News
Ad
Ad
Ad
Tag

DLR

Browsing

LA LUNA E LA TERRA IN POSA PER LA CAMERA JANUS DURANTE IL PRIMO FLYBY DI JUICE

Nelle immagini raccolte dalla sonda ESA, oltre 400, crateri e paesaggi lunari, le isole degli arcipelaghi delle Hawaii e delle Filippine e immensi banchi di nuvole sull’Oceano Pacifico. Lo strumento italiano funziona alla perfezione.

Roma, 23 agosto 2024 – Si chiama JANUS la camera ottica che viaggia da oltre un anno a bordo della sonda ESA JUICE (Jupiter Icy Moon Explorer) e nei giorni scorsi – durante il primo flyby del sistema Luna-Terra della storia – ha acquisito immagini straordinarie del nostro satellite naturale e del nostro pianeta. La fionda gravitazionale doppia è avvenuta con successo la notte tra il 19 e 20 agosto scorsi: tale manovra, mai realizzata in precedenza anche per i notevoli rischi, ha permesso a JUICE di cambiare velocità e direzione di volo, preparando la sonda al successivo sorvolo ravvicinato di Venere previsto per agosto 2025.

La camera JANUS è stata progettata per studiare la morfologia e i processi globali regionali e locali delle lune ghiacciate di Giove e per eseguire la mappatura delle nubi del gigante gassoso. Lo strumento è stato realizzato da un consorzio di industrie a guida Leonardo sotto la responsabilità dell’Agenzia Spaziale Italiana (ASI). La camera JANUS è stata realizzata anche grazie alla collaborazione con l’agenzia tedesca DLR, il CSIC-IAA di Granada e il CEI-Open University di Milton Keynes. La responsabilità scientifica dello strumento è dell’Istituto Nazionale di Astrofisica (INAF).

La Luna e la Terra in posa per la camera JANUS durante il primo flyby di JUICE. Gallery

“Dopo oltre 12 anni di lavoro per proporre, realizzare e verificare lo strumento, questa è la prima occasione per toccare con mano dati simili a quelli che acquisiremo nel sistema di Giove a partire dal 2031”, commenta Pasquale Palumbo, ricercatore all’INAF di Roma e principal investigator del team che ha progettato, testato e calibrato la fotocamera JANUS. “Anche se il flyby è stato pianificato esclusivamente per facilitare il viaggio interplanetario fino a Giove, tutti gli strumenti a bordo della sonda hanno approfittato del passaggio in prossimità di Luna e Terra per acquisire dati, provare operazioni e tecniche di elaborazione con il vantaggio di conoscere già cosa stavamo osservando”, aggiunge.

“L’insieme degli strumenti italiani a bordo della missione JUICE è quanto di più tecnologicamente avanzato sia stato mai realizzato e consentirà di ottenere dei risultati scientifici di assoluta rilevanza consolidando la posizione di leadership raggiunta dall’Italia nell’ambito dell’esplorazione del sistema solare”, dichiara Barbara Negri responsabile dell’ufficio Volo Umano e Sperimentazione Scientifica dell’ASI. “Infatti, la nostra agenzia ha coordinato e gestito, oltre alla realizzazione della camera JANUS, la realizzazione del radar sotto-superficiale RIME, la realizzazione dell’esperimento di radio scienza 3GM e la realizzazione della testa ottica dello spettrometro MAJIS a guida francese”, prosegue.

“A poco più di un anno dal lancio di JUICE, questo doppio passaggio ravvicinato ha rappresentato una pietra miliare per il viaggio della sonda verso la sua destinazione finale, commenta Angelo Zinzi responsabile per l’ASI dello strumento JANUS.

“Oltre ad aver ottenuto l’assistenza gravitazionale richiesta, i vari strumenti sono stati accesi e hanno operato in modalità simili a quelle attese intorno a Giove e ai suoi satelliti: i dati sono stati ottenuti, inviati a terra e processati così come previsto, mostrando l’ottima preparazione dei team di strumento coinvolti. La camera nel visibile JANUS e lo spettrometro MAJIS hanno inoltre sfruttato la possibilità di acquisire immagini quasi contemporanee con il satellite multispettrale PRISMA dell’ASI. Dopo un lungo lavoro di preparazione tra i vari team coinvolti è stato infatti possibile ottenere una serie di osservazioni PRISMA da poter confrontare con quelle di JANUS e MAJIS: queste saranno molto utili per testare le procedure di calibrazione e l’accuratezza dei due strumenti di JUICE coinvolti, così da rendere più robusto il lavoro scientifico futuro”, prosegue Zinzi.

“Mentre la Luna offre il vantaggio di conoscere quello che osserviamo – spiega Palumbo – il problema della Terra è la sua estrema variabilità temporale; si pensi alle nuvole che si muovono e cambiano nell’arco anche di minuti. Per ovviare a questo abbiamo pianificato osservazioni contemporanee con satelliti di osservazione della Terra: questo ci garantirà un termine di confronto.

Lo strumento italiano è equipaggiato con un sistema di 13 filtri (5 a banda larga e 8 a banda stretta) distribuiti nell’intervallo spettrale dal visibile al vicino infrarosso. Avere immagini della stessa zona in diversi filtri permette ai ricercatori di avere molto di più di semplici immagini a “colori”: le fotocamere che conosciamo acquisiscono le immagini con tre diversi filtri (rosso, verde e blu o RGB) depositati a scacchiera sullo stesso sensore, mentre JANUS ne posiziona ben 13 davanti al rivelatore coprendo un intervallo più ampio di quello percepibile dall’occhio umano.

Lo scopo primario dei dati raccolti da JANUS durante il doppio flyby è stato quello di valutare prestazioni e funzionalità dello strumento, non di eseguire misure scientifiche. Per questa ragione, le immagini (circa 200 della Luna e altrettante della Terra) sono state acquisite a diversi intervalli temporali, con diversi filtri, numerosi fattori di compressione e altrettanti tempi di integrazione.

“In alcuni casi – sottolinea il ricercatore – abbiamo provocato volontariamente un peggioramento della qualità utilizzando tempi di integrazione lunghi, ottenendo immagini per così dire ‘mosse’, in modo da testare algoritmi di recupero della risoluzione. In altri casi abbiamo parzialmente saturato l’immagine per studiare gli effetti indotti sulle zone non saturate”. E aggiunge: “abbiamo anche misurato per la prima volta e meglio del millesimo di grado l’allineamento fra il laser altimetro e la camera. Questo è un dato essenziale per integrare le risposte dei due strumenti”, dice Palumbo. Le immagini pubblicate oggi sono preliminari e non elaborate per un utilizzo scientifico.

Palumbo conclude commentando le immagini della Terra raccolte all’alba del 20 agosto: “L’osservazione della superficie dei satelliti ghiacciati di Giove, come per la Luna, non è disturbata dall’atmosfera. Al contrario, Giove è una gigantesca, dinamica e turbolenta atmosfera. Le immagini di JANUS della Terra, con diversi filtri, possono simulare quello che potremo fare a Giove: osservare diversi strati e componenti dell’atmosfera semplicemente cambiando filtro”.

JANUS permetterà l’acquisizione di immagini multi spettrali dei satelliti ghiacciati di Giove a una risoluzione e con una estensione 50 volte migliore delle camere inviate nel sistema gioviano in passato. La camera include anche un computer con un software che controlla tutte le funzionalità dello strumento, riceve i comandi e invia telemetria e dati a terra attraverso la grande antenna parabolica di JUICE.

Tutte le operazioni si sono svolte secondo quanto programmato e, come confermato dalle telemetrie, completate con successo. Attualmente i dati che stanno piano piano arrivando a terra, anche da RIME, 3GM e MAJIS (gli altri strumenti italiani) sono al vaglio del team scientifico.

Dopo il lancio della missione nell’aprile del 2023, le manovre gravitazionali previste nella tabella di marcia di JUICE sono fondamentali per avvicinare sempre di più la sonda verso il sistema di lune gioviano, che dista in media 800 milioni di km dal nostro pianeta, con il minor dispendio di propellente. Il sorvolo di Venere nel 2025 spingerà JUICE di nuovo verso la Terra. Gli altri flyby sono previsti a settembre 2026 e a gennaio 2029; l’arrivo su Giove è invece in programma per luglio 2031.


 

Per ulteriori informazioni:

Leonardo è responsabile industriale per la realizzazione, integrazione e test dello strumento JANUS, con il contributo di sottosistemi dal DLR di Berlino, CSIC-IAA di Granada e CEI-Open University di Milton Keynes. Le Agenzie Spaziali Italiana, Tedesca, Inglese (ASI, DLR e UKSA), con il Ministero della Ricerca Spagnolo, sono i principali finanziatori del progetto. JANUS è stata sviluppata da un team internazionale composto da Istituti e ricercatori situati in Italia, Germania, Spagna, Gran Bretagna, Francia, Usa, Giappone e Israele. Il team è guidato dall’INAF-IAPS di Roma e include partecipanti anche da altri istituti INAF (gli Osservatori di Padova, Roma, Napoli, Teramo e Catania), dal CISAS-Università di Padova e da altri istituti di ricerca e università.

Gli altri strumenti italiani a bordo della missione JUICE
RIME (Radar for Icy Moon Exploration) è un radar sottosuperficiale ottimizzato per penetrare la superficie ghiacciata dei satelliti Galileiani fino alla profondità di 9 Km con una risoluzione verticale fino a 30 m. Il radar RIME, è stato realizzato con la il contributo del Jet Propulsion Laboratory (JPL) della NASA che ne ha fornito la parte ricevente e trasmittente e ricevente.
3GM (Gravity and Geophysics of Jupiter and the Galilean Moons) è uno strumento per radio scienza che comprende un transponder in banda Ka e un oscillatore ultrastabile (USO), realizzato in collaborazione con l’agenzia spaziale Israeliana (ISA). Sarà utilizzato per studiare il campo di gravità fino alla decima armonica di Ganimede e l’estensione degli oceani interni sulle lune ghiacciate. L’esperimento 3GM sarà inoltre supportato dall’accelerometro ad alta precisione (HAA) necessario per calibrare i disturbi dinamici interni del satellite, in particolare dovuti al movimento del propellente nei serbatoi.
Importante, inoltre, il coinvolgimento italiano per la testa ottica dello strumento MAJIS (Moons and Jupiter Imaging Spectrometer), uno spettrometro iper-spettrale a immagine per osservare le caratteristiche e le specie minori della troposfera di Giove nonché per la caratterizzazione dei ghiacci e dei minerali sulle lune ghiacciate. MAJIS, di responsabilità francese è stato realizzato con un accordo bilaterale tra ASI e CNES e vede la partecipazione dell’INAF nel coordinamento delle attività scientifiche dello strumento.

Articoli correlati:

JANUS: apre gli occhi la camera della sonda JUICE

Testo, video e immagini dall’Ufficio stampa dell’Istituto Nazionale di Astrofisica (INAF).

PRIMA OSSERVAZIONE DELLA NUTAZIONE NEI MATERIALI MAGNETICI

L’EFFICIENZA DEI DATA CENTER SI GIOCA IN UN PICOSECONDO

Su Nature Physics la scoperta del team guidato dal fisico Stefano Bonetti (Università Ca’ Foscari Venezia e Università di Stoccolma) nell’ambito di un progetto ERC sul magnetismo ultraveloce

ARSAT Data Center (2014). Foto IMarcoHerrera, CC BY-SA 4.0

VENEZIA – Gran parte della ‘memoria’ del mondo e tutte le nostre attività digitali si basano su supporti, dischi rigidi, codificati grazie al magnetismo, ovvero orientando in un verso o nell’opposto lo spin degli elettroni.

Un team internazionale di scienziati guidato dal fisico italiano Stefano Bonetti, professore all’Università Ca’ Foscari Venezia e all’Università di Stoccolma, è riuscito per la prima volta a osservare la ‘nutazione’ di questi spin in materiali magnetici, ovvero le oscillazioni del loro asse durante la precessione. Il periodo di nutazione che è stato misurato è dell’ordine di un picosecondo: un millesimo di miliardesimo di secondo. La scoperta è stata pubblicata oggi da Nature Physics.

L’asse di uno spin compie nutazione e precessione, come per ogni oggetto che ruota su sé stesso, dalle trottole ai pianeti. In questa ricerca, i fisici hanno osservato sperimentalmente che la nutazione dell’asse dello spin magnetico è 1000 volte più veloce della precessione, un rapporto curiosamente simile proprio a quello della Terra.

Questa nuova scoperta su caratteristiche fisiche degli spin finora sconosciute è fondamentale nell’ambito della ricerca per rendere sempre più veloci, compatte ed energicamente efficienti le tecnologie digitali. Per manipolare a scale temporali di millesimi di miliardesimi di secondo questi fenomeni, però, è prima necessario conoscerne le dinamiche anche inerziali.

“Questa è la prima evidenza diretta e sperimentale dei movimenti inerziali degli spin magnetici – spiega Stefano Bonetti, che coordina un progetto ERC proprio sul magnetismo ultraveloce – con implicazioni che interessano ad esempio i data center che immagazzinano quasi tutta l’informazione digitale dell’umanità in bit con il polo nord verso l’alto o verso il basso, codificando così gli 0 e 1 informatici. Quando questi spin vengono orientati entrano in gioco anche precessione e nutazione. Conoscere il periodo della nutazione diventa fondamentale all’aumentare della velocità di rotazione. Questa prima osservazione di tali movimenti apre la strada a nuove tecnologie per rendere più efficienti le nostre attività digitali, che, tra tutte le attività umane, stanno registrando il più alto incremento in consumo energetico”.

L’esperimento

L’esperimento ha richiesto una collaborazione con diversi laboratori scientifici europei in Germania (Helmholtz-Zentrum Dresden-Rossendorf, Chemnitz University of Technology, University of Duisburg-Essen, German Aerospace Center (DLR), TU Berlin) Francia (École Polytechnique) e Italia (Università di Napoli Federico II e  Università di Napoli ‘Parthenope’), con la misura chiave fatta nel centro di ricerca Helmholtz a Dresda-Rossendorf, in Germania (https://www.hzdr.de/). In questo centro, il laboratorio TELBE è in grado di generare l’intensa radiazione terahertz (zona di frequenze tra le microonde e gli infrarossi), necessaria per l’esperimento. Il gruppo guidato da Stefano Bonetti è stato tra i primi gruppi di utenti del laboratorio ed ha contribuito allo sviluppo della macchina stessa.

“I primi esperimenti sono stati faticosi – afferma il fisico cafoscarino – ma già dopo un paio di anni la macchina era molto performante. Queste misure sono state fatte nell’arco di un anno, in tre occasioni diverse, per controllare la riproducibilità di questo effetto mai osservato prima”.

Le attività di Stefano Bonetti si inseriscono in un contesto più ampio di investimento da parte dell’ateneo veneziano nella ricerca scientifica e nella didattica del Dipartimento di Scienze Molecolari e Nanosistemi. Lo stesso dipartimento lancia a partire da quest’anno accademico il corso di laurea in Ingegneria Fisica, coordinato proprio da Bonetti, lui stesso ingegnere fisico: “La scienza evolve sempre, e chissà che cosa esploreremo tra dieci anni, ma l’idea del nuovo corso di laurea è proprio quella di preparare una nuova generazione di scienziati e scienziate che saranno pronti alle sfide del futuro”.

L’articolo:

Inertial spin dynamics in ferromagnets

Nature Physicshttps://www.nature.com/articles/s41567-020-01040-y

Testo dall’Università Ca’ Foscari Venezia