazioni nel gene KRAS.

La carriera della Dott.ssa Ambrogio ha un interessante profilo internazionale. Dopo una laurea in biotecnologie mediche e un dottorato in immunologia e biologia cellulare all’Università di Torino, si è trasferita a Madrid nel 2009 per lavorare al Centro Nacional de Investigaciones Oncológicas (CNIO). Nel 2016 si è spostata negli Stati Uniti, al Dana Farber Cancer Institute (DFCI) di Boston, per completare la sua formazione traslazionale. Nel 2019, grazie alla vittoria del grant Career Development Award della Fondazione Giovanni Armenise Harvard, che promuove la ricerca di base in campo biomedico finanziando giovani scienziati che dall’estero vogliono lavorare in Italia, ha creato un gruppo di ricerca presso il Centro di Biotecnologie Molecolari dell’Università di Torino (MBC), tornando a svolgere la sua attività scientifica nel nostro Paese.

“Questa è un’enorme opportunità per portare avanti progetti di ricerca di valenza internazionale nel nostro Centro – dichiara Chiara Ambrogio – oltre a essere un’occasione per dare visibilità a tutto l’Ateneo”.

“La centralità della ricerca scientifica – dichiara Stefano Geuna, Rettore dell’Università di Torino – è uno dei valori fondamentali del nostro Ateneo. Il prestigioso riconoscimento ottenuto dalla Dott.ssa Ambrogio è la conferma che stiamo lavorando nella giusta direzione, supportando i giovani scienziati e i loro progetti. Il nostro obiettivo è continuare ad attrarre talenti, nella ferma convinzione che solo così potremo contribuire allo sviluppo e al progresso in campo scientifico, in Italia e in Europa”.

Testo e foto dall’Università degli Studi di Torino

ERC 2020

INQUINAMENTO DA NANOPLASTICHE: MONICA PASSANANTI, RICERCATRICE UNIVERSITÀ DI TORINOVINCE UNO DEGLI STARTING GRANTS 2020

 

Il progetto della ricercatrice del Dipartimento di Chimica dell’Università di Torino ha ottenuto dall’organismo dell’Unione Europea un finanziamento di oltre 1.600.000 euro per i prossimi 5 anni.

Monica Passananti starting grants 2020 inquinamento nanoplastiche
Monica Passananti

Il 3 settembre 2020, lo European Research Council (ERC), organismo dell’Unione Europea che attraverso finanziamenti competitivi sostiene l’eccellenza scientifica, ha pubblicato la lista dei progetti che hanno vinto uno degli Starting Grants per l’anno 2020.

Su un totale di 3272 proposte, di cui 432 selezionate, tra le 20 italiane il progetto NaPuE – Impact of Nanoplastics Pollution on aquatic and atmospheric Environments di Monica Passananti, ricercatrice del Dipartimento di Chimica dell’Università di Torino e docente di chimica ambientale, che ha ottenuto un finanziamento di 1.624.751 euro per i prossimi 5 anni. Il progetto studierà l’impatto delle nanoplastiche sull’ambiente determinando come queste possano interagire con le componenti abiotiche nell’acqua marina e nell’atmosfera e come possano modificare con i processi naturali.

 L’inquinamento da plastica raggiunge le più remote aree della Terra: detriti plastici sono stati trovati quasi ovunque dalle Alpi all’Antartide e anche nell’atmosfera. Tra questi contaminanti ci sono le cosiddette nanoplastiche, non visibili ad occhio nudo, che possono essere prodotte attraverso la degradazione di pezzi di plastica più grandi o possono entrare direttamente nell’ambiente a causa di uno smaltimento non corretto.

Ancora poco si conosce su come agiscono le nanoplastiche nell’ambiente e la loro presenza negli oceani è stata dimostrata solo di recente, pertanto i rischi ambientali e sanitari non sono ancora definiti. A causa della piccola dimensione e della grande superficie esposta su cui si dispongono, le interazioni delle nanoplastiche con le specie chimiche e le forme di vita presenti in natura, possono essere significativamente differenti rispetto ai detriti più grandi.

Il progetto, che si svilupperà in cinque anni, si svolgerà presso l’Università di Torino e l’Università di Helsinki in Finlandia e si avvarrà di esperimenti di laboratorio per determinare cosa producono le nanoplastiche, quando reagiscono con la luce solare e le specie chimiche in acqua di mare e nell’atmosfera. Svilupperà una procedura di raccolta e analisi, attraverso la spettrometria di massa e tecniche di misurazione degli aerosol, un passo cruciale per analizzare quanto le nanoplastiche siano presenti nell’ambiente. Infine, valuterà il loro potenziale impatto sui processi fotochimici naturali, sugli scambi mare-atmosfera e sul ciclo del carbonio.

La ricerca fornirà importanti informazioni sulla reattività e sui meccanismi di trasformazione delle nanoplastiche nell’ambiente. I risultati saranno fondamentali per comprendere quale sia l’impatto sull’ecosistema dell’inquinamento da nanoplastiche e saranno decisivi nello sviluppare strategie per risolvere i problemi relativi all’inquinamento da plastica.

 “Penso che questo progetto e in generale la ricerca sull’impatto delle plastiche sull’ambiente sia importante – ha dichiarato la professoressa Monica Passananti – perché l’inquinamento da plastica è un problema globale, infatti piccoli frammenti sono stati trovati anche nelle aree più remote della Terra. Spesso l’attenzione è focalizzata sui detriti grandi e visibili che inquinano i nostri suoli e mari, tuttavia il problema dell’inquinamento da nanoplastiche è spesso sottovalutato. Non sono visibili ad occhio nudo, ma il fatto che siano così piccole le rende potenzialmente più pericolose per l’ecosistema”.

Il nuovo riconoscimento dell’European Research Council alla professoressa Monica Passananti – ha dichiarato il Rettore Stefano Geuna – conferma ancora una volta l’eccellenza del lavoro dei ricercatori del nostro Ateneo nei diversi ambiti disciplinari. Studiare l’inquinamento delle nanoplastiche è oggi fondamentale per lo sviluppo sostenibile del pianeta e per ridurre i rischi ambientali e l’impatto sulla salute”.


Testo e foto dall’Università degli Studi di Torino sull’ottenimento di uno degli Starting Grants dell’ERC da parte del progetto NaPuE sull’inquinamento da nanoplastiche, di Monica Passananti.

Uno studio della Sapienza in collaborazione con l’Istituto Italiano di Tecnologia fornisce nuove informazioni sulla parte meno conosciuta del nostro corredo genetico mettendo sotto i riflettori il meccanismo di azione di una molecola di RNA non codificante sulla formazione dei tessuti muscolari. L’articolo è stato pubblicato sulla rivista EMBO Reports, che gli ha dedicato una creativa copertina per il numero di giugno.

Il nostro genoma può essere paragonato a un “manuale di istruzioni” che regola lo sviluppo e il funzionamento del nostro organismo. Per molti anni la comunità scientifica non ha approfondito quella parte consistente del suo contenuto che non essendo destinata alla produzione di proteine, era ritenuta meno importante. Per tale ragione, le informazioni presenti al suo interno, ovvero il ruolo funzionale di questi elementi, non codificanti”, è rimasto a lungo sconosciuto.

Nell’ambito della cosiddetta “materia oscura” del genoma, ci sono migliaia di sequenze di RNA non codificanti (ncRNA), che si sono rivelate invece centrali nel controllo di tutti quei processi che sottintendono al corretto differenziamento di cellule e tessuti del nostro organismo, e che, se alterate, possono causare numerose malattie. La loro funzione si esplica sia nel nucleo che nel citoplasma dove regolano rispettivamente la produzione degli RNA messaggeri (mRNA) e il successivo processo di traduzione in proteine.

Un team di ricercatori del Dipartimento di Biologia e biotecnologie “Charles Darwin” della Sapienza e dei centri CLNS e CHT dell’Istituto Italiano di Tecnologia (IIT), ha scoperto in un RNA non codificante, lnc-SMaRT, un interessante meccanismo d’azione attraverso il quale la molecola riesce a controllare lo sviluppo delle cellule muscolari.

Il nuovo studio ha svelato come lnc-SMaRT sia capace di regolare negativamente la traduzione di un RNA messaggero, MLX-g, che ricopre un ruolo fondamentale nella formazione dei tessuti muscolari. I risultati sono stati pubblicati sulla rivista EMBO Reports, che ha dedicato allo studio la copertina del numero di giugno.

“Questo RNA – spiega Irene Bozzoni, coordinatrice del team di ricerca – presenta al suo interno una struttura G-quadruplex, una sorta di nodo, che ha bisogno di essere sciolta da un enzima, DHX36, affinchè l’informazione contenuta al suo interno possa essere efficientemente tradotta e quindi convertita in proteina. In questo meccanismo raffinato, abbiamo visto che lnc-SMaRT va a inserirsi come antagonista rispetto a DHX36, bloccando la sequenza su cui l’enzima opera”.

I ricercatori hanno dimostrato come lnc-SMaRT, legandosi alla struttura G-quadruplex dell’RNA messaggero MLX-g, riesca ad abbassare i livelli della corrispondente proteina e a scandire in maniera precisa le tempistiche che portano al corretto differenziamento muscolare.

“I risultati – conclude Bozzoni – aggiungono un importante tassello alla comprensione dell’utilità di strutture complesse dell’RNA come le G-quadruplex e, grazie all’identificazione di un nuovo meccanismo di regolazione, contribuiscono a gettare nuova luce sul repertorio funzionale degli RNA non codificanti, la parte “oscura” dei trascritti delle nostre cellule.

Lo studio di questi meccanismi d’azione è parte integrante di progetti finanziati dal programma H2020 Synergy Grants (SyG) dell’European Research Council (ERC).

genoma muscoli

 

Riferimenti:

 

SMaRT lncRNA controls translation of a Gquadruplexcontaining mRNA antagonizing the DHX36 helicase – Julie Martone, Davide Mariani, Tiziana Santini, Adriano Setti, Sama Shamloo, Alessio Colantoni, Francesca Capparelli, Alessandro Paiardini, Dacia Dimartino, Mariangela Morlando, Irene Bozzoni – EMBO Rep (2020) https://doi.org/10.15252/embr.201949942

 

Testo e immagine dall’Ufficio Stampa Università La Sapienza di Roma