Ad
Ad
Ad
Tag

Communications Physics

Browsing

Una nuova frontiera per le telecomunicazioni ottiche

Un gruppo di ricercatori del Dipartimento di Ingegneria dell’Informazione, elettronica e delle telecomunicazioni della Sapienza, in collaborazione con l’Università di Brescia e l’Università di Stato russa di Novosibirsk, ha scoperto nuove peculiari proprietà nei solitoni, un particolare tipo di onde luminose in grado di propagarsi indefinitamente nelle fibre ottiche. I risultati dello studio, presentati sulla rivista Communications Physics, aprono la strada a un nuovo tipo di propagazione ottica multimodo, applicabile nelle telecomunicazioni e nei laser a fibra.

telecomunicazioni solitoni
Una nuova frontiera per le telecomunicazioni ottiche; nell’immagine un solitone. Foto Christophe.Finot et Kamal HAMMANI – Laboratoire Interdisciplinaire CARNOT de Bourgogne, UMR 5209 CNRS-Université de Bourgogne, Dijon, Bourgogne, FRANCE Department of Physics of the University of Bourgogne Équipe Solitons, Lasers et Communications Optiques web site, CC BY-SA 2.5

Le fibre ottiche vengono utilizzate per trasmettere energia luminosa in modo guidato e senza interferenze elettromagnetiche. Tale propagazione può avvenire in maniera monomodale o multimodale: nelle fibre monomodali la propagazione del segnale luminoso avviene in un solo modo e rispetto alle fibre multimodali vi è una minore attenuazione e dispersione del segnale.

La ricerca sulla trasmissione di dati in fibre ottiche multimodo risale a circa 40 anni fa, quando venne prevista l’esistenza di impulsi luminosi particolari, detti solitoni spaziotemporali o multimodo, in grado di propagarsi indefinitamente lungo le fibre, grazie a un delicato meccanismo di compensazione tra gli effetti dispersivi e quelli non lineari.

Negli ultimi decenni i solitoni ottici, divenuti mattoni essenziali nel costruire sorgenti di luce laser a impulsi ultracorti, sono stati proposti anche come veicoli ideali per trasmettere dati nelle autostrade dell’informazione a fibra ottica che formano la spina dorsale di internet. Le teorie sviluppate negli anni passati attribuivano ai solitoni nelle fibre multimodo una evoluzione stabile e ripetitiva, man mano che si propagano lungo la fibra, eppure questa evoluzione periodica dell’impulso non è mai stata osservata sperimentalmente.

Oggi, gli studi del gruppo di ricerca coordinato da Stefan Wabnitz del Dipartimento di Ingegneria dell’informazione, elettronica e delle telecomunicazioni (DIET) della Sapienza, sviluppati in seno a un progetto di ricerca avanzata finanziato dal programma europeo Horizon 2020 tramite lo European Research Council (ERC), infrangono le previsioni teoriche comunemente accettate. Nel lavoro, svolto in collaborazione con l’Università di Brescia e l’Università di Stato russa di Novosibirsk e pubblicato sulla rivista Communications Physics, è stato dimostrato per la prima volta a livello sperimentale che i solitoni multimodo non seguono il comportamento periodico, ma, al contrario, tali impulsi evolvono spontaneamente verso delle forme d’onda singolo modo, che cioè si propagano nel modo fondamentale della fibra.

È stato inoltre osservato, in maniera inaspettata, che i solitoni nel propagarsi acquistano una durata temporale fissa, che dipende unicamente dalla lunghezza d’onda della radiazione luminosa iniettata all’ingresso della fibra. La durata temporale caratteristica di questi impulsi luminosi, alle lunghezze d’onda tipiche delle telecomunicazioni, è risultata estremamente piccola (100-200 femtosecondi) e pressoché indipendente dalla durata temporale dell’impulso laser originale, che viene accoppiato all’ingresso della fibra.

Questa ricerca ha fornito anche un supporto teorico e numerico alle osservazioni sperimentali, individuando come condizione essenziale per la formazione di tali impulsi la coincidenza tra tre distinte scale di lunghezza: la lunghezza associata alla non linearità della fibra, quella associata all’allargamento temporale dovuto alla dispersione cromatica, e quella associata allo scorrimento temporale o “walk-off”, ovvero la distanza entro la quale i modi di una fibra si separano temporalmente per effetto della dispersione modale.

Finora, la trasmissione in fibre ottiche multimodo ha permesso di sfruttare la tecnica della multiplazione nel dominio dello spazio (Space Division Multiplexing – SDM) utilizzando ciascun modo della fibra come canale di informazione. Con questo meccanismo, più canali trasmissivi in ingresso condividono la stessa capacità trasmissiva disponibile in uscita, ovvero si combinano più segnali in uno (detto multiplato) trasmesso in uscita su uno stesso collegamento fisico.

“Questo studio – spiega Mario Zitelli della Sapienza, che ha condotto le verifiche sperimentali – apre la possibilità di realizzare un SDM solitonico, con canali realizzati da gruppi di modi con diverse velocità, dove ogni canale trasmette una quantità elementare di informazioni mediante la propagazione di un singolo solitone spaziotemporale, caratterizzato da alta potenza luminosa e forte robustezza.”

“L’impiego di solitoni spaziotemporali di durata fissa – aggiunge Zitelli – potrà permettere di realizzare laser in fibra multimodo particolarmente stabili, grazie alla naturale predisposizione dell’impulso luminoso ad assumere una precisa durata temporale”.

“Il nostro lavoro – conclude Stefan Wabnitz – chiarisce il ruolo dei solitoni spaziotemporali in una fibra multimodo e contribuisce agli sforzi della ricerca sullo sviluppo di nuove tecniche di trasmissione ottica e di nuovi laser, che porteranno a un incremento della capacità di trasmissione in fibra, e allo sviluppo di nuove sorgenti ottiche di impulsi ultracorti ad alta energia”.

Questi risultati aprono la strada a un nuovo tipo di propagazione ottica in fibra multimodo, applicabile nelle telecomunicazioni e nei laser a fibra.

Riferimenti: 

Conditions for walk-off soliton generation in a multimode fiber – Mario Zitelli, Fabio Mangini, Mario Ferraro, Oleg Sidelnikov, Stefan Wabnitz – Communications Physics 2021, 4:182. DOI: https://doi.org/10.1038/s42005-021-00687-0

Testo dal Settore Ufficio stampa e comunicazione Sapienza Università di Roma

Un team di ricercatori del Dipartimento di Fisica della Sapienza Università di Roma, dell’Istituto dei Sistemi Complessi del CNR e dell’Università Cattolica di Roma ha sviluppato un sistema di intelligenza artificiale che, inglobando il tumore in una rete neurale, è capace di monitorare il metabolismo e la crescita delle cellule cancerose e, in maniera del tutto non invasiva, gli effetti delle chemioterapie. I risultati del lavoro sono stati pubblicati sulla rivista Communications Physics

reti neurali cancro
La figura mostra l’evoluzione temporale del campione tumorale usato nella rete ottica

L’intelligenza artificiale sta cambiando non solo molti aspetti della vita quotidiana, ma anche il modo di “fare scienza”, stimolando nuovi esperimenti e suggerendo strade di ricerca finora inesplorate.

Così i sistemi di intelligenza artificiale diventano sempre più avveniristici, interdisciplinari e neuromorfici (ovvero simili ai sistemi viventi) e trovano applicazione nei più disparati settori, come l’elettronica, l’informatica, la simulazione e le diverse branche della medicina. I nuovi modelli sono sviluppati per imitare il cervello umano, sia nel funzionamento, con un consumo di energia molto ridotto per l’apprendimento, sia nella struttura, utilizzando materiali biologici.

Il team di ricercatori coordinato da Claudio Conti del Dipartimento di Fisica della Sapienza e Direttore dell’Istituto dei sistemi complessi del CNR, in collaborazione con Massimiliano Papi della Università Cattolica del Sacro Cuore di Roma, ha realizzato una rete neurale ottica che ingloba al suo interno delle cellule tumorali viventi che crescono e si moltiplicano nel tempo. Si tratta di un dispositivo ibrido, formato da tessuti viventi e parti fisiche, come lenti, specchi e computer tradizionali, che evolve nel tempo e può essere addestrato per fornire informazioni sulle cellule tumorali, il loro metabolismo e l’effetto di chemioterapia e altri trattamenti.

Nello studio, sviluppato nell’ambito del progetto PRIN “PELM: Photonic Extreme Learning Machine” e pubblicato sulla rivista Communications Physics, i ricercatori hanno utilizzato cellule tumorali di glioblastoma, un tumore gravissimo del cervello, che sono state inserite nel dispositivo ottico. Fasci laser sono stati opportunamente addestrati per attraversare le cellule tumorali, che si comportano come dei nodi di una rete neurale. A questo punto il sistema di intelligenza artificiale, agisce come una vera e propria rete neurale biologica, memorizza ed elabora i dati e successivamente codifica le informazioni contenute nella luce estratta dalle cellule tumorali.

reti neurali cancro
Lo schema della rete neurale ottica usata negli esperimenti

Ma non solo, la rete neurale vivente può riconoscere gli stimoli esterni e reagire ai cambiamenti: aggiungendo alcune dosi di farmaci chemioterapici i ricercatori hanno dimostrato la capacità del modello di calcolare l’efficacia della terapia contro il glioblastoma.

La rete neurale, opportunamente addestrata, evidenzia infatti cambiamenti nel tumore non rivelabili con i metodi tradizionali, come la microscopia o le tecniche fisico-chimiche, e inoltre fornisce nuove informazioni sulla dinamica dell’evoluzione temporale e sugli effetti della temperatura, prima ottenibili solo attraverso tagli o modifiche invasive ai campioni tumorali. Il potenziale di tale tecnica sta nelle importanti ricadute applicative nel campo delle nuove tecnologie impiegate nella cura del cancro e in particolare nella nanomedicina.

“Si tratta di un’applicazione originale e innovativa dei nuovi concetti di Deep Learning alla fisica – spiega Claudio Conti. L’idea è che possiamo usare questi modelli matematici non solo per fare operazioni semplici come il riconoscimento delle immagini, ma anche fare esperimenti decisamente non convenzionali, che sfruttano la fisica e la biofisica con un approccio interdisciplinare”.

Riferimenti:

Living optical random neural network with three dimensional tumor spheroids for cancer morphodynamics – D.Pierangeli, V.Palmieri, G.Marcucci, C.Moriconi, G.Perini, M.DeSpirito, M.Papi, C.Conti – Communications Physics (2020) DOI: https://doi.org/10.1038/s42005-020-00428-9

 

Testo e immagini dalla Sapienza Università di Roma